%!PS-Adobe-2.0
%%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software
%%Title: paper6.dvi
%%Pages: 64
%%PageOrder: Ascend
%%BoundingBox: 0 0 612 792
%%EndComments
%DVIPSCommandLine: dvips paper6 -o paper6.ps
%DVIPSParameters: dpi=300, comments removed
%DVIPSSource: TeX output 1997.09.08:0036
%%BeginProcSet: tex.pro
/TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N
/X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72
mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1}
ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale
isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div
hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul
TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if}
forall round exch round exch]setmatrix}N /@landscape{/isls true N}B
/@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B
/FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{
/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N
string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N
end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{
/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0]
N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup
length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{
128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub
get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data
dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N
/rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup
/base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx
0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff
setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff
.1 sub]{ch-image}imagemask restore}B /D{/cc X dup type /stringtype ne{]}
if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup
length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{
cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin
0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul
add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage
userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook
known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X
/IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for
65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0
0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V
{}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7
getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false}
ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false
RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1
false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform
round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg
rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail
{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M}
B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{
4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{
p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p
a}B /bos{/SS save N}B /eos{SS restore}B end
%%EndProcSet
TeXDict begin 40258437 52099154 1000 300 300 (paper6.dvi)
@start /Fa 2 51 df<004000C000C003801D8001800180030003000300030006000600
060006000C000C000C000C001800FF800A157C9412>49 D<00F00308040C090409061106
1106220C240C18180030006000C00300040018002004200C7C18C7F081E00F157D9412>
I E /Fb 11 121 df<004000C00180018001800300030003000600060006000C000C000C
00180018001800300030003000600060006000C000C0000A197D9210>61
D<007800180018003000300030073018E0306060606060C0C0C0C0C0C841C862D03C600D
117E9010>100 D<00E001B001A00300030003001FE00300060006000600060006000600
0C000C000C000C0008005800D00060000C167D900F>102 D<3C000C000C001800180018
001BE0343038303030303060606060606460C4C0C8C0700E117E9012>104
D<040C0000000000305898983030606464683006127E910B>I<3C000C000C0018001800
1800187031903230340038007F00618061906190C1A0C0C00C117E9010>107
D<7818183030303060606060C0C0C8C8D06005117E900A>I<71F09A189C189818181830
30303030323062606460380F0B7E8A13>110 D<1C70278C2604260606060C0C0C0C0C0C
0C181E3019C01800180030003000FC000F10808A10>112 D<0F001080218020003E001F
0001808080C00083007C00090B7D8A0F>115 D<0F381144218C21800180030003000308
4310C73079C00E0B7F8A11>120 D E /Fc 58 128 df<0020004000800100020006000C
000C00180018003000300030007000600060006000E000E000E000E000E000E000E000E0
00E000E000E000E0006000600060007000300030003000180018000C000C000600020001
000080004000200B2E7BA114>40 D<800040002000100008000C00060006000300030001
800180018001C000C000C000C000E000E000E000E000E000E000E000E000E000E000E000
E000C000C000C001C001800180018003000300060006000C00080010002000400080000B
2E7CA114>I<70F8FCFC74040404080810102040060E7B840F>44
DI<70F8F8F87005057B840F>I<01F000060C000C060018030038
03803803807001C07001C07001C0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F0
01E0F001E0F001E0F001E0F001E0F001E07001C07001C07001C03803803803801803001C
0700071C0001F000131F7D9D19>48 D<018003800F80F380038003800380038003800380
038003800380038003800380038003800380038003800380038003800380038003800380
07C0FFFE0F1E7B9D19>I<03F0000C1E001007002007804003C04003C0F003E0F801E0F8
01E0F801E02003E00003E00003C00007C0000780000F00000E00001C0000380000700000
C0000180000300000200200400200800201000403FFFC07FFFC0FFFFC0131E7D9D19>I<
03F8000C1E001007002007807807C07803C07803C03807C00007C0000780000780000F00
000E0000380003F000001E00000F000007800007C00003C00003E02003E0F803E0F803E0
F803E0F003C04007C0400780300F000C1E0003F000131F7D9D19>I<0003000003000007
00000F00000F000017000027000067000047000087000187000107000207000607000407
00080700100700300700200700400700C00700FFFFF80007000007000007000007000007
00000700000700007FF0151E7E9D19>I<00008000000001C000000001C000000001C000
000003E000000003E000000003E000000004F000000004F000000008F800000008780000
000878000000103C000000103C000000303E000000201E000000201E000000400F000000
400F000000400F000000FFFF80000080078000018007C000010003C000010003C0000200
01E000020001E000020001E000040000F0000E0000F0001F0001F800FFC00FFF8021207E
9F25>65 DI<000FE01000381C30
00E0027003C00170078000F00F0000701E0000701E0000303C0000303C0000107C000010
78000010F8000000F8000000F8000000F8000000F8000000F8000000F8000000F8000000
F8000000780000007C0000103C0000103C0000101E0000201E0000200F00002007800040
03C0008000E0030000380C00000FF0001C217C9F24>IIII<0007F008003C0C1800E0033801C000B8
078000780F0000380E0000381E0000183C0000183C0000087C0000087800000878000000
F8000000F8000000F8000000F8000000F8000000F8000000F8001FFF780000F878000078
7C0000783C0000783C0000781E0000780E0000780F0000780780007801C000B800E00118
003C0E080007F00020217C9F27>III<03
FFE0001F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F0000
0F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00200F00F8
0F00F80F00F80F00F01E00401E00203C001070000FC00013207D9E1A>IIIII
80 D82
D<03F0200C0C601803E03000E06000E0600060E00060E00020E00020E00020F00000F800
007C00007F80003FFC001FFF0007FF8001FFC0000FE00003E00001E00000F00000708000
70800070800070800070C00060C000E0E000C0F80180C6030081FC0014217C9F1C>I<7F
FFFFF878078078600780184007800840078008C007800C80078004800780048007800480
078004000780000007800000078000000780000007800000078000000780000007800000
078000000780000007800000078000000780000007800000078000000780000007800000
07800000078000000FC00003FFFF001E1F7D9E24>III<
FFF03FFC07FC1F0007E001F00F0003C000600F0003C000400F0003E00040078003E00080
078003E00080078004F0008003C004F0010003C004F0010003C00878010001E008780200
01E00878020001E0103C020000F0103C040000F0103C040000F0201E04000078201E0800
0078201E08000078400F0800003C400F1000003C400F1000003C80079000001E8007A000
001E8007A000001F0003E000001F0003E000000F0003C000000E0001C000000E0001C000
0006000180000006000180002E207E9E32>I
89 DI<0018000018
00003C00003C00003C00004E00004E0000CF000087000087000103800103800303C00201
C00201C007FFE00400E00400E0080070080070180038380078FE01FF18177F961C>97
DI<007E080381980700780C00381C0018380018780008700008F00000F00000F0
0000F00000F00000F00000F000007000087800083800081C00100C001007006003818000
7E0015177E961B>IIII<007E080381980700780C00381C0018
380018780008700008F00000F00000F00000F00000F00000F003FEF00038700038780038
3800381C00380C00380700380380D8007F0817177E961D>III<1FF001C001C001C001C001C001C001C001C001C001C001C001C0
01C001C001C001C001C0E1C0E1C0C18043003E000C177E9613>IIIII<00FE00038380
0E00E01C00703C007838003878003C70001CF0001EF0001EF0001EF0001EF0001EF0001E
F0001E70001C78003C3800383C00781C00700E00E003838000FE0017177E961D>II114 D<0FC4302C601C400CC004C004C004E00070007F003FE00FF801FC001C
000E0006800680068006C004E008D81087E00F177E9615>I<7FFFFC70381C4038044038
04C038068038028038028038020038000038000038000038000038000038000038000038
0000380000380000380000380000380000380003FF8017177F961B>II
II121 DI<6030F078F8F8F07860300D
057A9E19>127 D E /Fd 1 51 df<7FFFFF80FFFFFF80C0000180C0000180C0000180C0
000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0
000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180FF
FFFF807FFFFF8019197C9B22>50 D E /Fe 2 107 df105
DI E /Ff 6 114 df<000010000000300000007000000070000000F800
0000B80000013800000238000002380000043800000C38000008380000103C0000101C00
00201C0000401C00007FFC0000801C0000801C0001001C0002001C0002000E0004000E00
0C000E001C000E00FF00FFC01A1A7F991D>65 D<03FFFC000070070000700380007003C0
00E003C000E003C000E003C000E003C001C0078001C00F0001C01E0001C03C0003FFF800
03803C0003801E0003800F0007000F0007000F0007000F0007000F000E001E000E001E00
0E003C000E0078001C01E000FFFF80001A1A7E991D>I<03F80003F80078000780007800
0B800078000B80009C001700009C001700009C002700009C004700011C004E00011C008E
00011C010E00010E010E00020E021C00020E041C00020E041C00020E081C00040E083800
040E103800040E2038000407203800080740700008078070000807807000180700700038
0600E000FF0607FE00251A7E9925>77 D<03FFFC0000700F00007003800070038000E003
C000E003C000E003C000E003C001C0078001C0078001C00F0001C01E000380380003FFE0
000380000003800000070000000700000007000000070000000E0000000E0000000E0000
000E0000001C000000FFC000001A1A7E9919>80 D<030003800300000000000000000000
00000000003C004E004E008E008E009C001C001C0038003800390071007100720072003C
00091A7E990D>105 D<03E106131C0E380E300E700E601CE01CE01CE01CE038C038E038
607821F01E700070007000E000E000E000E00FF810177F8F11>113
D E /Fg 10 55 df<0408103020606040C0C0C0C0C0C0C0C0C0C0406060203010080406
1A7D920C>40 D<80402030101818080C0C0C0C0C0C0C0C0C0C0818181030204080061A7F
920C>I<00C00000C00000C00000C00000C00000C00000C00000C00000C000FFFF80FFFF
8000C00000C00000C00000C00000C00000C00000C00000C00000C00011147E8F17>43
D<1F00318060C04040C060C060C060C060C060C060C060C060404060C031801F000B107F
8F0F>48 D<187898181818181818181818181818FF08107D8F0F>I<1F00618040C08060
C0600060006000C00180030006000C00102020207FC0FFC00B107F8F0F>I<1F00218060
C060C000C0008001001F00008000400060C060C060804060801F000B107F8F0F>I<0180
0180038005800D801980118021804180C180FFE001800180018001800FE00B107F8F0F>
I<20C03F802E002000200020002F0030802040006000600060C06080C061801F000B107F
8F0F>I<0780184030C060C06000C000CF00F080E040C060C060C060406060C030801F00
0B107F8F0F>I E /Fh 50 123 df<000FF000007FFC0001F80E0003E01F0007C03F000F
803F000F803F000F801E000F800C000F8000000F8000000F8000000F800000FFFFFF00FF
FFFF000F801F000F801F000F801F000F801F000F801F000F801F000F801F000F801F000F
801F000F801F000F801F000F801F000F801F000F801F000F801F000F801F000F801F000F
801F007FF0FFE07FF0FFE01B237FA21F>12 D45
D<387CFEFEFE7C3807077C8610>I<0000180000380000380000700000700000E00000E0
0000E00001C00001C0000380000380000380000700000700000700000E00000E00001C00
001C00001C0000380000380000700000700000700000E00000E00001C00001C00001C000
0380000380000700000700000700000E00000E00000E00001C00001C0000380000380000
380000700000700000E00000E00000C0000015317DA41C>I<00180000780001F800FFF8
00FFF80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F8
0001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F8
0001F80001F8007FFFE07FFFE013207C9F1C>49 D<03FC000FFF003C1FC07007E07C07F0
FE03F0FE03F8FE03F8FE01F87C01F83803F80003F80003F00003F00007E00007C0000F80
001F00003E0000380000700000E01801C0180380180700180E00380FFFF01FFFF03FFFF0
7FFFF0FFFFF0FFFFF015207D9F1C>I<00FE0007FFC00F07E01E03F03F03F03F81F83F81
F83F81F81F03F81F03F00003F00003E00007C0001F8001FE0001FF000007C00001F00001
F80000FC0000FC3C00FE7E00FEFF00FEFF00FEFF00FEFF00FC7E01FC7801F81E07F00FFF
C001FE0017207E9F1C>I<0000E00001E00003E00003E00007E0000FE0001FE0001FE000
37E00077E000E7E001C7E00187E00307E00707E00E07E00C07E01807E03807E07007E0E0
07E0FFFFFFFFFFFF0007E00007E00007E00007E00007E00007E00007E000FFFF00FFFF18
207E9F1C>I<3000203E01E03FFFC03FFF803FFF003FFE003FF80033C000300000300000
30000030000031FC0037FF003E0FC03807E03003E00003F00003F00003F80003F83803F8
7C03F8FE03F8FE03F8FC03F0FC03F07007E03007C03C1F800FFF0003F80015207D9F1C>
I<001F8000FFE003E07007C0F00F01F81F01F83E01F83E01F87E00F07C00007C0000FC08
00FC7FC0FCFFE0FD80F0FF00F8FE007CFE007CFC007EFC007EFC007EFC007E7C007E7C00
7E7C007E3C007C3E007C1E00F80F00F00783E003FFC000FF0017207E9F1C>I<00FE0003
FFC00703E00E00F01C00F01C00783C00783E00783F00783F80783FE0F01FF9E01FFFC00F
FF8007FFC003FFE007FFF01E7FF83C1FFC7807FC7801FEF000FEF0003EF0001EF0001EF0
001EF8001C7800383C00381F00F00FFFC001FF0017207E9F1C>56
D<000070000000007000000000F800000000F800000000F800000001FC00000001FC0000
0003FE00000003FE00000003FE000000067F000000067F0000000C7F8000000C3F800000
0C3F800000181FC00000181FC00000301FE00000300FE00000700FF000006007F0000060
07F00000C007F80000FFFFF80001FFFFFC00018001FC00018001FC00030001FE00030000
FE00070000FF000600007F000600007F00FFE007FFF8FFE007FFF825227EA12A>65
D<0003FE0080001FFF818000FF01E38001F8003F8003E0001F8007C0000F800F80000780
1F800007803F000003803F000003807F000001807E000001807E00000180FE00000000FE
00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000007E00
0000007E000001807F000001803F000001803F000003801F800003000F8000030007C000
060003F0000C0001F800380000FF00F000001FFFC0000003FE000021227DA128>67
DI70
D73 D76 DI<0007
FC0000003FFF800000FC07E00003F001F80007E000FC000FC0007E001F80003F001F8000
3F003F00001F803F00001F807F00001FC07E00000FC07E00000FC0FE00000FE0FE00000F
E0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0
7E00000FC07F00001FC07F00001FC03F00001F803F80003F801F80003F000FC0007E0007
E000FC0003F001F80000FC07E000003FFF80000007FC000023227DA12A>79
DI<
0007FC0000003FFF800000FC07E00003F001F80007E000FC000FC0007E001F80003F001F
80003F003F00001F803F00001F807F00001FC07E00000FC07E00000FC0FE00000FE0FE00
000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE0000
0FE07E00000FC07F00001FC07F00001FC03F00001F803F81F03F801F83F83F000FC70C7E
0007E606FC0003F607F80000FF07E000003FFF80000007FF80200000038020000001C020
000001E0E0000001FFE0000001FFC0000000FFC0000000FFC00000007F800000007F0000
00001E00232C7DA12A>II<01FE0207FF861F01FE3C007E7C001E78000E78000EF80006F80006FC
0006FC0000FF0000FFE0007FFF007FFFC03FFFF01FFFF80FFFFC03FFFE003FFE0003FE00
007F00003F00003FC0001FC0001FC0001FE0001EE0001EF0003CFC003CFF00F8C7FFE080
FF8018227DA11F>I<7FFFFFFF807FFFFFFF807E03F80F807803F807807003F803806003
F80180E003F801C0E003F801C0C003F800C0C003F800C0C003F800C0C003F800C00003F8
00000003F800000003F800000003F800000003F800000003F800000003F800000003F800
000003F800000003F800000003F800000003F800000003F800000003F800000003F80000
0003F800000003F800000003F800000003F800000003F8000001FFFFF00001FFFFF00022
227EA127>II<0FFC003FFF807E07C07E03E07E01E07E01F03C01F00001F00001F0003FF003FDF0
1FC1F03F01F07E01F0FC01F0FC01F0FC01F0FC01F07E02F07E0CF81FF87F07E03F18167E
951B>97 DI<00FF8007FFE00F83F01F03F03E03F07E03F07C01E07C0000FC0000FC
0000FC0000FC0000FC0000FC00007C00007E00007E00003E00181F00300FC06007FFC000
FF0015167E9519>I<0001FE000001FE0000003E0000003E0000003E0000003E0000003E
0000003E0000003E0000003E0000003E0000003E0000003E0001FC3E0007FFBE000F81FE
001F007E003E003E007E003E007C003E00FC003E00FC003E00FC003E00FC003E00FC003E
00FC003E00FC003E00FC003E007C003E007C003E003E007E001F00FE000F83BE0007FF3F
C001FC3FC01A237EA21F>I<00FE0007FF800F87C01E01E03E01F07C00F07C00F8FC00F8
FC00F8FFFFF8FFFFF8FC0000FC0000FC00007C00007C00007E00003E00181F00300FC070
03FFC000FF0015167E951A>I<001FC0007FE000F1F001E3F003E3F007C3F007C1E007C0
0007C00007C00007C00007C00007C000FFFE00FFFE0007C00007C00007C00007C00007C0
0007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C0
0007C0003FFC003FFC00142380A211>I<01FE0F0007FFBF800F87C7801F03E7801E01E0
003E01F0003E01F0003E01F0003E01F0003E01F0001E01E0001F03E0000F87C0000FFF80
0009FE000018000000180000001C0000001FFFE0000FFFF80007FFFE001FFFFF003C003F
0078000F80F0000780F0000780F0000780F000078078000F003C001E001F007C000FFFF8
0001FFC00019217F951C>II<1C003E007F007F007F003E001C0000000000000000
00000000000000FF00FF001F001F001F001F001F001F001F001F001F001F001F001F001F
001F001F001F001F001F00FFE0FFE00B247EA310>I107 DIII<00FE0007FFC00F83E01E00F03E00F87C007C7C007C7C
007CFC007EFC007EFC007EFC007EFC007EFC007EFC007E7C007C7C007C3E00F81F01F00F
83E007FFC000FE0017167E951C>II<00FE030007FF87000FC1C7001F006F003F003F007E003F007E001F007C00
1F00FC001F00FC001F00FC001F00FC001F00FC001F00FC001F00FC001F007E001F007E00
1F003E003F001F007F000FC1DF0007FF9F0001FC1F0000001F0000001F0000001F000000
1F0000001F0000001F0000001F0000001F000000FFE00000FFE01B207E951E>II<0FF3
003FFF00781F00600700E00300E00300F00300FC00007FE0007FF8003FFE000FFF0001FF
00000F80C00780C00380E00380E00380F00700FC0E00EFFC00C7F00011167E9516>I<01
80000180000180000180000380000380000780000780000F80003F8000FFFF00FFFF000F
80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F81800F
81800F81800F81800F81800F830007C30003FE0000F80011207F9F16>IIIII<
FFE01FE0FFE01FE01F8007000F8006000FC00E0007C00C0007E00C0003E0180003E01800
01F0300001F0300000F8600000F86000007CC000007CC000007FC000003F8000003F8000
001F0000001F0000000E0000000E0000000C0000000C00000018000078180000FC380000
FC300000FC60000069C000007F8000001F0000001B207F951E>I<7FFFF07FFFF07C03E0
7007C0600FC0E01F80C01F00C03E00C07E0000FC0000F80001F00003F03007E03007C030
0F80701F80703F00603E00E07C03E0FFFFE0FFFFE014167E9519>I
E /Fi 11 114 df12 D<0000180000300000600000E00000C0000180000380000700000600000E
00000C00001C0000380000380000700000700000E00000E00001E00001C00001C0000380
000380000380000780000700000700000F00000E00000E00001E00001E00001E00001C00
001C00003C00003C00003C00003C00003800007800007800007800007800007800007800
00780000780000700000F00000F00000F00000F00000F00000F00000F00000F00000F000
00F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F000
00F00000F00000F00000F00000F000007000007800007800007800007800007800007800
007800007800003800003C00003C00003C00003C00001C00001C00001E00001E00001E00
000E00000E00000F000007000007000007800003800003800003800001C00001C00001E0
0000E00000E000007000007000003800003800001C00000C00000E000006000007000003
800001800000C00000E0000060000030000018157C768121>32 DI<00000C0000180000380000300000600000E00000C00001C00003
80000380000700000700000E00000E00001C00001C0000380000380000780000700000F0
0000F00000E00001E00001E00003C00003C00003C00003C0000780000780000780000F80
000F00000F00000F00001F00001F00001E00001E00001E00003E00003E00003E00003E00
003C00003C00003C00007C00007C00007C00007C00007C00007C00007C00007C00007800
00780000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F800
00F80000F80000F80000F80000F80000F80000164B748024>48 DI64 D<00007C00007C00007C00007C
00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C
00007C0000780000780000F80000F80000F80000F80000F80000F80000F80000F80000F0
0000F00000F00001F00001F00001F00001F00001E00001E00001E00003E00003E00003C0
0003C00003C00007C0000780000780000780000F00000F00000F00000F00001E00001E00
001C00003C00003C0000380000780000700000700000E00000E00001C00001C000038000
0380000700000700000E00000C00001C0000180000300000700000600000C00000164B7F
8224>I80 D
83 D88 D<000000000200000000060000000006
000000000C000000000C000000000C000000001800000000180000000018000000003000
00000030000000003000000000600000000060000000006000000000C000000000C00000
0000C0000000018000000001800000000180000000030000000003000000000300000000
0600000000060000000006000000000C000000000C000000000C00000000180000000018
000000001800000000300000000030000000003000000000600000000060000800006000
1C0000C0003C0000C0007C0000C000DC000180008E000180000E000180000E0003000007
00030000070003000007000600000380060000038006000003800C000003800C000001C0
0C000001C018000001C018000000E018000000E030000000E030000000E0300000007060
0000007060000000706000000038C000000038C000000038C00000001D800000001D8000
00001D800000001F000000000F000000000F000000000E00000000060000000006000000
274B7C812A>113 D E /Fj 19 112 df6 D<01FE000703800C00C01800603800
707000387000387000387000387000383000303800703800701800600C00C00C00C00601
80860184820104C3030C7F03F87F03F87F03F816177F9619>10 D<0102040C1818303070
606060E0E0E0E0E0E0E0E0E0E060606070303018180C04020108227D980E>40
D<8040203018180C0C0E060606070707070707070707070606060E0C0C18183020408008
227E980E>I<003000003000003000003000003000003000003000003000003000003000
003000FFFFFCFFFFFC003000003000003000003000003000003000003000003000003000
00300000300016187E931B>43 D<07C018303018701C600C600CE00EE00EE00EE00EE00E
E00EE00EE00EE00E600C600C701C30181C7007C00F157F9412>48
D<06000E00FE000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E
000E000E00FFE00B157D9412>I<0F8030E040708030C038E03840380038007000700060
00C00180030006000C08080810183FF07FF0FFF00D157E9412>I<0FE030306018701C70
1C001C00180038006007E000300018000C000E000EE00EE00EC00C401830300FE00F157F
9412>I<00300030007000F001F001700270047008701870107020704070C070FFFE0070
007000700070007003FE0F157F9412>I<60307FE07FC0440040004000400040004F8070
E040700030003800384038E038E0388030406020C01F000D157E9412>I<01F00608080C
181C301C70006000E000E3E0EC30F018F00CE00EE00EE00E600E600E300C3018183007C0
0F157F9412>I61 D<1F8060E08070E070E070407000E001C00180030002000200020002
000200000000000000000006000F000F0006000C177E9611>63 D91
D93 D<0F9E18E33060707070707070306018C02F80200060003FE03FF83FFC600E
C006C006C006600C38380FE010157F8D12>103 D108 D<07C018303018600C600CE00EE00EE00EE00EE0
0E701C3018183007C00F0E7F8D12>111 D E /Fk 44 123 df<0780401FC04038E08060
3080C01080801100000900000A00000A00000A00000C00000C00000C0000080000080000
08000010000010000010000010001214808D12>13 D<01C007F0043808000C000C000400
06000300030007800DC010C020C06060C060C060C060804080C0C080C18063003C000D18
7E9710>I<07C01C00300060006000FF00C000C000C000C000C000400020C01F000A0E7E
8D0E>I<01E0033006100C1008101818101830183010603060307FF06030C060C060C060
C0C0C0C0C180C1004300660038000D177E9610>18 D<0FFFC03FFFC02108004108008310
000210000210000610000410000410000C18000C1800181800180800120E7F8D14>25
D<03FF8007FF801C3000181800301800601800601800601800C03000C030004060006040
002180001E0000110E7F8D14>27 D<0FFF3FFF2080408080800180018001000100030003
00030006000600100E7F8D10>I<60F0F070101020204040040A7D830A>59
D<0008001800300030003000600060006000C000C000C001800180018003000300060006
0006000C000C000C00180018001800300030003000600060006000C000C0000D217E9812
>61 D<07FFF800E00E00E00700E00300E00301C00301C00701C00701C00E03803C03FFF0
03FFF003803C07001C07000E07000E07000E0E001C0E001C0E00380E00701C01E0FFFF00
18177F961B>66 D<07FE00E000E000E000E001C001C001C001C003800380038003800700
0700070007000E000E000E000E001C00FFC00F177E960F>73 D<07FF0000E00000E00000
E00000E00001C00001C00001C00001C00003800003800003800003800007000007000807
00080700100E00100E00300E00200E00601C01E0FFFFC015177F9618>76
D<07F0000FE000F0001E0000B8001E0000B8002E0000B8004E000138005C000138009C00
0138011C00011C011C00021C023800021C043800021C043800021C083800041C10700004
0E107000040E207000040E407000080E40E000080E80E000080F00E000080700E0001806
01C000FE040FF80023177F9622>I<001FC000707001C01803001C06000C0E000E1C000E
18000E38000E30000E70000E70000E70000E70001CE0001C6000387000387000707000E0
3801C01803800E0E0003F00017177F961B>79 D<07FFF800E00E00E00700E00700E00701
C00701C00701C00701C00E03801C03807003FFC00380000700000700000700000700000E
00000E00000E00000E00001C0000FF800018177F9616>I<001FC000707001C03803001C
06000C0E000E1C000E18000E38000E30000E70000E70000E70000E60001CE0001C600038
60003870007070F0E03109C0190B800F0E0003F810000810000C30000C60000FC0000FC0
000700171D7F961C>I<07FFF00000E01C0000E0060000E0070000E0070001C0070001C0
070001C0070001C00E0003801C000380700003FF80000380E00007007000070038000700
3800070038000E0070000E0070000E0070800E0070801C003100FF801E0019177F961B>
I<003E1000C1A00100E00200600600600C00400C00400E00000F000007E00007FC0001FE
00003F00000780000380000380200180400300400300600600600400D8180087E0001417
7E9615>I<1FFFFE381C0E201C04601C04401C0440380480380400380000380000700000
700000700000700000E00000E00000E00000E00001C00001C00001C00001C00003C0003F
FC0017177F9615>II<03FFFE07801C0600380400700400E00801C00803800007
80000F00000E00001C0000380000700000E00001C0200380200700400F00400E00C01C00
80380180700700FFFF0017177E9618>90 D<071018F0307060706060C060C060C06080C0
80C480C4C1C446C838700E0E7E8D13>97 D<7C0018001800180018003000300030003000
678068C070406060C060C060C060C06080C080C08180C10046003C000B177E960F>I<07
C00C20107020706000C000C000C00080008000C010C02060C03F000C0E7E8D0F>I<003E
000C000C000C000C0018001800180018073018F0307060706060C060C060C06080C080C4
80C4C1C446C838700F177E9612>I<07C01C20301060106020FFC0C000C000C000C000C0
10402060C01F000C0E7E8D10>I<000E0013003700360030006000600060006003FC00C0
00C000C000C000C001800180018001800180030003000300030002006600E600CC007800
101D7E9611>I<1F0006000600060006000C000C000C000C0018F01B181C081808381830
18301830186030603160616062C026C03810177E9614>104 D<03000380030000000000
00000000000000001C002400460046008C000C0018001800180031003100320032001C00
09177F960C>I<00180038001000000000000000000000000001C0022004300430086000
600060006000C000C000C000C001800180018001806300E300C60078000D1D80960E>I<
1F0006000600060006000C000C000C000C00181C1866188E190C32003C003F00318060C0
60C460C460C4C0C8C0700F177E9612>I<3E0C0C0C0C181818183030303060606060C0C8
C8C8D07007177E960B>I<383C1E0044C6630047028100460301008E0703000C0603000C
0603000C060300180C0600180C0620180C0C20180C0C40301804C0301807001B0E7F8D1F
>I<383C0044C6004702004602008E06000C06000C06000C0600180C00180C4018184018
1880300980300E00120E7F8D15>I<07C00C20101020186018C018C018C01880308030C0
60C0C061803E000D0E7E8D11>I<1C3C22462382230346030603060306030C060C060C0C
0C081A3019E018001800300030003000FC001014808D12>I<071018D0307060706060C0
60C060C06080C080C080C0C1C047803980018001800300030003001FC00C147E8D10>I<
30F049184E384C309C001800180018003000300030003000600060000D0E7F8D10>I<07
C00C201870187038001E000FC003E000606060E060C0C0C1803F000C0E7E8D10>I<0300
03000600060006000600FFC00C000C000C00180018001800180030003080308031003200
1C000A147F930D>I<1C0426064606460686040C040C040C0418081808181018200C6007
800F0E7F8D11>118 D<0F1F0011A18020C38020C3004180000180000180000180000300
00030200C30200E70400C5080078F000110E7F8D14>120 D<1C02260646064606860C0C
0C0C0C0C0C18181818181818380C7007B000300060706070C021801E000F147F8D11>I<
07040FCC1878101000200040018002000400080810083C3043E081C00E0E7F8D10>I
E /Fl 63 123 df<007E000001C30000030180800E00C0801E00E0801C00E1003C00E100
7800E1007800E2007800E400F000E400F000E800F000F000F000F000F000E0007000E000
70016000300671001818320007E01C0019147E931D>11 D<0000F8000306000406000803
00100300200300400700400700800700800601000E01000C0107F80104700207D802001C
02001C02001E04001E04001E04001E04001E08003C08003C08003C0800781800701400F0
1400E01201C0218700207C00200000200000400000400000400000400000800000800000
80000018297F9F1A>I<03C0020FE0041FF0043FF808701808400C10C004108004200002
200002400002400002800002800003000003000003000002000002000002000006000006
00000600000C00000C00000C00000C00001800001800001800001000171E7F9318>I<00
3E00007FC00083C001018001000001800001800001C00000C00000E00000E00000700000
780000780001BC00071E000E1E001C0E00180E00380F00700F00700700700700E00600E0
0E00E00E00E00C00E00C006018006018003030001860000F800012217EA014>I<007C01
8007000E001C003C003800780078007FF0F000F000F000700070007000300038000C1807
E00E147E9312>I<001E0000630000C38001C1800381800301C00701C00F01C00E01C01E
03C01C03C03C03C03C03C03C03C07807807FFF807FFF80780780F00F00F00F00F00F00F0
0E00F01E00E01C00E03C00E03800E0300060700060E00070C0003180001E000012207E9F
15>18 D<07000001C00001E00000E00000F000007000007000007800003800003800003C
00001C00001C00001E00000E00000E00000F00000700001F0000378000638000C3800183
C00381C00701C00E01E01C00E03800E0700070F00070E00078C0003815207D9F1B>21
D<0FFFFC1FFFFE3FFFFC608200C08200818200010600010400030400030400020400060C
00060E000C0E000C0E001C0E001C0E00180F0038070030060017147E931A>25
D<007FFE01FFFE07FFFE0F07801E03801C01C03801C07001C07001C07001C0E00380E003
80E00380E00700E00700E00E00600C003018001860000F800017147E931A>27
D<0FFFF01FFFF03FFFF0604000C0400080C00000C0000080000180000180000180000180
000380000300000300000700000700000700000E000006000014147E9314>I<00004000
0040000080000080000080000080000100000100000100000100000200000200001FC000
E27003841806040C0C040E1C0406380807300807700807700807E0100EE0100EE0100CE0
101C6020387020303020601821C00E470003F80000400000400000800000800000800000
800001000001000001000018297E9F1B>30 D<0F0000801380008021C0010001E0020000
E0040000F008000070100000702000007820000038400000388000003D0000001E000000
1C0000001E0000000E0000001E0000002E0000004F000000870000010700000207800004
038000040380000803C0001001C0002001E2004000E20080003C00191D7F931C>I<0000
100000001000000010000000200000002000000020000000200000004000000040000000
400000004000000080000F008180118083C0218083E021C101E041C100E0438100608381
00400702004007020040070200400E0200800E0400800E0401000E0401000E0402000E08
0400060808000708300001C8C000007F0000001000000010000000100000002000000020
0000002000000020000000400000004000001B297E9F1E>I<70F8F8F87005057C840D>
58 D<70F0F8F878080808101010202040050E7C840D>I<000001C00000078000001E0000
0078000001E00000078000000E00000038000000F0000003C000000F0000003C000000F0
000000F00000003C0000000F00000003C0000000F0000000380000000E00000007800000
01E0000000780000001E0000000780000001C01A1A7C9723>I<0000400000C000018000
0180000180000300000300000300000600000600000C00000C00000C0000180000180000
180000300000300000600000600000600000C00000C00000C00001800001800001800003
00000300000600000600000600000C00000C00000C000018000018000030000030000030
0000600000600000600000C00000C00000122D7EA117>II<000002000000060000
000E0000000E0000001E0000001F0000002F0000006F0000004F0000008F0000008F0000
010F0000030F0000020F0000040F8000040F800008078000180780001007800020078000
200780007FFF800080078000800780010007C0010003C0020003C0040003C0040003C00C
0003C03C0007C0FF003FFC1E207E9F22>65 D<01FFFFE0001E0078001E003C001E001C00
1E001E003C001E003C001E003C001E003C001E0078003C0078003C00780078007800F000
F003C000FFFF0000F007C000F000E001E000F001E0007801E0007801E0007803C0007803
C0007803C0007803C00070078000F0078001E0078003C0078007800F001E00FFFFF0001F
1F7E9E22>I<00007F00800003C0C180000E00230000380017000070000F0000E0000F00
01C0000600038000060007000006000F000006000E000004001E000004003C000000003C
000000007800000000780000000078000000007800000000F000000000F000000000F000
000000F00000000070000020007000002000700000200070000040003800008000380000
80001C000100000E00060000070018000001C0600000007F80000021217F9F21>I<01FF
FFFF80001E000F00001E000300001E000300001E000100003C000100003C000100003C00
0100003C000100007802020000780200000078020000007806000000F00C000000FFFC00
0000F00C000000F00C000001E008000001E008000001E008000001E000040003C0000800
03C000080003C000100003C0001000078000200007800060000780004000078001C0000F
0007C000FFFFFF8000211F7E9E22>69 D<01FFF0001F00001E00001E00001E00003C0000
3C00003C00003C0000780000780000780000780000F00000F00000F00000F00001E00001
E00001E00001E00003C00003C00003C00003C0000780000780000780000780000F8000FF
F000141F7E9E14>73 D<01FFF800001F0000001E0000001E0000001E0000003C0000003C
0000003C0000003C00000078000000780000007800000078000000F0000000F0000000F0
000000F0000001E0000001E0000001E0000001E0004003C0008003C0008003C0018003C0
010007800300078003000780060007800E000F007C00FFFFFC001A1F7E9E1F>76
D<01FE00000FF8001E00001F80001700001F00001700002F00001700004F00002700005E
00002700009E00002700011E00002700011E00004380023C00004380023C00004380043C
00004380083C000083800878000083801078000083802078000081C02078000101C040F0
000101C080F0000101C080F0000101C100F0000201C101E0000201C201E0000201C401E0
000200E401E0000400E803C0000400F003C0000400F003C0000C00E003C0001E00C007C0
00FFC0C07FFC002D1F7E9E2C>I<01FF001FF8001F0003C0001F80010000178001000017
8001000023C002000023C002000021E002000021E002000041F004000040F004000040F0
04000040780400008078080000807C080000803C080000803C080001001E100001001E10
0001000F100001000F100002000FA000020007A000020007A000020003E000040003C000
040003C000040001C0000C0001C0001E00008000FFC0008000251F7E9E25>I<0000FF00
000781C0001C00E0003800700070003801C0001C03C0001C0380001E0700000E0F00000E
1E00000E1E00000E3C00000E3C00000E7800001E7800001E7800001E7800001EF000003C
F000003CF0000038F0000078F0000070700000F0700001E0780001C07800038038000700
1C000E001C001C000F0070000381C00000FF00001F217F9F23>I<01FFFFE0001E007800
1E001C001E000E001E000F003C000F003C000F003C000F003C000F0078001E0078001E00
78003C0078007800F000E000F003C000FFFE0000F0000001E0000001E0000001E0000001
E0000003C0000003C0000003C0000003C00000078000000780000007800000078000000F
800000FFF80000201F7E9E1D>I<0000FF00000781C0001C00E0003800700070003801E0
001C03C0001C0380001E0700001E0F00000E1E00000E1E00000E3C00000E3C00001E7800
001E7800001E7800001E7800001EF000003CF000003CF0000038F0000078F00000707000
00F0700000E0700E01C078300380384087001C408E001C409C000E40F00003C1C02000FF
C0200000C0600000C0400000C0C00000E1800000FF800000FF0000007E0000003C001F29
7F9F24>I<01FFFF80001E00F0001E0038001E001C001E001C003C001E003C001E003C00
1E003C001E0078003C0078003C00780078007800F000F001C000F0070000FFF80000F00E
0001E0070001E0078001E0038001E003C003C0078003C0078003C0078003C0078007800F
0007800F0207800F0207800F040F800704FFF80308000001F01F207E9E23>I<0003F040
000C08C0003005800060038000C0038001C0018001800100038001000380010003800100
0380000003C0000003E0000003FC000001FFC00000FFF000007FF800001FF8000001FC00
00007C0000003C0000001C0000001C0020001C0020001C00200018006000380060003000
600070007000E000E8018000C603000081FC00001A217E9F1C>I<0FFFFFFC1E03C03818
03C0181003C0082003C00820078008600780084007800840078008800F0010000F000000
0F0000000F0000001E0000001E0000001E0000001E0000003C0000003C0000003C000000
3C00000078000000780000007800000078000000F0000000F0000000F0000000F0000001
F000007FFFC0001E1F7F9E1B>I<7FFC07FE07C000F00780004007800040078000400F00
00800F0000800F0000800F0000801E0001001E0001001E0001001E0001003C0002003C00
02003C0002003C00020078000400780004007800040078000400F0000800F0000800F000
0800F000100070002000700020007000400038008000180300000E0C000003F000001F20
7D9E1F>III<00FFF01FF8000FC00780000F800600000780040000
07C008000007C010000003C020000003E040000001E0C0000001F180000001F300000000
F200000000FC0000000078000000007C000000007C000000007C00000000BE000000011E
000000021F000000041F0000000C0F000000180F80000010078000002007C000004007C0
00008003C000010003E000070001E0001F0003F000FFC01FFE00251F7F9E26>I<007FFF
FE00FC003C00F0007800C000F0008001E0018003C00100078001000F8001001F0002001E
0000003C00000078000000F0000001E0000003C00000078000000F8000000F0000001E00
00003C00400078004000F0008001E0008003C0018007C001000F8003000F0002001E0006
003C001E0078007C00FFFFFC001F1F7E9E1F>90 D<002000200020202020202020202020
202020203820F827F83FF8FFE0FF20F820E0202020202020202020202020202020202020
20202020202020203820F827F83FF8FFE0FF20F820E0202020202020202000200020000D
2B7EA012>93 D<00F1800389C00707800E03801C03803C03803807007807007807007807
00F00E00F00E00F00E00F00E10F01C20F01C20703C20705C40308C400F078014147E9318
>97 D<07803F8007000700070007000E000E000E000E001C001C001CF01D0C3A0E3C0E38
0F380F700F700F700F700FE01EE01EE01EE01CE03CE038607060E031C01F0010207E9F14
>I<007C0001C3000700800E07801E07801C07003C0200780000780000780000F00000F0
0000F00000F00000F000007001007002003004001838000FC00011147E9314>I<000078
0003F80000700000700000700000700000E00000E00000E00000E00001C00001C000F1C0
0389C00707800E03801C03803C0380380700780700780700780700F00E00F00E00F00E00
F00E10F01C20F01C20703C20705C40308C400F078015207E9F18>I<007C018207010E01
1C013C013802780C7BF07C00F000F000F000F000700070017002300418380FC010147E93
15>I<00007C0000CE00019E00039E00030C000700000700000700000700000E00000E00
000E0000FFF0000E00000E00001C00001C00001C00001C00001C00003800003800003800
00380000380000700000700000700000700000700000E00000E00000E00000E00000C000
01C000318000798000F300006200003C000017297E9F16>I<001E3000713800E0F001C0
700380700780700700E00F00E00F00E00F00E01E01C01E01C01E01C01E01C01E03801E03
800E07800E0B8006170001E700000700000700000E00000E00300E00781C00F038006070
003FC000151D809316>I<00E001E001E000C000000000000000000000000000000E0013
0023804380438043808700070007000E000E001C001C001C20384038403840388019000E
000B1F7E9E10>105 D<0000C00001E00001E00001C00000000000000000000000000000
00000000000000001E000023000043800083800103800103800207000007000007000007
00000E00000E00000E00000E00001C00001C00001C00001C000038000038000038000038
0000700000700030700078E000F1C0006380003E00001328819E13>I<01E0000FE00001
C00001C00001C00001C0000380000380000380000380000700000700000701E00706100E
08700E10F00E20F00E20601C40001D80001E00001FC000387000383800383800381C2070
3840703840703840701880E01880600F0014207E9F18>I<01C01FC00380038003800380
07000700070007000E000E000E000E001C001C001C001C00380038003800380070007000
70007100E200E200E200E200640038000A207E9F0E>I<1E07C07C00231861860023A032
030043C03403004380380380438038038087007007000700700700070070070007007007
000E00E00E000E00E00E000E00E00E000E00E01C101C01C01C201C01C038201C01C03840
1C01C0184038038018801801800F0024147E9328>I<1E07802318C023A06043C0704380
704380708700E00700E00700E00700E00E01C00E01C00E01C00E03821C03841C07041C07
081C03083803101801E017147E931B>I<007C0001C3000301800E01C01E01C01C01E03C
01E07801E07801E07801E0F003C0F003C0F003C0F00780F00700700F00700E0030180018
700007C00013147E9316>I<03C1E004621804741C08781C08701E08701E10E01E00E01E
00E01E00E01E01C03C01C03C01C03C01C0380380780380700380E003C1C0072380071E00
0700000700000E00000E00000E00000E00001C00001C0000FFC000171D819317>I<00F0
400388C00705800E03801C03803C0380380700780700780700780700F00E00F00E00F00E
00F00E00F01C00F01C00703C00705C0030B8000F38000038000038000070000070000070
0000700000E00000E0000FFC00121D7E9314>I<1C1E0026210047438047878047078047
03008E00000E00000E00000E00001C00001C00001C00001C000038000038000038000038
000070000030000011147E9315>I<00FC000303000600800C01800C03800C03000E0000
0F80000FF80007FC0001FE00001F00000700700700F00600F00600E00400400800203000
1FC00011147E9315>I<018001C0038003800380038007000700FFF807000E000E000E00
0E001C001C001C001C003800380038003810702070207040708031001E000D1C7F9B10>
I<0F00601180702180E021C0E041C0E04380E08381C00701C00701C00701C00E03800E03
800E03800E03840E07080C07080C07080E0F1006131003E1E016147E931A>I<1E01C023
03C02303E04381E04300E04700608700400E00400E00400E00401C00801C00801C00801C
01001C01001C02001C04000C04000E180003E00013147E9316>I<0F006070118070F021
80E0F821C0E07841C0E0384380E0188381C0100701C0100701C0100701C0100E0380200E
0380200E0380200E0380400E0380400E0380800E078080060781000709C20001F07C001D
147E9321>I<03C1C00C62201034701038F02038F0203860407000007000007000007000
00E00000E00000E00000E02061C040F1C040F1C080E2C080446300383C0014147E931A>
I<1E00602300702300E04380E04300E04700E08701C00E01C00E01C00E01C01C03801C03
801C03801C03801C07001807001C07001C0F000C3E0003CE00000E00000E00001C00F018
00F03800E07000C0600041C0003F0000141D7E9316>I<01C02003F04007F8C00C1F8008
010000020000040000080000100000600000C0000100000200000400800801001003003F
060063FE0040FC0080700013147E9315>I E /Fm 35 121 df0 D<70F8F8F87005057C8D0D>I<400004C0000C6000183000301800600C00C006
018003030001860000CC0000780000300000300000780000CC000186000303000601800C
00C0180060300030600018C0000C40000416187A9623>I<000100000003000000030000
000300000003000000030000000300000003000000030000000300000003000000030000
000300000003000000030000FFFFFFFCFFFFFFFC00030000000300000003000000030000
000300000003000000030000000300000003000000030000000300000003000000030000
FFFFFFFCFFFFFFFC1E207E9E23>6 D<000FC00000713800018106000201010004010080
080100401001002010010020200100104001000840010008400100088001000480010004
80010004FFFFFFFC80010004800100048001000480010004400100084001000840010008
2001001010010020100100200801004004010080020101000181060000713800000FC000
1E207E9A23>8 D<000FC000007038000180060002000100040000800C0000C012000120
110002202100021040800408404008084020100880102004800840048004800480030004
800300048004800480084004801020044020100840400808408004082100021011000220
120001200C0000C004000080020001000180060000703800000FC0001E207E9A23>10
D<003FFFC000FFFFC003C00000070000000C000000180000003000000030000000600000
0060000000C0000000C0000000C0000000C0000000C0000000C0000000C0000000600000
00600000003000000030000000180000000C0000000700000003C0000000FFFFC0003FFF
C0000000000000000000000000000000000000000000000000000000007FFFFFC07FFFFF
C01A247C9C23>18 D<000000C0000003C000000F0000003C000000F0000003C000000700
00001C00000078000001E00000078000001E00000078000000E0000000780000001E0000
000780000001E0000000780000001C0000000700000003C0000000F00000003C0000000F
00000003C0000000C0000000000000000000000000000000000000000000000000000000
007FFFFF80FFFFFFC01A247C9C23>20 DI<07C000041FF800043FFC0004
783F000CE007801CC003F0788000FFF080007FE080000F80000000000000000007C00004
1FF800043FFC0004783F000CE007801CC003F0788000FFF080007FE080000F801E147E95
23>25 D<0000000600000000060000000006000000000300000000030000000003800000
00018000000000C0000000006000000000700000000018FFFFFFFFFFFFFFFFFFFF000000
00180000000070000000006000000000C000000001800000000380000000030000000003
0000000006000000000600000000060028187E962D>33 D<00C0000C0000C0000C0000C0
000C00018000060001800006000380000700030000030006000001800C000000C01C0000
00E03000000030FFFFFFFFFEFFFFFFFFFE30000000301C000000E00C000000C006000001
80030000030003800007000180000600018000060000C0000C0000C0000C0000C0000C00
27187D962D>36 D<000000C000000000C000000000600000000060000000003000000000
18000000000C007FFFFFFE00FFFFFFFF0000000001C000000000E0000000003C00000000
0F000000003C000000007000000001C00000000380FFFFFFFE007FFFFFFC000000001800
0000001800000000300000000060000000006000000000C000000000C000281A7E972D>
41 D<003FF800FFF803C0000700000C0000180000300000300000600000600000C00000
C00000C00000FFFFF8FFFFF8C00000C00000C00000600000600000300000300000180000
0C000007000003C00000FFF8003FF8151C7C981E>50 D<00000C00000C00001800001800
00300000300000600000600000C00000C000018000018000018000030000030000060000
0600000C00000C0000180000180000300000300000600000600000C00000C00001800001
80000300000300000600000600000600000C00000C000018000018000030000030000060
0000600000C00000400000162C7AA000>54 D<400001C000036000066000066000063000
0C30000C30000C1800181800181800180FFFF00FFFF00C00300600600600600600600300
C00300C001818001818001818000C30000C30000C300006600006600006600003C00003C
00003C000018000018001821809F19>56 DI<003FFF0001FFFFE0071E0FF8081E01FC181E007C701E00
3E701E003EC01E001F001C001F001C000F003C000F003C000F003C000F0038000F003800
0E0078000E0078001E0070001C0070001C00F0003800E0003000E0007001E000E001C000
8001C0010003C0060003800800038030000703C0000FFF00001FF00000201F7F9E23>68
D<003F0000C001FF800180070F8003800C07800780180780070030078007007007000F00
C007000E00000F000E00000F001E00000F001C00000E001C00000E003C00001E00380000
1E003800001C00780001FFFFF00003FFFFF000003800F000003800F000007800E0000070
00E000007001E00000F001E00000E001E00000E001C00001E001C00001C003C00001C003
C04003C003C1C0038003E300030003FE00060001F80022217F9E26>72
D<00001F8000007F80000087C0000307C0000603C0000E03C0001C0380001C0300003800
000038000000780000007000000070000000F0000000E0000000E0000001E0000001E000
0001C0000001C0000003C0000003800000038000000780000007000000070000000E0000
600E0000E01FF001C01FFE018030FFC300601FFC00C003F8001B217F9F1F>76
D<0000300000000000F00000010000F00000030000F00000070001F000000F0001F80000
0E0001F800001E00017800003E00017800007E0002780000FE0002780001DE00027C0001
9C00027C00031C00043C00063C00043C000C3C00043E001C3C00083E00383C00081E0070
3C00081E00603C00101E00C03800101F01803800101F03007800200F07007800200F8E00
7800200F9C0078004007F80078004007F00078008003E00078018003C000786100018000
787F000000007C7E000000007FFC000000003C7C000000000030227F9F37>I<003FFFC0
01FFFFF0071E03FC081E00FE181E003E701E001F701E001FC01E000F001C000F001C000F
003C000E003C000E003C001C0038001C0038003800780030007800400070008000700300
00F01C0000F3F00000E7800000E0000001E0000001C0000001C0000003C0000003800000
0380000007000000070000000E0000000C00000020217F9E20>80
D<003FFFE00001FFFFF800071E01FE00081E007F00181E001F00701E000F00701E000F00
C01E000F00001C000E00001C000E00003C001E00003C001C00003C001800003800300000
38006000007800800000780700000070FC00000071F8000000F0FC000000E07C000000E0
3E000001E03E000001C01F000001C01F000003C00F001003800F806003800F80E0078007
C180070007E300060003FE000C0001F00024207F9E27>82 D<00007F000001FFC000060F
E0000C03E0003801E0003001E0007001E000F0018000F0000000F0000000F8000000FC00
00007E0000003F0000001FC000000FF0000003F8000000FC0000007E0000003F000C001F
0018000F0070000F0070000F00F0000E00F0000E00F0001C00F8001800FC0030007E0060
003F8180001FFE000007F800001B217F9F1C>I<3C000380FE0003C03F0007E01F8007E0
0F8001E007C000E007C0006003C0004003C0004003E0004003E0008001E0008001E00180
01E0010001E0030001E0060001E00C0001E00C0001E0180001E0300001E0600001E0E000
01E1C00001E3800001E7000001EE000001DC000001F8000003F0000003E0000003C00000
03000000020000001B217E9E1C>86 D<40000080C0000180C0000180C0000180C0000180
C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180
C0000180C0000180C0000180C0000180C0000180C0000180C00001806000030060000300
300006001C001C000F00780003FFE00000FF8000191C7E9A1E>91
D<00FF800003FFE0000F0078001C001C00300006006000030060000300C0000180C00001
80C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180C00001
80C0000180C0000180C0000180C0000180C0000180C0000180C0000180C0000180C00001
8040000080191C7E9A1E>I<000F0038006000E001C001C001C001C001C001C001C001C0
01C001C001C001C001C001C001C0038007001E00F8001E000700038001C001C001C001C0
01C001C001C001C001C001C001C001C001C001C001C000E000600038000F102D7DA117>
102 DI<0020006000C000C0
00C001800180030003000300060006000C000C0018001800180030003000600060006000
C000C000600060006000300030001800180018000C000C00060006000300030003000180
018000C000C000C0006000200B2E7CA112>III<4020C030C030C030C030
C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030
C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030C030
C030C030C030C03040200C2E7BA117>I<00000000080000000018000000003000000000
300000000060000000006000000000C000000000C0000000018000000001800000000300
0000000300000000060000000006000000000C000000000C000000001800000000180000
00003000000000300000000060000000006000000000C000060000C0001E000180002F00
0180004F000300008780030000078006000003C006000003C00C000003C00C000001E018
000001E018000000F030000000F030000000786000000078600000003CC00000003CC000
00001F800000001F800000000F000000000F00000000060000000006000000252E7E8126
>112 D<0F80184030207010E030E070E020E000E00060007000300018000600198030C0
70606070E030E038E038E03860387030307018600CC0030000C000600070003000380038
2038703860384070206010C00F800D297D9F14>120 D E /Fn 49
124 df<000FE000007FF80000F81C0001E07C0003E07C0007C07C0007C07C0007C03800
07C0000007C0000007C0000007C1FE00FFFFFE00FFFFFE0007C03E0007C03E0007C03E00
07C03E0007C03E0007C03E0007C03E0007C03E0007C03E0007C03E0007C03E0007C03E00
07C03E0007C03E0007C03E0007C03E003FF9FFC03FF9FFC01A20809F1D>12
D<0030006000C00180038007000F000E001E001C003C003C0038007800780078007800F8
00F000F000F000F000F000F000F000F000F000F800780078007800780038003C003C001C
001E000E000F0007000380018000C0006000300C2D7CA114>40 DI<387CFEFEFE7C3807077C860F>46
D<01FC0007FF001F07C01E03C03E03E07C01F07C01F07C01F0FC01F8FC01F8FC01F8FC01
F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F87C01F07C01F07C01
F03E03E01E03C01F8FC007FF0001FC00151D7E9C1A>48 D<00700000F00007F000FFF000
F9F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F000
01F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F0007FFFC0
7FFFC0121D7D9C1A>I<03FC001FFF80381FC07C07E0FE03F0FE03F0FE03F8FE01F87C01
F83801F80003F80003F00003F00007E0000FC0000F00001E00003C0000700000E00001C0
180380180600180C00381FFFF03FFFF07FFFF0FFFFF0FFFFF0151D7E9C1A>I<03FC000F
FF801C0FC03C07E07E03F07E03F07E03F07E07F03C07E00007E0000FC0003F8003FE0003
FC00000F800007C00003E00003F00003F83803F87C03F8FE03F8FE03F8FE03F0FC03F078
07E03C0FC01FFF8003FC00151D7E9C1A>I<0001C00003C00007C00007C0000FC0001FC0
003BC00073C00063C000C3C00183C00383C00703C00E03C00C03C01803C03803C07003C0
E003C0FFFFFEFFFFFE0007C00007C00007C00007C00007C00007C000FFFE00FFFE171D7F
9C1A>I<1C00E01FFFE01FFFC01FFF801FFF001FFC001FC0001800001800001800001800
0019FE001FFF801E07C01803E01001F00001F00001F80001F87801F8FC01F8FC01F8FC01
F8FC01F07803F07003E03C0FC00FFF0003FC00151D7E9C1A>I<003F0001FFC007C0E00F
81E01F03F01E03F03E03F07C03F07C01E07C0000FC1000FCFF00FDFFC0FD03E0FE01F0FE
01F0FC01F8FC01F8FC01F8FC01F87C01F87C01F87C01F83C01F03E01F01E03E00F07C007
FF8001FE00151D7E9C1A>I<6000007FFFF87FFFF87FFFF07FFFE07FFFC0E00180C00300
C00300C00600000C0000180000380000300000700000F00000F00001E00001E00003E000
03E00003E00003E00007E00007E00007E00007E00007E00003C000018000151E7D9D1A>
I<01FE000FFF801E07C03801E03800F07800F07800F07C00F07F00F07FC1E03FE3C01FFF
800FFE0007FF8007FFC01FFFE03C3FF0780FF07803F8F001F8F000F8F00078F00078F000
707800707C00E03E03C00FFF8003FC00151D7E9C1A>I<01FC000FFF001F07803E03C07C
03E07C01E0FC01F0FC01F0FC01F0FC01F8FC01F8FC01F8FC01F87C03F87C03F83E05F81F
FDF807F9F80041F80001F03C01F07E01F07E03E07E03E07E03C03C0780381F001FFC0007
F000151D7E9C1A>I<0000E000000000E000000001F000000001F000000001F000000003
F800000003F800000006FC00000006FC0000000EFE0000000C7E0000000C7E000000183F
000000183F000000303F800000301F800000701FC00000600FC00000600FC00000C007E0
0000FFFFE00001FFFFF000018003F000038003F800030001F800030001F800060000FC00
060000FC000E0000FE00FFE00FFFE0FFE00FFFE0231F7E9E28>65
DI<0007FC02003FFF0E00FE03DE
03F000FE07E0003E0FC0001E1F80001E3F00000E3F00000E7F0000067E0000067E000006
FE000000FE000000FE000000FE000000FE000000FE000000FE0000007E0000007E000006
7F0000063F0000063F00000C1F80000C0FC0001807E0003803F0007000FE01C0003FFF80
0007FC001F1F7D9E26>IIII76 D78 D80
D<001FF80000FFFF0001F81F8007E007E00FC003F01F8001F81F8001F83F0000FC7F0000
FE7F0000FE7E00007EFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE0000
7FFE00007FFE00007F7E00007E7E00007E7F0000FE3F0000FC3F87C1FC1F8FE1F80FD833
F007F81FE001F81F8000FFFF00001FFE0300000E0300000F0700000FFF000007FF000007
FE000007FE000003FC000001F8000000F020287D9E27>II<03FC080FFF381E03F83800F8700078700038F00038F00018F00018F80000
FC00007FC0007FFE003FFF801FFFC00FFFE007FFF000FFF80007F80000FC00007C00003C
C0003CC0003CC0003CE00038E00078F80070FE01E0EFFFC081FF00161F7D9E1D>I<7FFF
FFFC7FFFFFFC7C07E07C7007E01C6007E00C6007E00CE007E00EC007E006C007E006C007
E006C007E0060007E0000007E0000007E0000007E0000007E0000007E0000007E0000007
E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007
E00003FFFFC003FFFFC01F1E7E9D24>II<3F
FFFF803FFFFF803F803F003E007F0038007E003800FC007001FC007001F8006003F00060
07F0006007E000000FC000001FC000001F8000003F0000007F0000007E000000FC000001
FC018001F8018003F0018007F0018007E003800FC003801FC003001F8007003F000F007F
001F007E007F00FFFFFF00FFFFFF00191F7D9E20>90 D<07FC001FFF803F07C03F03E03F
01F03F01F00C01F00001F0003FF007FDF01F81F03E01F07C01F0F801F0F801F0F801F0FC
02F07E0CF03FF87E0FE03E17147F9319>97 D<01FE0007FF801F0FC03E0FC03E0FC07C0F
C07C0300FC0000FC0000FC0000FC0000FC0000FC00007C00007E00003E00603F00C01F81
C007FF0001FC0013147E9317>99 D<0007F80007F80000F80000F80000F80000F80000F8
0000F80000F80000F80000F80000F801F8F807FEF81F83F83E01F87E00F87C00F87C00F8
FC00F8FC00F8FC00F8FC00F8FC00F8FC00F87C00F87C00F87E00F83E01F81F07F80FFEFF
03F8FF18207E9F1D>I<01FE0007FF800F83C01E01E03E00F07C00F07C00F8FC00F8FFFF
F8FFFFF8FC0000FC0000FC00007C00007C00003E00181E00180F807007FFE000FF801514
7F9318>I<003F8000FFC003E3E007C7E00787E00F87E00F83C00F80000F80000F80000F
80000F8000FFFC00FFFC000F80000F80000F80000F80000F80000F80000F80000F80000F
80000F80000F80000F80000F80000F80000F80000F80007FF8007FF80013207F9F10>I<
03FC3C0FFFFE1E079E3C03DE7C03E07C03E07C03E07C03E07C03E03C03C01E07801FFF00
13FC003000003000003800003FFF801FFFF00FFFF81FFFFC78007C70003EF0001EF0001E
F0001E78003C78003C3F01F80FFFE001FF00171E7F931A>II<1C003E007F007F007F003E001C000000
00000000000000000000FF00FF001F001F001F001F001F001F001F001F001F001F001F00
1F001F001F001F001F00FFE0FFE00B217EA00E>I108 DII<01FF0007FFC01F83F03E00F83E00F87C007C7C00
7CFC007EFC007EFC007EFC007EFC007EFC007E7C007C7C007C3E00F83E00F81F83F007FF
C001FF0017147F931A>II114
D<0FE63FFE701E600EE006E006F800FFC07FF83FFC1FFE03FE001FC007C007E007F006F8
1EFFFCC7F010147E9315>I<0300030003000300070007000F000F003F00FFFCFFFC1F00
1F001F001F001F001F001F001F001F001F001F061F061F061F061F060F8C07F803F00F1D
7F9C14>I118 D
121 D<3FFFE03FFFE03C07C0380F80701F80603F00603E00607C0000F80001F80003F000
03E06007C0600F80601F80E03F00C03E01C07C03C0FFFFC0FFFFC013147F9317>II E /Fo 22 123 df<70F8F8F8700505798414>46
D<01E007F00E38181C38FC71FC731E771EEE0EEE0EEE0EEE0EEE0EEE0EEE0E771C731871
F038E018060E1E07F801F00F177E9614>64 D<1FC0007FF000707800201800001C00001C
0007FC001FFC003C1C00701C00E01C00E01C00E01C00707C003FFF800F8F8011107E8F14
>97 DI<03F80FFE1C0E380470006000E000E000E000E00060007000380E1C1E0F
FC03F00F107E8F14>I<007E00007E00000E00000E00000E00000E00000E0007CE000FFE
001C3E00301E00700E00E00E00E00E00E00E00E00E00E00E00E00E00700E00301E00383E
001FEFC007CFC012177F9614>I<07E00FF01C38301C700CE00EE00EFFFEFFFEE0006000
7000380E1C1E0FFC03F00F107E8F14>I<00FC01FE038E07040700070007007FFEFFFE07
0007000700070007000700070007000700070007000700FFF8FFF80F177F9614>I104 D<06000F000F0006000000000000000000FF00FF00070007000700070007000700
070007000700070007000700FFF8FFF80D187C9714>I107
DI
II<07C01FF03C78701C701CE00EE00EE00E
E00EE00EE00E701C783C3C781FF007C00F107E8F14>I114 D<0FD83FF86038C038C038F0007F803FF007F8001C6006E006F006F81C
FFF8CFE00F107E8F14>I<06000E000E000E000E007FFCFFFC0E000E000E000E000E000E
000E000E000E0E0E0E0E0E0E1C07F801F00F157F9414>III121
D<3FFF7FFF700E701C7038007000E001C0038007000E001C0738077007FFFFFFFF10107F
8F14>I E /Fp 61 122 df<00FE7C0381C60603CE0E03841C03801C03801C03801C0380
1C03801C0380FFFFF01C03801C03801C03801C03801C03801C03801C03801C03801C0380
1C03801C03801C03801C03801C0380FF8FF0171A809916>11 D<00FE000381000601800E
03801C01001C00001C00001C00001C00001C0000FFFF801C03801C03801C03801C03801C
03801C03801C03801C03801C03801C03801C03801C03801C03801C0380FF8FF0141A8099
15>I<007E1F8001C170400703C060060380E00E0380400E0380000E0380000E0380000E
0380000E038000FFFFFFE00E0380E00E0380E00E0380E00E0380E00E0380E00E0380E00E
0380E00E0380E00E0380E00E0380E00E0380E00E0380E00E0380E00E0380E07F8FE3FC1E
1A809920>14 D<60F0F86808080810102040050B7D990B>39 D<00800100020004000C00
080018003000300030006000600060006000E000E000E000E000E000E000E000E000E000
E0006000600060006000300030003000180008000C00040002000100008009267D9B0F>
I<8000400020001000180008000C00060006000600030003000300030003800380038003
8003800380038003800380038003000300030003000600060006000C0008001800100020
004000800009267E9B0F>I<000C0000000C0000000C0000000C0000000C0000000C0000
000C0000000C0000000C0000000C0000000C0000000C0000FFFFFF80FFFFFF80000C0000
000C0000000C0000000C0000000C0000000C0000000C0000000C0000000C0000000C0000
000C0000000C0000191A7E951E>43 D<60F0F07010101020204040040B7D830B>II<60F0F06004047D830B>I<07E01C38381C300C700E60066006E007E0
07E007E007E007E007E007E007E007E00760066006700E300C381C1C3807E010187F9713
>48 D<03000700FF00070007000700070007000700070007000700070007000700070007
000700070007000700070007007FF80D187D9713>I<0F80106020304038803CC01CE01C
401C003C003800380070006000C001800100020004040804100430083FF87FF8FFF80E18
7E9713>I<07E01838201C601E700E201E001E001C001C0038007007E00038001C000E00
0F000FE00FE00FC00F400E601C183807E010187F9713>I<001800180038007800F800B8
013802380238043808381838103820384038C038FFFF00380038003800380038003803FF
10187F9713>I<30183FF03FE03F80200020002000200020002FC0306020300038001800
1C001C401CE01CE01C80184038403030E00F800E187E9713>I<40007FFF7FFE7FFE4004
800880108010002000400040008001800100030003000700060006000E000E000E000E00
0E00040010197E9813>55 D<07E01818300C2006600660067006780C3E181F3007C003E0
0CF8307C601E600FC007C003C003C00360022004181807E010187F9713>I<07E01C3030
18700C600EE006E006E007E007E0076007700F3017182707C700070006000E000C700C70
18603030600F8010187F9713>I61 D<000C0000000C0000000C
0000001E0000001E0000002F000000270000002700000043800000438000004380000081
C0000081C0000181E0000100E0000100E00003FFF0000200700002007000040038000400
38000400380008001C0008001C003C001E00FF00FFC01A1A7F991D>65
DI<003F0201C0C603002E0E001E1C000E1C000638000678
0002700002700002F00000F00000F00000F00000F00000F0000070000270000278000238
00041C00041C00080E000803003001C0C0003F00171A7E991C>II70 D<003F020001C0C60003002E000E001E001C000E001C00060038000600
780002007000020070000200F0000000F0000000F0000000F0000000F0000000F001FFC0
70000E0070000E0078000E0038000E001C000E001C000E000E000E000300160001C06600
003F82001A1A7E991E>I77 DI<007F000001C1C000070070000E0038001C00
1C003C001E0038000E0078000F0070000700F0000780F0000780F0000780F0000780F000
0780F0000780F0000780F000078078000F0078000F0038000E003C001E001C001C000E00
38000700700001C1C000007F0000191A7E991E>I<007F000001C1C000070070000E0038
001C001C003C001E0038000E0078000F0070000700F0000780F0000780F0000780F00007
80F0000780F0000780F0000780F00007807000070078000F0038000E003C1C1E001C221C
000E4138000741F00001E1C000007F80800000C0800000C0800000E18000007F0000007F
0000003E0000001C0019217E991E>81 DI<0FC21836200E6006C006C002C002C002
E00070007E003FE01FF803FC007E000E00070003800380038003C002C006E004D81887E0
101A7E9915>I<7FFFFF00701C0700401C0100401C0100C01C0180801C0080801C008080
1C0080001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C000000
1C0000001C0000001C0000001C0000001C0000001C0000001C0000001C0000001C000003
FFE000191A7F991C>II87 D91 D93 D<1FC000387000383800101C
00001C00001C0003FC001E1C00381C00701C00E01C00E01C80E01C80E03C80705F801F8F
0011107F8F13>97 DI<07F81C1C381C70087000E000E000
E000E000E000E0007000700438081C1807E00E107F8F11>I<003F000007000007000007
0000070000070000070000070000070000070003E7000C1700180F00300700700700E007
00E00700E00700E00700E00700E00700600700700700380F001C370007C7E0131A7F9915
>I<07C01C3030187018600CE00CFFFCE000E000E000E0006000700438081C1807E00E10
7F8F11>I<01F007180E381C101C001C001C001C001C001C00FFC01C001C001C001C001C
001C001C001C001C001C001C001C001C001C00FF800D1A80990C>I<0FCF001871803030
007038007038007038007038003030001860002FC0006000006000007000003FF0003FFC
001FFE00600F00C00300C00300C00300C00300600600381C0007E00011187F8F13>II<183C3C18000000000000FC1C1C1C1C1C1C1C1C1C1C1C1C1C
1CFF081A80990A>I107 DIII<07E01C38300C70
0E6006E007E007E007E007E007E0076006700E381C1C3807E010107F8F13>II<
03E1000C1300180B00300F00700700E00700E00700E00700E00700E00700E00700700700
700700380F001C370007C700000700000700000700000700000700000700003FE013177F
8F14>II<1F2060E04020C020C020F0007F003FC01FE000F080708030C030C020F0
408F800C107F8F0F>I<0800080008000800180018003800FFC038003800380038003800
380038003800382038203820382018201C4007800B177F960F>IIIIII E /Fq 6 123 df0
D<40E04003037D8709>I<0C000C00CCC0EDC07F800C007F80EDC0CCC00C000C000A0B7D
8B10>3 D<081C1C3838383070706060C0C0060D7E8D09>48 D<1818181818FFFF181818
18181818181818181818181808167D900E>121 D<1818181818FF181818181800181818
18FFFF1818181808167D900E>I E /Fr 67 124 df<00003F03E00000C384700001878C
F000038798F000030338600007003800000700380000070038000007007000000E007000
000E007000000E00700000FFFFFF00000E00E000001C00E000001C00E000001C00E00000
1C00E000001C01C000003801C000003801C000003801C000003801C000003801C0000070
038000007003800000700380000070038000007003800000E007000000E007000000E007
000000E007000000C00E000001C00E000001C00C000031860C0000798F180000F31E1000
00620C6000003C07C000002429829F1C>11 D<00003FE00000E010000180380003807800
03807800070030000700000007000000070000000E0000000E0000000E000000FFFFE000
0E00E0001C01C0001C01C0001C01C0001C01C0001C038000380380003803800038038000
38070000380700007807000070071000700E2000700E2000700E2000600E2000E0064000
E0038000E0000000C0000000C0000001C000003180000079800000F3000000620000003C
0000001D29829F1A>I<00003FC0FF800000E0E38040000181E600E0000381EC01E00003
80DC01E00007001C00C0000700180000000700380000000700380000000E00380000000E
00380000000E0070000000FFFFFFFF80000E00700380000E00700700001C00700700001C
00700700001C00E00700001C00E00E00001C00E00E00003800E00E00003800E00E000038
01C01C00003801C01C00003801C01C00007001C01C40007001C038800070038038800070
0380388000700380388000E00380190000E003000E0000E00700000000C00700000000C0
0600000001C00600000031860E000000798F0C000000F31E18000000620C300000003C07
C00000002B29829F28>14 D<1C1C3E3E7E7E7E7E3A3A0202040404040808080810102020
404080800F0E789F17>34 D<000100020004000800100020006000C00180018003000700
06000E000C001C0018003800380030007000700060006000E000E000C000C000C000C000
C000C000C000C000C000C000C000C000C0004000600060002000100010000800102E79A1
13>40 D<0010000008000004000006000002000003000003000003000001000001800001
800001800001800001800001800001800003800003800003800003000003000003000007
00000700000600000600000E00000C00000C00001C000018000038000030000070000060
0000E00000C0000180000100000300000600000C0000180000300000600000800000112E
80A113>I<1C3C3C3C3C040408081020204080060E7D840E>44 D<7FF0FFE07FE00C037D
8A10>I<70F8F8F0E005057B840E>I<00000040000000C000000180000001800000030000
000300000006000000060000000C00000018000000180000003000000030000000600000
00C0000000C0000001800000018000000300000003000000060000000C0000000C000000
1800000018000000300000003000000060000000C0000000C00000018000000180000003
00000003000000060000000C0000000C0000001800000018000000300000003000000060
000000C0000000C0000000800000001A2D7FA117>I<000F800030E000E07001C0700380
300380380700380F00780F00780E00781E00781E00703C00F03C00F03C00F03C00F07801
E07801E07801E07801C07003C0F003C0F00380F00780F00700700700700E00701C003038
001870000FC000151F7C9D17>I<000200020006000E003C00DC031C001C003800380038
0038007000700070007000E000E000E000E001C001C001C001C003800380038003800780
FFF80F1E7B9D17>I<001F000061C00080E00100E00200700240700440700420700840F0
0840F00840F00880E00901E00601C0000380000700000C0000180000600000C000030000
0400000800401000401000802001807E038047FF0041FE0080FC00807800141F7C9D17>
I<001F800060E000807001003002003804403804403804203804407004C0700380600000
E00001C000030000FE00001C000006000007000007800007800007803007807807807807
80F00F00800F00401E00401C0040380030E0000F8000151F7C9D17>I<0000600000E000
00E00000E00001C00001C00001C0000380000380000300000700000700000600000E0000
0C0000180000180000300000300000630000C700008700010700030700060E00040E0008
0E003F8E00607C00801FC0001C00001C0000380000380000380000380000700000700000
600013277E9D17>I<00806001FFC001FF8001FE00010000020000020000020000020000
04000004000004F800050C000A06000C0700080700000780000780000780000780000F00
700F00F00F00F00E00E01E00801C0080380080300040600061C0001F0000131F7B9D17>
I<070F1F1F0E0000000000000000000070F8F8F0E008147B930E>58
D<1FFFFFF83FFFFFFC000000000000000000000000000000000000000000000000000000
0000000000FFFFFFF07FFFFFE01E0C7B9023>61 D<00000200000006000000060000000E
0000001E0000001E0000003F0000002F0000004F000000CF0000008F0000010F0000010F
0000020F0000020F0000040F0000080F0000080F0000100F800010078000200780003FFF
8000400780008007800080078001000780010007800200078006000780040007801E0007
C0FF807FF81D207E9F22>65 D<01FFFFC0001E00F0001E0078001E0038001E003C003C00
3C003C003C003C003C003C003C0078007800780078007800F0007801E000F0078000FFFE
0000F00F8000F003C001E001C001E001E001E001E001E001E003C001E003C001E003C001
E003C001C0078003C00780078007800F0007801E000F007C00FFFFE0001E1F7D9E20>I<
0000FE0200078186001C004C0038003C0060003C00C0001C01C000180380001807000018
0F0000181E0000101E0000103C0000003C00000078000000780000007800000078000000
F0000000F0000000F0000000F0000000F000008070000080700000807000010038000100
38000200180004000C001800060020000381C00000FE00001F217A9F21>I<00FFFF8000
1E00E0001E0070001E0038001E001C003C001C003C000E003C000E003C000E0078000E00
78000E0078000E0078000E00F0001E00F0001E00F0001E00F0001E01E0003C01E0003C01
E0003C01E0007803C0007003C0007003C000E003C001C0078003C00780038007800E0007
801C000F007000FFFFC0001F1F7D9E22>I<01FFFFFE001E001C001E000C001E0004001E
0004003C0004003C0004003C0004003C000400780408007804000078040000780C0000F0
180000FFF80000F0180000F0180001E0100001E0100001E0100001E0001003C0002003C0
002003C0004003C00040078000800780018007800100078007000F001F00FFFFFE001F1F
7D9E1F>I<01FFFFFC001E0038001E0018001E0008001E0008003C0008003C0008003C00
08003C00080078001000780800007808000078080000F0100000F0300000FFF00000F030
0001E0200001E0200001E0200001E0200003C0000003C0000003C0000003C00000078000
000780000007800000078000000F800000FFF800001E1F7D9E1E>I<0000FC040007030C
001C00980030007800E0007801C000380380003003800030070000300E0000301E000020
1E0000203C0000003C00000078000000780000007800000078000000F0000000F000FFF0
F0000780F0000780F0000F0070000F0070000F0070000F0070001E0038001E0018003E00
1C002E000E00CC000383040000FC00001E217A9F23>I<00FFF1FFE0001F003E00001E00
3C00001E003C00001E003C00003C007800003C007800003C007800003C007800007800F0
00007800F000007800F000007800F00000F001E00000FFFFE00000F001E00000F001E000
01E003C00001E003C00001E003C00001E003C00003C007800003C007800003C007800003
C007800007800F000007800F000007800F000007800F00000F801F0000FFF1FFE000231F
7D9E22>I<01FFF0001F00001E00001E00001E00003C00003C00003C00003C0000780000
780000780000780000F00000F00000F00000F00001E00001E00001E00001E00003C00003
C00003C00003C0000780000780000780000780000F8000FFF000141F7D9E12>I<01FFF8
00001F0000001E0000001E0000001E0000003C0000003C0000003C0000003C0000007800
0000780000007800000078000000F0000000F0000000F0000000F0000001E0000001E000
0001E0000001E0008003C0010003C0010003C0030003C00200078006000780060007800C
0007801C000F007800FFFFF800191F7D9E1D>76 D<01FE00007FC0001E0000FC00001E00
00F80000170001780000170001780000270002F00000270004F00000270004F000002700
08F00000470009E00000470011E00000470021E00000470021E00000870043C000008380
43C00000838083C00000838083C000010381078000010382078000010382078000010384
0780000203840F00000203880F00000203900F00000203900F00000401E01E00000401E0
1E00000401C01E00000C01801E00001C01803E0000FF8103FFC0002A1F7D9E29>I<00FF
003FE0001F000F00001F0004000017800400001780040000278008000023C008000023C0
08000023C008000041E010000041E010000041F010000040F010000080F0200000807820
000080782000008078200001003C400001003C400001003C400001001E400002001E8000
02001E800002000F800002000F800004000F0000040007000004000700000C000700001C
00020000FF80020000231F7D9E22>I<0001FC0000070700001C01C0003000E000E00060
01C000700380007007800038070000380E0000381E0000381C0000383C0000383C000038
78000078780000787800007878000078F00000F0F00000F0F00000E0F00001E0F00001C0
F00003C0700003807000070078000F0038001E0038003C001C0070000E00E00007838000
01FC00001D217A9F23>I<01FFFF80001E00E0001E0070001E0038001E003C003C003C00
3C003C003C003C003C003C0078007800780078007800F0007800E000F003C000F00F0000
FFFC0000F0000001E0000001E0000001E0000001E0000003C0000003C0000003C0000003
C00000078000000780000007800000078000000F800000FFF000001E1F7D9E1F>I<0001
FC0000070700001C01C0003000E000E000E001C000700380007007800078070000380F00
00381E0000381E0000383C0000383C00007878000078780000787800007878000078F000
00F0F00000F0F00000E0F00001E0F00001C0F00003C070000380701C070070200F003841
1E0038413C001C4170000E41E0000743808001FD00800001018000010100000383000003
86000003FE000003FC000001F8000000F0001D297A9F23>I<00FFFF00001E03C0001E00
E0001E0070001E0078003C0078003C0078003C0078003C0078007800F0007800F0007801
E0007801C000F0070000F01E0000FFF00000F01C0001E00E0001E00F0001E0070001E007
8003C00F0003C00F0003C00F0003C00F0007801E0007801E0807801E0807801E100F800E
10FFF00E20000003C01D207D9E21>I<0007E040001C18C0003005800060038000C00380
01C00180018001000380010003800100038001000380000003C0000003C0000003F80000
01FF800001FFE000007FF000001FF0000001F80000007800000078000000380000003800
20003800200038002000300060007000600060006000E0007000C000E8038000C6060000
81F800001A217D9F1A>I<0FFFFFFC1E03C0381803C0181003C0082003C0082007800860
0780084007800840078008800F0010000F0000000F0000000F0000001E0000001E000000
1E0000001E0000003C0000003C0000003C0000003C000000780000007800000078000000
78000000F0000000F0000000F0000000F0000001F000007FFF80001E1F799E21>I<3FFC
0FF807C003C00780010007800100078001000F0002000F0002000F0002000F0002001E00
04001E0004001E0004001E0004003C0008003C0008003C0008003C000800780010007800
10007800100078001000F0002000F0002000F0002000F0004000F0004000700080007001
000030020000380400000C18000007E000001D20779E22>III<02
0204040808101020204040404080808080B0B0F8F8F8F8F8F870700F0E749F17>92
D<00F1800389C00707800E03801C03803C0380380700780700780700780700F00E00F00E
00F00E00F00E20F01C40F01C40703C40705C40308C800F070013147C9317>97
D<07803F8007000700070007000E000E000E000E001C001C001CF01D0C3A0E3C0E380F38
0F700F700F700F700FE01EE01EE01EE01CE03CE038607060E031C01F0010207B9F15>I<
007E0001C1000300800E07801E07801C07003C0200780000780000780000F00000F00000
F00000F00000F0000070010070020030040018380007C00011147C9315>I<0000780003
F80000700000700000700000700000E00000E00000E00000E00001C00001C000F1C00389
C00707800E03801C03803C0380380700780700780700780700F00E00F00E00F00E00F00E
20F01C40F01C40703C40705C40308C800F070015207C9F17>I<007C01C207010E011C01
3C013802780C7BF07C00F000F000F000F0007000700170023804183807C010147C9315>
I<00007800019C00033C00033C000718000700000700000E00000E00000E00000E00000E
0000FFE0001C00001C00001C00001C000038000038000038000038000038000070000070
0000700000700000700000E00000E00000E00000E00000E00001C00001C00001C0000180
003180007B0000F300006600003C00001629829F0E>I<001E3000713800E0F001C07003
80700780700700E00F00E00F00E00F00E01E01C01E01C01E01C01E01C01E03801E03800E
07800E0B8006170001E700000700000700000E00000E00300E00781C00F038006070003F
C000151D7F9315>I<01E0000FE00001C00001C00001C00001C000038000038000038000
038000070000070000071E000763000E81800F01C00E01C00E01C01C03801C03801C0380
1C0380380700380700380700380E10700E20700E20701C20700C40E00C8060070014207D
9F17>I<00C001E001E001C000000000000000000000000000000E001300230043804700
470087000E000E000E001C001C001C003840388038807080310032001C000B1F7C9E0E>
I<0001800003C00003C0000380000000000000000000000000000000000000000000003C
00004600008700008700010700010700020E00000E00000E00000E00001C00001C00001C
00001C0000380000380000380000380000700000700000700000700000E00000E00030E0
0079C000F180006300003C00001228829E0E>I<01E0000FE00001C00001C00001C00001
C0000380000380000380000380000700000700000703C00704200E08E00E11E00E21E00E
40C01C80001D00001E00001FC00038E00038700038700038384070708070708070708070
3100E03100601E0013207D9F15>I<03C01FC0038003800380038007000700070007000E
000E000E000E001C001C001C001C0038003800380038007000700070007100E200E200E2
00E200640038000A207C9F0C>I<1C0F80F0002630C318004740640C004780680E004700
700E004700700E008E00E01C000E00E01C000E00E01C000E00E01C001C01C038001C01C0
38001C01C038001C01C0708038038071003803807100380380E100380380620070070064
00300300380021147C9325>I<1C0F802630C04740604780604700704700708E00E00E00
E00E00E00E00E01C01C01C01C01C01C01C03843803883803883807083803107003303001
C016147C931A>I<007C0001C3000301800E01C01E01C01C01E03C01E07801E07801E078
01E0F003C0F003C0F003C0F00780F00700700F00700E0030180018700007C00013147C93
17>I<01C1E002621804741C04781C04701E04701E08E01E00E01E00E01E00E01E01C03C
01C03C01C03C01C0380380780380700380E003C1C0072380071E000700000700000E0000
0E00000E00000E00001C00001C0000FF8000171D809317>I<00F0400388C00705800E03
801C03803C0380380700780700780700780700F00E00F00E00F00E00F00E00F01C00F01C
00703C00705C0030B8000F380000380000380000700000700000700000700000E00000E0
000FFE00121D7C9315>I<1C1E002661002783804787804707804703008E00000E00000E
00000E00001C00001C00001C00001C000038000038000038000038000070000030000011
147C9313>I<00FC030206010C030C070C060C000F800FF007F803FC003E000E700EF00C
F00CE008401020601F8010147D9313>I<018001C0038003800380038007000700FFF007
000E000E000E000E001C001C001C001C003800380038003820704070407080708031001E
000C1C7C9B0F>I<0E00C01300E02301C04381C04701C04701C08703800E03800E03800E
03801C07001C07001C07001C07101C0E20180E20180E201C1E400C264007C38014147C93
18>I<0E03801307802307C04383C04701C04700C08700800E00800E00800E00801C0100
1C01001C01001C02001C02001C04001C04001C08000E300003C00012147C9315>I<0E00
C1C01300E3C02301C3E04381C1E04701C0E04701C060870380400E0380400E0380400E03
80401C0700801C0700801C0700801C0701001C0701001C0601001C0F02000C0F04000E13
080003E1F0001B147C931E>I<0383800CC4401068E01071E02071E02070C040E00000E0
0000E00000E00001C00001C00001C00001C040638080F38080F38100E5810084C6007878
0013147D9315>I<0E00C01300E02301C04381C04701C04701C08703800E03800E03800E
03801C07001C07001C07001C07001C0E00180E00180E001C1E000C3C0007DC00001C0000
1C00003800F03800F07000E06000C0C0004380003E0000131D7C9316>I<01C04003E080
07F1800C1F00080200000400000800001000002000004000008000010000020000040100
0802001002003E0C0063FC0041F80080E00012147D9313>II
E /Fs 91 127 df5
DI<003FC00001E0780007801E00
0F000F001E0007803C0003C07C0003E07C0003E0F80001F0F80001F0F80001F0F80001F0
F80001F0F80001F0780001E07C0003E07C0003E03C0003C03C0003C01E0007800E000700
07000E0007000E0003000C0001801800818018108080101080C03010404020207FC03FE0
7FC03FE07FC03FE01C207E9F21>10 D<001F83E000F06E3001C078780380F8780300F030
07007000070070000700700007007000070070000700700007007000FFFFFF8007007000
070070000700700007007000070070000700700007007000070070000700700007007000
07007000070070000700700007007000070070000700700007007000070070003FE3FF00
1D20809F1B>I<003F0000E0C001C0C00381E00701E00701E00700000700000700000700
00070000070000FFFFE00700E00700E00700E00700E00700E00700E00700E00700E00700
E00700E00700E00700E00700E00700E00700E00700E00700E00700E03FC3FC1620809F19
>I<003FE000E0E001C1E00381E00700E00700E00700E00700E00700E00700E00700E007
00E0FFFFE00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E007
00E00700E00700E00700E00700E00700E00700E00700E03FE7FC1620809F19>I<001F81
F80000F04F040001C07C06000380F80F000300F00F000700F00F00070070000007007000
000700700000070070000007007000000700700000FFFFFFFF0007007007000700700700
070070070007007007000700700700070070070007007007000700700700070070070007
007007000700700700070070070007007007000700700700070070070007007007000700
70070007007007003FE3FE3FE02320809F26>I22
D<7038F87CFC7EFC7E743A0402040204020804080410081008201040200F0E7F9F17>34
D<0001803000000180300000018030000001803000000300600000030060000003006000
00030060000003006000000600C000000600C000000600C000000600C000000600C00000
0C0180007FFFFFFF00FFFFFFFF8000180300000018030000003006000000300600000030
060000003006000000600C000000600C0000FFFFFFFF807FFFFFFF0000C0180000018030
000001803000000180300000018030000001803000000300600000030060000003006000
00030060000003006000000600C000000600C000000600C0000021297E9F26>I<004000
00400003F0000C4E00104100204080604080404040C041C0C043C0C043C0E04180E04000
7040007C40003FC0001FF8000FFC0003FE00007F00004F800043800041C00041C0F040C0
F040C0F040C08040C08040804041802041003042000C4C0003F000004000004000004000
12257EA117>I<70F8FCFC74040404080810102040060E7C9F0D>39
D<0040008001000300060004000C001800180038003000300070006000600060006000E0
00E000E000E000E000E000E000E000E000E000E000E00060006000600060007000300030
003800180018000C000400060003000100008000400A2E7BA112>I<8000400020003000
180008000C00060006000700030003000380018001800180018001C001C001C001C001C0
01C001C001C001C001C001C001C001800180018001800380030003000700060006000C00
0800180030002000400080000A2E7EA112>I<0003000000030000000300000003000000
030000000300000003000000030000000300000003000000030000000300000003000000
03000000030000FFFFFFFCFFFFFFFC000300000003000000030000000300000003000000
030000000300000003000000030000000300000003000000030000000300000003000000
0300001E207E9A23>43 D<70F0F8F878080808101010202040050E7C840D>II<70F8F8F87005057C840D>I<0000400000C0000180000180000180000300
000300000300000600000600000C00000C00000C00001800001800001800003000003000
00600000600000600000C00000C00000C000018000018000018000030000030000060000
0600000600000C00000C00000C0000180000180000300000300000300000600000600000
600000C00000C00000122D7EA117>I<03F0000E1C001C0E001806003807007003807003
80700380700380F003C0F003C0F003C0F003C0F003C0F003C0F003C0F003C0F003C0F003
C0F003C0F003C0F003C07003807003807003807807803807001806001C0E000E1C0003F0
00121F7E9D17>I<008003800F80F3800380038003800380038003800380038003800380
0380038003800380038003800380038003800380038003800380038007C0FFFE0F1E7C9D
17>I<03F0000C1C00100E00200700400780800780F007C0F803C0F803C0F803C02007C0
0007C0000780000780000F00000E00001C0000380000700000600000C000018000030000
0600400C00401800401000803FFF807FFF80FFFF80121E7E9D17>I<03F0000C1C00100E
00200F00780F80780780780780380F80000F80000F00000F00001E00001C0000700007F0
00003C00000E00000F000007800007800007C02007C0F807C0F807C0F807C0F007804007
80400F00200E00183C0007F000121F7E9D17>I<000600000600000E00000E00001E0000
2E00002E00004E00008E00008E00010E00020E00020E00040E00080E00080E00100E0020
0E00200E00400E00C00E00FFFFF0000E00000E00000E00000E00000E00000E00000E0000
FFE0141E7F9D17>I<1803001FFE001FFC001FF8001FE000100000100000100000100000
10000010000011F000161C00180E001007001007800003800003800003C00003C00003C0
7003C0F003C0F003C0E00380400380400700200600100C0008380007E000121F7E9D17>
I<007C000182000701000E03800C0780180780380300380000780000700000700000F1F0
00F21C00F40600F80700F80380F80380F003C0F003C0F003C0F003C0F003C07003C07003
C07003803803803807001807000C0E00061C0001F000121F7E9D17>I<4000007FFFE07F
FFC07FFFC040008080010080010080020000040000040000080000100000100000200000
200000600000600000E00000C00001C00001C00001C00001C00003C00003C00003C00003
C00003C00003C00003C000018000131F7E9D17>I<03F0000C0C00100600300300200180
6001806001806001807001807803003E03003F06001FC8000FF00003F80007FC000C7E00
103F00300F806007806001C0C001C0C000C0C000C0C000C0C00080600180200100100200
0C0C0003F000121F7E9D17>I<03F0000E18001C0C00380600380700700700700380F003
80F00380F003C0F003C0F003C0F003C0F003C07007C07007C03807C0180BC00E13C003E3
C0000380000380000380000700300700780600780E00700C002018001070000FC000121F
7E9D17>I<70F8F8F8700000000000000000000070F8F8F87005147C930D>I<70F8F8F870
0000000000000000000070F0F8F878080808101010202040051D7C930D>I<7FFFFFF8FF
FFFFFC0000000000000000000000000000000000000000000000000000000000000000FF
FFFFFC7FFFFFF81E0C7E9023>61 D<0FE0103C601E400EE00FF00FF00F600F001E001C00
380070006000C00080008001000100010001000100010000000000000000000000038007
C007C007C0038010207E9F15>63 D<000100000003800000038000000380000007C00000
07C0000007C0000009E0000009E0000009E0000010F0000010F0000010F0000020780000
2078000020780000403C0000403C0000C03E0000801E0000801E0001FFFF0001000F0001
000F00020007800200078002000780040003C0040003C00C0003C01E0003E0FF801FFE1F
207F9F22>65 DI<000FE0100038
1C3000E0027003C00170078000F00F0000701E0000701E0000303C0000303C0000107C00
001078000010F8000000F8000000F8000000F8000000F8000000F8000000F8000000F800
0000F8000000780000007C0000103C0000103C0000101E0000201E0000200F0000200780
004003C0008000E0030000380C00000FF0001C217E9F21>IIII<000FE01000381C3000E0027003C0
0170078000F00F0000701E0000701E0000303C0000303C0000107C00001078000010F800
0000F8000000F8000000F8000000F8000000F8000000F8000000F8003FFEF80001F07800
00F07C0000F03C0000F03C0000F01E0000F01E0000F00F0000F0078000F003C0017000E0
023000380C10000FF0001F217E9F24>II
I<07FFC0003E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E
00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00201E
00F81E00F81E00F81E00F01C00403C006038001070000FC00012207F9E17>IIIII<001FE0000070380001C00E000380070007000380
0F0003C01E0001E03C0000F03C0000F07C0000F87C0000F878000078F800007CF800007C
F800007CF800007CF800007CF800007CF800007CF800007CF800007C780000787C0000F8
7C0000F83C0000F03E0001F01E0001E00F0003C0070003800380070001E01E0000703800
001FE0001E217E9F23>II<001F
E0000070380001C00E0003800700070003800F0003C01E0001E03E0001F03C0000F07C00
00F87C0000F878000078F800007CF800007CF800007CF800007CF800007CF800007CF800
007CF800007CF800007C780000787C0000F87C0000F83C0000F03E0781F01E0841E00F10
23C0071023800390170001D01E0000783804001FF80400001C0400000C0C00000E1C0000
0FF800000FF8000007F8000007F0000001E01E297E9F23>II<03F0400C0CC01803C03001C06000C06000C0E000
C0E00040E00040E00040F00000F800007C00007F80003FF8001FFF0007FF8000FFC0001F
E00003E00001E00000F0000070800070800070800070800070C00060C000E0E000C0F801
80C6030081FC0014217E9F19>I<7FFFFFE0780F01E0600F0060400F0020400F0020C00F
0030800F0010800F0010800F0010800F0010000F0000000F0000000F0000000F0000000F
0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F
0000000F0000000F0000000F0000000F0000000F0000001F800003FFFC001C1F7E9E21>
IIII89 D91 D<080410082010201040204020804080408040B85CFC7EFC7E7C3E381C0F
0E7A9F17>II<0C001E0033006180C0C080400A06
7A9E17>I<081020204040808080B8FCFC7C38060E7D9F0D>96 D<1FE000303000781800
781C00300E00000E00000E00000E0000FE00078E001E0E00380E00780E00F00E10F00E10
F00E10F01E10781E103867200F83C014147E9317>I<1C0000FC00001C00001C00001C00
001C00001C00001C00001C00001C00001C00001C00001C7C001D87001E01801E00C01C00
E01C00701C00701C00781C00781C00781C00781C00781C00781C00701C00F01C00E01E00
C01A0180198700107C0015207E9F19>I<01FC000706001C0F00380F0038060078000070
0000F00000F00000F00000F00000F00000F000007000007800003800803800801C010007
060001F80011147F9314>I<0001C0000FC00001C00001C00001C00001C00001C00001C0
0001C00001C00001C00001C001F1C0070DC00C03C01801C03801C07801C07001C0F001C0
F001C0F001C0F001C0F001C0F001C07001C07001C03801C01803C00C03C0070DC001F1F8
15207F9F19>I<03F0000E1C001C0E00380700380700700700700380F00380F00380FFFF
80F00000F00000F000007000007000003800803800801C010007060001F80011147F9314
>I<007C01C6030F070F0E060E000E000E000E000E000E000E00FFF00E000E000E000E00
0E000E000E000E000E000E000E000E000E000E000E000E000E000E007FE01020809F0E>
I<0000E003E3300E3C301C1C30380E00780F00780F00780F00780F00780F00380E001C1C
001E380033E0002000002000003000003000003FFE001FFF801FFFC03001E0600070C000
30C00030C00030C000306000603000C01C038003FC00141F7F9417>I<1C0000FC00001C
00001C00001C00001C00001C00001C00001C00001C00001C00001C00001C7C001C86001D
03001E03801E03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C
03801C03801C03801C03801C0380FF8FF014207E9F19>I<38007C007C007C0038000000
000000000000000000001C00FC001C001C001C001C001C001C001C001C001C001C001C00
1C001C001C001C001C001C00FF80091F7F9E0C>I<00E001F001F001F000E00000000000
00000000000000007007F000F00070007000700070007000700070007000700070007000
700070007000700070007000700070007000706070F060F0C061803F000C28829E0E>I<
1C0000FC00001C00001C00001C00001C00001C00001C00001C00001C00001C00001C0000
1C1FE01C07801C06001C04001C08001C10001C20001C60001CE0001DF0001E70001C3800
1C3C001C1C001C0E001C0F001C07001C07801C07C0FF9FF014207E9F18>I<1C00FC001C
001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C
001C001C001C001C001C001C001C001C001C001C00FF8009207F9F0C>I<1C3E03E000FC
C30C30001D039038001E01E01C001E01E01C001C01C01C001C01C01C001C01C01C001C01
C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C0
1C001C01C01C001C01C01C001C01C01C00FF8FF8FF8021147E9326>I<1C7C00FC86001D
03001E03801E03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C
03801C03801C03801C03801C0380FF8FF014147E9319>I<01F800070E001C03803801C0
3801C07000E07000E0F000F0F000F0F000F0F000F0F000F0F000F07000E07000E03801C0
3801C01C0380070E0001F80014147F9317>I<1C7C00FD87001E01801E01C01C00E01C00
F01C00701C00781C00781C00781C00781C00781C00781C00701C00F01C00E01E01C01E03
801D87001C7C001C00001C00001C00001C00001C00001C00001C00001C0000FF8000151D
7E9319>I<01F040070CC00E02C01C03C03801C07801C07001C0F001C0F001C0F001C0F0
01C0F001C0F001C07001C07801C03801C01C03C00C05C00709C001F1C00001C00001C000
01C00001C00001C00001C00001C00001C0000FF8151D7F9318>I<1CF0FD181E3C1E3C1E
181C001C001C001C001C001C001C001C001C001C001C001C001C001C00FFC00E147E9312
>I<0FC830386018C008C008C008E0007C003FE01FF007F8003C800E8006C006C006C004
E00CD81887E00F147F9312>I<020002000200060006000E000E003E00FFF80E000E000E
000E000E000E000E000E000E000E000E000E040E040E040E040E040708030801F00E1C7F
9B12>I<1C0380FC1F801C03801C03801C03801C03801C03801C03801C03801C03801C03
801C03801C03801C03801C03801C03801C07800C0780061B8003E3F014147E9319>IIIII<7FFF700E600E401C4038
4078407000E001E001C00380078007010E011E011C0338027006700EFFFE10147F9314>
III<1C043F0843F080E00E047C9D17
>126 D E /Ft 43 122 df<0001FF81FE00001FFFEFFF80007F80FF87C000FC00FE0FE0
01F801FE0FE003F801FC0FE007F001FC0FE007F001FC07C007F001FC000007F001FC0000
07F001FC000007F001FC000007F001FC000007F001FC000007F001FC0000FFFFFFFFF800
FFFFFFFFF800FFFFFFFFF80007F001FC000007F001FC000007F001FC000007F001FC0000
07F001FC000007F001FC000007F001FC000007F001FC000007F001FC000007F001FC0000
07F001FC000007F001FC000007F001FC000007F001FC000007F001FC000007F001FC0000
07F001FC000007F001FC000007F001FC000007F001FC000007F001FC00007FFF1FFFE000
7FFF1FFFE0007FFF1FFFE0002B2A7FA928>11 D<0001FF803FE000001FFFE3FFF800007F
80FFF01E0000FE007F801F0001F800FF003F0003F801FF007F8007F001FE007F8007F001
FE007F8007F001FE007F8007F000FE003F0007F000FE001E0007F000FE00000007F000FE
00000007F000FE00000007F000FE000000FFFFFFFFFFFF80FFFFFFFFFFFF80FFFFFFFFFF
FF8007F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F
8007F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F80
07F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F8007
F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F8007F000FE003F8007F0
00FE003F807FFF0FFFE3FFF87FFF0FFFE3FFF87FFF0FFFE3FFF8352A7FA939>14
D<1C007F007F00FF80FFC0FFC07FC07FC01CC000C000C00180018001800300030006000C
001800300020000A157BA913>39 D45 D<000E00001E00007E0007FE00FFFE00FFFE00F8FE0000FE0000FE0000FE0000
FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000
FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000
FE0000FE007FFFFE7FFFFE7FFFFE17277BA622>49 D<00FF800003FFF0000FFFFC001F03
FE003800FF007C007F80FE003FC0FF003FC0FF003FE0FF001FE0FF001FE07E001FE03C00
3FE000003FE000003FC000003FC000007F8000007F000000FE000000FC000001F8000003
F0000003E00000078000000F0000001E0000003C00E0007000E000E000E001C001C00380
01C0070001C00FFFFFC01FFFFFC03FFFFFC07FFFFFC0FFFFFF80FFFFFF80FFFFFF801B27
7DA622>I<007F800003FFF00007FFF8000F81FE001F00FE003F80FF003F807F803F807F
803F807F801F807F800F007F800000FF000000FF000000FE000001FC000001F8000007F0
0000FFC00000FFF0000001FC000000FE0000007F0000007F8000003FC000003FC000003F
E000003FE03C003FE07E003FE0FF003FE0FF003FE0FF003FC0FF007FC07E007F807C007F
003F01FE001FFFFC0007FFF00000FF80001B277DA622>I<00000E0000001E0000003E00
00007E000000FE000000FE000001FE000003FE0000077E00000E7E00000E7E00001C7E00
00387E0000707E0000E07E0000E07E0001C07E0003807E0007007E000E007E000E007E00
1C007E0038007E0070007E00E0007E00FFFFFFF8FFFFFFF8FFFFFFF80000FE000000FE00
0000FE000000FE000000FE000000FE000000FE000000FE00003FFFF8003FFFF8003FFFF8
1D277EA622>I<080003001F803F001FFFFE001FFFFC001FFFF8001FFFF0001FFFE0001F
FF80001FFE00001C0000001C0000001C0000001C0000001C0000001C0000001C7FC0001D
FFF8001F80FC001E003E0008003F0000003F8000001FC000001FC000001FE000001FE018
001FE07C001FE0FE001FE0FE001FE0FE001FE0FE001FC0FC001FC078003F8078003F803C
007F001F01FE000FFFF80003FFF00000FF80001B277DA622>I<0007F800003FFE0000FF
FF0001FC078003F00F8007E01FC00FC01FC01FC01FC01F801FC03F800F803F8000007F00
00007F0000007F000000FF000000FF0FC000FF3FF800FF707C00FFC03E00FFC03F00FF80
1F80FF801FC0FF001FC0FF001FE0FF001FE0FF001FE07F001FE07F001FE07F001FE07F00
1FE03F001FE03F001FC01F801FC01F803F800FC03F0007E07E0003FFFC0000FFF000003F
C0001B277DA622>I<380000003E0000003FFFFFF03FFFFFF03FFFFFF07FFFFFE07FFFFF
C07FFFFF807FFFFF0070000E0070000E0070001C00E0003800E0007000E000E0000001C0
000001C000000380000007800000070000000F0000001F0000001E0000003E0000003E00
00007E0000007C0000007C000000FC000000FC000000FC000000FC000001FC000001FC00
0001FC000001FC000001FC000001FC000001FC000000F80000007000001C297CA822>I<
003FC00001FFF00003FFFC0007C07E000F001F001E001F001E000F803E000F803E000F80
3F000F803F800F803FC00F003FF01F001FFC1E001FFE3C000FFFF80007FFE00003FFF000
01FFFC0001FFFE0007FFFF000F0FFF801E03FFC03C01FFC07C007FE07C001FE0F8000FE0
F80007E0F80003E0F80003E0F80003E0F80003C07C0003C07C0007803F000F001FC03E00
0FFFFC0003FFF800007FC0001B277DA622>I<000003800000000007C00000000007C000
0000000FE0000000000FE0000000000FE0000000001FF0000000001FF0000000003FF800
0000003FF8000000003FF80000000073FC0000000073FC00000000F3FE00000000E1FE00
000001E1FF00000001C0FF00000001C0FF00000003C0FF80000003807F80000007807FC0
000007003FC0000007003FC000000E001FE000000E001FE000001E001FF000001C000FF0
00001FFFFFF000003FFFFFF800003FFFFFF80000780007FC0000700003FC0000F00003FE
0000E00001FE0000E00001FE0001E00001FF0001C00000FF0003C00000FF80FFFE001FFF
FEFFFE001FFFFEFFFE001FFFFE2F297EA834>65 DI<00003FF001800003FFFE0380000F
FFFF8780003FF007DF8000FF8001FF8001FE00007F8003FC00003F8007F000001F800FF0
00000F801FE0000007801FE0000007803FC0000007803FC0000003807FC0000003807F80
000003807F8000000000FF8000000000FF8000000000FF8000000000FF8000000000FF80
00000000FF8000000000FF8000000000FF8000000000FF80000000007F80000000007F80
000000007FC0000003803FC0000003803FC0000003801FE0000003801FE0000007000FF0
0000070007F000000E0003FC00001E0001FE00003C0000FF8000F800003FF007E000000F
FFFFC0000003FFFF000000003FF8000029297CA832>I73 D77 D80 D<0000FFE000000007FFFC0000003FC07F80
00007F001FC00001FC0007F00003F80003F80007F00001FC000FF00001FE001FE00000FF
001FE00000FF003FC000007F803FC000007F807FC000007FC07FC000007FC07F8000003F
C07F8000003FC0FF8000003FE0FF8000003FE0FF8000003FE0FF8000003FE0FF8000003F
E0FF8000003FE0FF8000003FE0FF8000003FE0FF8000003FE0FF8000003FE07F8000003F
C07F8000003FC07FC000007FC03FC000007F803FC000007F801FE00000FF001FE01F00FF
000FF03F81FE0007F060C1FC0003F8C063F80001FCC037F00000FFC03FE000003FE07F80
00000FFFFE00000000FFFE00600000001E00600000001F00600000000F81E00000000FFF
E00000000FFFC00000000FFFC000000007FFC000000007FF8000000003FF8000000003FF
0000000001FE000000000078002B357CA834>II<7FFFFFFFFFC07FFFFFFFFFC07FFFFF
FFFFC07F803FC03FC07E003FC007C078003FC003C078003FC003C070003FC001C0F0003F
C001E0F0003FC001E0E0003FC000E0E0003FC000E0E0003FC000E0E0003FC000E0E0003F
C000E000003FC0000000003FC0000000003FC0000000003FC0000000003FC0000000003F
C0000000003FC0000000003FC0000000003FC0000000003FC0000000003FC0000000003F
C0000000003FC0000000003FC0000000003FC0000000003FC0000000003FC0000000003F
C0000000003FC0000000003FC0000000003FC0000000003FC00000007FFFFFE000007FFF
FFE000007FFFFFE0002B287EA730>84 D<03FF80000FFFF0001F01F8003F807E003F807E
003F803F001F003F800E003F8000003F8000003F8000003F80000FFF8000FFFF8007FC3F
800FE03F803F803F803F003F807F003F80FE003F80FE003F80FE003F80FE003F807E007F
807F00DF803F839FFC0FFF0FFC01FC03FC1E1B7E9A21>97 DI<003FF80000FFFE0003F0
1F0007E03F800FC03F801F803F803F801F007F000E007F0000007F000000FF000000FF00
0000FF000000FF000000FF000000FF000000FF0000007F0000007F0000007F8000003F80
01C01F8001C00FC0038007E0070003F01E0000FFFC00003FE0001A1B7E9A1F>I<00003F
F80000003FF80000003FF800000003F800000003F800000003F800000003F800000003F8
00000003F800000003F800000003F800000003F800000003F800000003F800000003F800
001FE3F80000FFFBF80003F83FF80007E00FF8000FC007F8001F8003F8003F8003F8007F
0003F8007F0003F8007F0003F800FF0003F800FF0003F800FF0003F800FF0003F800FF00
03F800FF0003F800FF0003F8007F0003F8007F0003F8007F0003F8003F8003F8001F8003
F8000F8007F80007C00FF80003F03FFF8000FFF3FF80003FC3FF80212A7EA926>I<003F
E00001FFF80003F07E0007C01F000F801F801F800F803F800FC07F000FC07F0007C07F00
07E0FF0007E0FF0007E0FFFFFFE0FFFFFFE0FF000000FF000000FF0000007F0000007F00
00007F0000003F8000E01F8000E00FC001C007E0038003F81F0000FFFE00001FF0001B1B
7E9A20>I<0007F0003FFC00FE3E01F87F03F87F03F07F07F07F07F03E07F00007F00007
F00007F00007F00007F00007F000FFFFC0FFFFC0FFFFC007F00007F00007F00007F00007
F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007
F00007F00007F00007F00007F0007FFF807FFF807FFF80182A7EA915>I<00FF81F003FF
E7F80FC1FE7C1F80FC7C1F007C383F007E107F007F007F007F007F007F007F007F007F00
7F007F007F003F007E001F007C001F80FC000FC1F8001FFFE00018FF8000380000003800
00003C0000003E0000003FFFF8001FFFFF001FFFFF800FFFFFC007FFFFE01FFFFFF03C00
07F07C0001F8F80000F8F80000F8F80000F8F80000F87C0001F03C0001E01F0007C00FC0
1F8003FFFE00007FF0001E287E9A22>II<07000F801FC03FE03FE03FE01FC00F800700
0000000000000000000000000000FFE0FFE0FFE00FE00FE00FE00FE00FE00FE00FE00FE0
0FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE0FFFEFFFEFFFE0F2B7DAA
14>I107
DII<
FFC07F0000FFC1FFC000FFC787E0000FCE03F0000FD803F0000FD803F8000FF003F8000F
F003F8000FE003F8000FE003F8000FE003F8000FE003F8000FE003F8000FE003F8000FE0
03F8000FE003F8000FE003F8000FE003F8000FE003F8000FE003F8000FE003F8000FE003
F8000FE003F8000FE003F800FFFE3FFF80FFFE3FFF80FFFE3FFF80211B7D9A26>I<003F
E00001FFFC0003F07E000FC01F801F800FC03F800FE03F0007E07F0007F07F0007F07F00
07F0FF0007F8FF0007F8FF0007F8FF0007F8FF0007F8FF0007F8FF0007F8FF0007F87F00
07F07F0007F03F800FE03F800FE01F800FC00FC01F8007F07F0001FFFC00003FE0001D1B
7E9A22>II114 D<03FE300FFFF01E03F03800F0700070F00070F00070F80070FE0000
FFE0007FFE007FFF803FFFE01FFFF007FFF800FFF80007FC6000FCE0007CE0003CF0003C
F00038F80038FC0070FF01E0F7FFC0C1FF00161B7E9A1B>I<0070000070000070000070
0000F00000F00000F00001F00003F00003F00007F0001FFFF0FFFFF0FFFFF007F00007F0
0007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F0
3807F03807F03807F03807F03807F03803F03803F87001F86000FFC0001F8015267FA51B
>II<
FFFE03FF80FFFE03FF80FFFE03FF800FF000780007F000700007F800F00003F800E00003
FC01E00001FC01C00001FC01C00000FE03800000FE03800000FF078000007F070000007F
8F0000003F8E0000003FCE0000001FDC0000001FDC0000000FF80000000FF80000000FF8
00000007F000000007F000000003E000000003E000000001C00000211B7F9A24>II121 D E /Fu 1 19 df<007FFF8001FFFF80078000000E0000001800
000030000000300000006000000060000000C0000000C0000000C0000000C0000000C000
0000C0000000C000000060000000600000003000000030000000180000000E0000000780
000001FFFF80007FFF800000000000000000000000000000000000000000000000000000
00007FFFFF807FFFFF8019227D9920>18 D E /Fv 3 94 df<0003F800000E0E00003803
8000E001C001C001C0038000E0070000E00F0000F01E0000F01C0000F03C0000F03C0000
F0780000F0780000F0780000F0F00001E0F00001E0F00001E0F00003C0F00003C0F00007
80F0000780F0000F0070000E0070001C00380038003C0070001C01C0000707800001FC00
001C1E7E9C20>79 D<1FFFFFF01C03807030070030200700206007002040070020400E00
20800E0020800E0020000E0000001C0000001C0000001C0000001C000000380000003800
0000380000003800000070000000700000007000000070000000E0000000E0000000E000
0000E0000001E000007FFF00001C1C7F9B18>84 D<008000802080208020802080208020
80208020E027E03FE0FF80FC80E080208020802080208020802080208020802080208020
80208020E027E03FE0FF80FC80E0802080208020802080200020000B277E9D10>93
D E /Fw 47 123 df<007E0001C1800301800703C00E03C00E01800E00000E00000E0000
0E00000E0000FFFFC00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C0
0E01C00E01C00E01C00E01C00E01C00E01C00E01C07F87F8151D809C17>12
D<003F07E00001C09C18000380F018000701F03C000E01E03C000E00E018000E00E00000
0E00E000000E00E000000E00E000000E00E00000FFFFFFFC000E00E01C000E00E01C000E
00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00
E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C007FC7FC
FF80211D809C23>14 D<60F0F8680808081010204080050C7C9C0C>39
D<00800100020006000C000C00180018003000300030006000600060006000E000E000E0
00E000E000E000E000E000E000E000E000E0006000600060006000300030003000180018
000C000C000600020001000080092A7C9E10>I<8000400020003000180018000C000C00
060006000600030003000300030003800380038003800380038003800380038003800380
038003000300030003000600060006000C000C00180018003000200040008000092A7E9E
10>I<60F0F0701010101020204080040C7C830C>44 DI<60F0F0
6004047C830C>I<03C00C301818300C300C700E60066006E007E007E007E007E007E007
E007E007E007E007E007E007E00760066006700E300C300C18180C3007E0101D7E9B15>
48 D<07C01830201C400C400EF00FF80FF807F8077007000F000E000E001C001C003800
70006000C00180030006010C01180110023FFE7FFEFFFE101C7E9B15>50
D<60F0F0600000000000000000000060F0F06004127C910C>58 D<60F0F0600000000000
000000000060F0F0701010101020204080041A7C910C>I<001F808000E0618001801980
070007800E0003801C0003801C00018038000180780000807800008070000080F0000000
F0000000F0000000F0000000F0000000F0000000F0000000F00000007000008078000080
78000080380000801C0001001C0001000E000200070004000180080000E03000001FC000
191E7E9C1E>67 DI73 D77 D<003F800000E0E0000380380007001C000E000E001C
0007003C00078038000380780003C0780003C0700001C0F00001E0F00001E0F00001E0F0
0001E0F00001E0F00001E0F00001E0F00001E0700001C0780003C0780003C0380003803C
0007801C0007000E000E0007001C000380380000E0E000003F80001B1E7E9C20>79
D<7FFFFFC0700F01C0600F00C0400F0040400F0040C00F0020800F0020800F0020800F00
20000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F00
00000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000001F80
0003FFFC001B1C7F9B1E>84 D87 D91
D93 D<1FC000307000783800781C00301C00001C00001C0001
FC000F1C00381C00701C00601C00E01C40E01C40E01C40603C40304E801F870012127E91
15>97 DI<03F80C0C181E301E700C
6000E000E000E000E000E000E00060007002300218040C1803E00F127F9112>I<001F80
00038000038000038000038000038000038000038000038000038000038003F3800E0B80
180780300380700380600380E00380E00380E00380E00380E00380E00380600380700380
3003801807800E1B8003E3F0141D7F9C17>I<07E00C301818300C700E6006E006FFFEE0
00E000E000E00060007002300218040C1803E00F127F9112>I<00F8018C071E061E0E0C
0E000E000E000E000E000E00FFE00E000E000E000E000E000E000E000E000E000E000E00
0E000E000E000E000E007FE00F1D809C0D>I<00038007C4C01C78C0383880301800701C
00701C00701C00701C003018003838001C700027C0002000002000003000003FF8001FFF
001FFF802003806001C0C000C0C000C0C000C06001803003001C0E0007F800121C7F9215
>II<18003C003C00180000000000
00000000000000000000FC001C001C001C001C001C001C001C001C001C001C001C001C00
1C001C001C001C00FF80091D7F9C0C>I<00C001E001E000C00000000000000000000000
00000007E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000
E000E000E000E000E060E0F0C0F1C061803E000B25839C0D>IIIII<03F0000E1C001806003003007003806001
80E001C0E001C0E001C0E001C0E001C0E001C06001807003803003001806000E1C0003F0
0012127F9115>II<03E0800E1980180580380780700380
700380E00380E00380E00380E00380E00380E003807003807003803807801807800E1B80
03E380000380000380000380000380000380000380000380001FF0141A7F9116>II<1F9020704030C010C010E010F8007F803FE00FF000F880388018C018C018E0
10D0608FC00D127F9110>I<04000400040004000C000C001C003C00FFE01C001C001C00
1C001C001C001C001C001C001C101C101C101C101C100C100E2003C00C1A7F9910>IIIIII<7FFC70386038407040F040E041C0
03C0038007000F040E041C043C0C380870087038FFF80E127F9112>I
E /Fx 10 117 df<00038000000380000007C0000007C0000007C000000FE000000FE000
001FF000001BF000003BF8000031F8000031F8000060FC000060FC0000E0FE0000C07E00
00C07E0001803F0001FFFF0003FFFF8003001F8007001FC006000FC006000FC00C0007E0
0C0007E0FF803FFEFF803FFE1F1C7E9B24>65 DI80 D<003FE00001F07C0003C01E000F800F801F0007C01F0007C03E0003E07E
0003F07C0001F07C0001F0FC0001F8FC0001F8FC0001F8FC0001F8FC0001F8FC0001F8FC
0001F8FC0001F87C0001F07C0001F07E0003F03E0003E03E0703E01F08C7C00F906F8003
D03E0001F87C00003FF8080000180800001C1800001FF800001FF800000FF000000FF000
0007E0000003C01D247D9B24>I<0FF8001C1E003E0F803E07803E07C01C07C00007C000
7FC007E7C01F07C03C07C07C07C0F807C0F807C0F807C0780BC03E13F80FE1F815127F91
17>97 DI<03FC000E0E001C1F003C
1F00781F00780E00F80000F80000F80000F80000F80000F800007800007801803C01801C
03000E0E0003F80011127E9115>I114 D<1FD830786018E018E018F000FF807FE07FF01FF807FC007CC01CC01CE01C
E018F830CFC00E127E9113>I<0300030003000300070007000F000F003FFCFFFC1F001F
001F001F001F001F001F001F001F001F0C1F0C1F0C1F0C0F08079803F00E1A7F9913>I
E /Fy 18 123 df0 D<60F0F06004047D890A>I<4001C003
6006300C18180C30066003C00180018003C006600C301818300C6006C003400110127B90
1B>I<020002000200C218F2783AE00F800F803AE0F278C2180200020002000D0E7E8E12>
I<00FC00071380081040101020201010201010401008401008801004801004801004FFFF
FC80100480100480100480100440100840100820101020101010102008104007138000FC
0016187E931B>8 D<000006000000060000000600000003000000030000000180000000
C000000060FFFFFFFCFFFFFFFC00000060000000C0000001800000030000000300000006
0000000600000006001E127E9023>33 D<060F0F0E1E1E1C3C383830707060E0C0400811
7F910A>48 D<0F8007C019E01C202030301040184008C00C800480078004800700048003
8004800780048004C00C400860082030301010E01E600F8007C01E0E7E8D23>I<01FF80
07FF800E0000180000300000600000600000600000C00000C00000FFFF80FFFF80C00000
C000006000006000006000003000001800000E000007FF8001FF8011167D9218>I<01FF
F8000FFFFE0018E03F0020E00F0060E00700C0E0070000E0060000E0060000C00C0000C0
080001C0100001C0600001878000018F0000038F80000307C0000303C0000701E0000601
E0000600F0200C00F8C00C007F0018003C001B177F961E>82 D<007800C0018003000300
03000300030003000300030003000300030006000C00F0000C0006000300030003000300
0300030003000300030003000300018000C000780D217E9812>102
DI105 DI<4040C060C060C060C060C060C060C060C060C060C060C0
60C060C060C060C060C060C060C060C060C060C060C060C060C060C060C060C060C060C0
60C060C060C06040400B227D9812>I<0000000800000018000000300000003000000060
00000060000000C0000000C0000001800000030000000300000006000000060000000C00
00000C00000018000000180030003000D8003000180060000C0060000C00C0000600C000
060180000301800003030000018600000186000000CC000000CC00000078000000780000
00300000003000001D227F811D>112 D<06000600060006000600060006000600FFF0FF
F00600060006000600060006000600060006000600060006000600060006000600060006
0006000C1D7E9611>121 D<060006000600060006000600FFF0FFF00600060006000600
060006000000060006000600060006000600FFF0FFF00600060006000600060006000C1D
7E9611>I E /Fz 23 123 df<70F8FCFC7404040404080810102040060F7C840E>44
D<70F8F8F87005057C840E>46 D<008003800F80F3800380038003800380038003800380
038003800380038003800380038003800380038003800380038003800380038003800380
0380038007C0FFFE0F217CA018>49 D<4000006000007FFFE07FFFC07FFFC0400080C001
0080010080020080020000040000080000080000100000200000200000600000400000C0
0000C00001C00001C0000180000380000380000380000380000780000780000780000780
0007800007800007800003000013237DA118>55 D<01F800060E00080300100180200180
6000C06000C06000C07000C07000C07801803E01003F02001FC4000FF80003F80001FC00
067E00083F00100F803007C06003C06000E0C000E0C00060C00060C00060C00060600040
6000C03000801803000E0E0003F00013227EA018>I<01F000060C000C06001807003803
80700380700380F001C0F001C0F001C0F001E0F001E0F001E0F001E0F001E07001E07003
E03803E01805E00C05E00619E003E1E00001C00001C00001C00003800003803003807807
00780600700C002018001030000FC00013227EA018>I66 D69 D<03F0200C0C601802603001E070
00E0600060E00060E00060E00020E00020E00020F00000F000007800007F00003FF0001F
FE000FFF0003FF80003FC00007E00001E00000F00000F000007080007080007080007080
0070C00060C00060E000C0F000C0C80180C6070081FC0014247DA21B>83
D85 DI<1FE000303800780C00780E0030070000070000070000070000FF0007C7
001E07003C0700780700700700F00708F00708F00708F00F087817083C23900FC1E01515
7E9418>97 D<0E0000FE00001E00000E00000E00000E00000E00000E00000E00000E0000
0E00000E00000E00000E00000E1F000E61C00E80600F00300E00380E003C0E001C0E001E
0E001E0E001E0E001E0E001E0E001E0E001E0E001C0E003C0E00380F00700C80600C41C0
083F0017237FA21B>I<01FC000707000C03801C01C03801C07801E07000E0F000E0FFFF
E0F00000F00000F00000F00000F000007000007800203800201C00400E008007030000FC
0013157F9416>101 D<0E0000FE00001E00000E00000E00000E00000E00000E00000E00
000E00000E00000E00000E00000E00000E1F800E60C00E80E00F00700F00700E00700E00
700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00
700E0070FFE7FF18237FA21B>104 D<1C003E003E003E001C0000000000000000000000
0000000000000E007E001E000E000E000E000E000E000E000E000E000E000E000E000E00
0E000E000E000E000E00FFC00A227FA10E>I<0E1FC07F00FE60E183801E807201C00F00
3C00E00F003C00E00E003800E00E003800E00E003800E00E003800E00E003800E00E0038
00E00E003800E00E003800E00E003800E00E003800E00E003800E00E003800E00E003800
E00E003800E00E003800E0FFE3FF8FFE27157F942A>109 D<0E1F80FE60C01E80E00F00
700F00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00
700E00700E00700E00700E0070FFE7FF18157F941B>I<0E1F00FE61C00E80600F00700E
00380E003C0E003C0E001E0E001E0E001E0E001E0E001E0E001E0E001E0E003C0E003C0E
00380F00700E80E00E41C00E3F000E00000E00000E00000E00000E00000E00000E00000E
00000E0000FFE000171F7F941B>112 D<0E3CFE461E8F0F0F0F060F000E000E000E000E
000E000E000E000E000E000E000E000E000E000F00FFF010157F9413>114
D<0F8830786018C018C008C008E008F0007F003FE00FF001F8003C801C800C800CC00CC0
08E018D0308FC00E157E9413>I<02000200020002000600060006000E001E003E00FFFC
0E000E000E000E000E000E000E000E000E000E000E000E040E040E040E040E040E040708
030801F00E1F7F9E13>I<3FFFC0380380300780200700600E00401C00403C0040380000
700000E00001E00001C0000380400700400F00400E00C01C0080380080780180700780FF
FF8012157F9416>122 D E /FA 1 4 df<00C00000C00000C00000C00000C000E0C1C0F0
C3C038C7000EDC0003F00000C00003F0000EDC0038C700F0C3C0E0C1C000C00000C00000
C00000C00000C00012157D9619>3 D E /FB 16 122 df<00003FC000000001C0380000
0007000E0000001C0003800000380001C00000F00000F00001E00000780003C000003C00
038000001C00078000001E000F0000000F000F0000000F001E00000007801E0000000780
3E00000007C03C00000003C07C00000003E07C00000003E07C00000003E07800000001E0
F800000001F0F800000001F0F800000001F0F800000001F0F800000001F0F800000001F0
F800000001F0F800000001F0F800000001F0F800000001F0F800000001F07800000001E0
7C00000003E07C00000003E07C00000003E03C00000003C03E00000007C01E0000000780
1E00000007800F0000000F000F000F000F00078010401E00038020201C0003C040103C00
01E04010780000F04008F00000384009C000001C400B80000007200E00000001D03C0010
00003FCC0010000000040010000000040010000000060010000000060030000000070030
00000007006000000007806000000003C1E000000003FFC000000001FFC000000001FF80
00000000FF00000000003E002C407CB134>81 D<00FE00000303C0000C00E00010007000
100038003C003C003E001C003E001E003E001E0008001E0000001E0000001E0000001E00
000FFE0000FC1E0003E01E000F801E001F001E003E001E003C001E007C001E00F8001E04
F8001E04F8001E04F8003E04F8003E0478003E047C005E043E008F080F0307F003FC03E0
1E1F7D9E21>97 D<001FC00000F0300001C00C00078002000F0002000E000F001E001F00
3C001F003C001F007C00040078000000F8000000F8000000F8000000F8000000F8000000
F8000000F8000000F8000000F8000000780000007C0000003C0000003C0000801E000080
0E0001000F0001000780020001C00C0000F03000001FC000191F7E9E1D>99
D<003F800000E0E0000380380007003C000E001E001E001E001C000F003C000F007C000F
0078000F8078000780F8000780F8000780FFFFFF80F8000000F8000000F8000000F80000
00F8000000F8000000780000007C0000003C0000003C0000801E0000800E0001000F0002
000700020001C00C0000F03000001FC000191F7E9E1D>101 D<0780000000FF80000000
FF800000000F800000000780000000078000000007800000000780000000078000000007
800000000780000000078000000007800000000780000000078000000007800000000780
000000078000000007800000000780FE00000783078000078C03C000079001E00007A001
E00007A000F00007C000F00007C000F000078000F000078000F000078000F000078000F0
00078000F000078000F000078000F000078000F000078000F000078000F000078000F000
078000F000078000F000078000F000078000F000078000F000078000F000078000F00007
8000F000078000F0000FC001F800FFFC1FFF80FFFC1FFF8021327EB125>104
D<0F001F801F801F801F800F000000000000000000000000000000000000000000000007
807F807F800F800780078007800780078007800780078007800780078007800780078007
800780078007800780078007800780078007800FC0FFF8FFF80D307EAF12>I<0780FF80
FF800F800780078007800780078007800780078007800780078007800780078007800780
078007800780078007800780078007800780078007800780078007800780078007800780
0780078007800780078007800780078007800FC0FFFCFFFC0E327EB112>108
D<0780FE001FC000FF83078060F000FF8C03C18078000F9001E2003C0007A001E4003C00
07A000F4001E0007C000F8001E0007C000F8001E00078000F0001E00078000F0001E0007
8000F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E000780
00F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E00078000
F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0
001E00078000F0001E00078000F0001E000FC001F8003F00FFFC1FFF83FFF0FFFC1FFF83
FFF0341F7E9E38>I<0780FE0000FF83078000FF8C03C0000F9001E00007A001E00007A0
00F00007C000F00007C000F000078000F000078000F000078000F000078000F000078000
F000078000F000078000F000078000F000078000F000078000F000078000F000078000F0
00078000F000078000F000078000F000078000F000078000F000078000F000078000F000
078000F0000FC001F800FFFC1FFF80FFFC1FFF80211F7E9E25>I<001FC00000F0780001
C01C00070007000F0007801E0003C01C0001C03C0001E03C0001E0780000F0780000F078
0000F0F80000F8F80000F8F80000F8F80000F8F80000F8F80000F8F80000F8F80000F878
0000F07C0001F03C0001E03C0001E01E0003C01E0003C00F00078007800F0001C01C0000
F07800001FC0001D1F7E9E21>I<0781FC0000FF86078000FF8801C0000F9000E00007A0
00700007C00078000780003C000780003E000780001E000780001F000780001F00078000
0F000780000F800780000F800780000F800780000F800780000F800780000F800780000F
800780000F000780001F000780001F000780001E000780003E000780003C0007C0007800
07A000700007A000E000079803C00007860F00000781F800000780000000078000000007
800000000780000000078000000007800000000780000000078000000007800000000780
00000007800000000FC0000000FFFC000000FFFC000000212D7E9E25>I<0783E0FF8418
FF887C0F907C07A07C07A03807C00007C00007C000078000078000078000078000078000
078000078000078000078000078000078000078000078000078000078000078000078000
0780000780000FC000FFFE00FFFE00161F7E9E19>114 D<004000004000004000004000
00400000C00000C00000C00001C00001C00003C00007C0000FC0001FFFE0FFFFE003C000
03C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C000
03C00003C00003C00003C01003C01003C01003C01003C01003C01003C01003C01001C020
01E02000E0400078C0001F00142C7FAB19>116 D<078000F000FF801FF000FF801FF000
0F8001F000078000F000078000F000078000F000078000F000078000F000078000F00007
8000F000078000F000078000F000078000F000078000F000078000F000078000F0000780
00F000078000F000078000F000078000F000078000F000078000F000078001F000078001
F000078001F000038002F00003C004F00001C008F800007030FF80001FC0FF80211F7E9E
25>I120 DI E end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 300dpi
TeXDict begin
%%EndSetup
%%Page: 1 1
1 0 bop 567 156 a FB(Quan)n(tum)20 b(complexit)n(y)h(theory)1380
130 y FA(\003)510 301 y Fz(Ethan)c(Bernstein)876 282
y Fy(y)1070 301 y Fz(Umesh)d(V)l(azirani)1424 282 y Fy(z)1424
301 y Fz(.)777 420 y(Septem)o(b)q(er)g(8,)i(1997)882
655 y Fx(Abstract)101 736 y Fw(In)11 b(this)h(pap)q(er)g(w)o(e)g(study)
g(quan)o(tum)e(computation)g(from)g(a)h(complexit)o(y)f(theoretic)i
(viewp)q(oin)o(t.)17 b(Our)12 b(\014rst)h(result)39 786
y(is)c(the)h(existence)i(of)d(an)g(e\016cien)o(t)h(univ)o(ersal)g(quan)
o(tum)e(T)m(uring)g(Mac)o(hine)i(in)f(Deutsc)o(h's)i(mo)q(del)d(of)h(a)
g(quan)o(tum)f(T)m(uring)39 836 y(Mac)o(hine)13 b([20)o(].)18
b(This)13 b(construction)i(is)e(substan)o(tially)g(more)f(complicated)g
(than)i(the)g(corresp)q(onding)g(construction)39 886
y(for)c(classical)g(T)m(uring)f(Mac)o(hines)i(-)f(in)g(fact,)g(ev)o(en)
h(simple)e(primitiv)o(es)f(suc)o(h)k(as)e(lo)q(oping,)f(branc)o(hing)h
(and)g(comp)q(osition)39 936 y(are)16 b(not)g(straigh)o(tforw)o(ard)g
(in)f(the)i(con)o(text)g(of)e(quan)o(tum)g(T)m(uring)g(Mac)o(hines.)25
b(W)m(e)16 b(establish)g(ho)o(w)g(these)i(famili)o(ar)39
986 y(primitiv)o(es)c(can)i(b)q(e)h(implemen)o(ted,)d(and)i(also)f(in)o
(tro)q(duce)i(some)f(new,)g(purely)h(quan)o(tum)d(mec)o(hanical)h
(primitiv)o(es,)39 1035 y(suc)o(h)20 b(as)g(c)o(hanging)f(the)h
(computational)d(basis,)k(and)f(carrying)f(out)h(an)f(arbitrary)h
(unitary)f(transformation)f(of)39 1085 y(p)q(olynomial)o(ly)11
b(b)q(ounded)j(dimension.)101 1135 y(W)m(e)d(also)g(consider)h(the)g
(precision)g(to)f(whic)o(h)g(the)h(transition)f(amplitudes)f(of)h(a)g
(quan)o(tum)e(T)m(uring)i(Mac)o(hine)g(need)39 1185 y(to)i(b)q(e)i(sp)q
(eci\014ed.)k(W)m(e)14 b(pro)o(v)o(e)g(that)g Fv(O)q
Fw(\(log)6 b Fv(T)g Fw(\))14 b(bits)g(of)f(precision)i(su\016ce)f(to)g
(supp)q(ort)h(a)e Fv(T)20 b Fw(step)15 b(computation.)h(This)39
1235 y(justi\014es)d(the)g(claim)d(that)j(that)f(the)i(quan)o(tum)c(T)m
(uring)i(Mac)o(hine)h(mo)q(del)e(should)h(b)q(e)h(regarded)h(as)e(a)h
(discrete)h(mo)q(del)39 1284 y(of)f(computation)f(and)i(not)g(an)f
(analog)g(one.)101 1334 y(W)m(e)k(giv)o(e)f(the)i(\014rst)g(formal)d
(evidence)j(that)f(quan)o(tum)f(T)m(uring)g(Mac)o(hines)i(violate)e
(the)i(mo)q(dern)e(\(complexit)o(y)39 1384 y(theoretic\))j(form)o
(ulation)14 b(of)k(the)g(Ch)o(urc)o(h-T)m(uring)f(thesis.)31
b(W)m(e)17 b(sho)o(w)h(the)h(existence)g(of)e(a)h(problem,)f(relativ)o
(e)g(to)39 1434 y(an)f(oracle,)i(that)f(can)g(b)q(e)h(solv)o(ed)f(in)f
(p)q(olynomial)e(time)h(on)i(a)g(quan)o(tum)e(T)m(uring)h(Mac)o(hine,)i
(but)f(requires)h(sup)q(er-)39 1484 y(p)q(olynomial)d(time)i(on)h(a)g
(b)q(ounded-error)i(probabilistic)d(T)m(uring)h(Mac)o(hine;)i(and)f(th)
o(us)f(not)h(in)f(the)h(class)g Fx(BPP)6 b Fw(.)39 1533
y(The)13 b(class)g Fx(BQP)6 b Fw(,)13 b(of)f(languages)g(that)h(are)g
(e\016cien)o(tly)g(decidable)g(\(with)f(small)f(error-probabilit)o(y\))
h(on)g(a)h(quan)o(tum)39 1592 y(T)m(uring)h(Mac)o(hine,)h(satis\014es:)
22 b Fx(BPP)e Fu(\022)14 b Fx(BQP)21 b Fu(\022)14 b Fx(P)901
1577 y Fv(])p Fx(P)958 1592 y Fw(.)22 b(Therefore)17
b(there)f(is)f(no)g(p)q(ossibilit)o(y)g(of)f(giving)g(a)h(math-)39
1642 y(ematical)h(pro)q(of)i(that)h(quan)o(tum)e(T)m(uring)g(Mac)o
(hines)j(are)e(more)g(p)q(o)o(w)o(erful)g(than)g(classical)h
(probabilistic)e(T)m(uring)39 1692 y(Mac)o(hines)d(\(in)g(the)g
(unrelativized)g(setting\))h(unless)f(there)h(is)f(a)g(ma)r(jor)e
(breakthrough)i(in)g(complexit)o(y)e(theory)m(.)-75 1852
y Ft(1)69 b(In)n(tro)r(duction)-75 1972 y Fs(Just)16
b(as)g(the)g(theory)g(of)g(computabilit)o(y)h(has)f(its)g(foundations)h
(in)g(the)f(Ch)o(urc)o(h-T)l(uring)h(thesis,)g(computational)f(com-)-75
2028 y(plexit)o(y)e(theory)e(rests)g(up)q(on)i(a)e(mo)q(dern)h
(strengthening)h(of)e(this)h(thesis,)h(whic)o(h)f(asserts)f(that)g(an)o
(y)g(\\reasonable")h(mo)q(del)-75 2085 y(of)k(computation)g(can)g(b)q
(e)h Fr(e\016ciently)i Fs(sim)o(ulated)e(on)f(a)g(probabilistic)i(T)l
(uring)f(Mac)o(hine)g(\(an)e(e\016cien)o(t)i(sim)o(ulation)g(is)-75
2141 y(one)f(whose)g(running)h(time)g(is)f(b)q(ounded)i(b)o(y)e(some)g
(p)q(olynomial)h(in)g(the)f(running)i(time)e(of)g(the)g(sim)o(ulated)h
(mac)o(hine\).)-75 2197 y(Here,)d(w)o(e)g(tak)o(e)f(reasonable)i(to)e
(mean)h(in)h(principle)i(ph)o(ysically)f(realizable.)22
b(Some)15 b(mo)q(dels)h(of)e(computation,)h(though)-75
2254 y(in)o(teresting)f(for)g(other)f(reasons,)g(do)h(not)f(meet)h
(this)g(criterion.)21 b(F)l(or)13 b(example,)h(it)g(is)h(clear)f(that)f
(computers)h(that)f(op)q(er-)-75 2310 y(ate)f(on)h(arbitrary)e(length)j
(w)o(ords)d(in)j(unit)f(time,)g(or)f(that)g(exactly)h(compute)f(with)h
(in\014nite)i(precision)f(real)e(n)o(um)o(b)q(ers)h(are)p
-75 2350 839 2 v -24 2377 a Fq(\003)-6 2393 y Fp(A)g(preliminary)j
(abstract)d(of)g(this)h(w)o(ork)f(app)q(eared)h(as)g([11].)-22
2424 y Fq(y)-6 2440 y Fp(Microsoft)c(Corp)q(oration,)i(One)d(Microsoft)
h(W)m(a)o(y)m(,)g(Redmond,)h(W)l(A)e(98052)h(\()p Fo(ethanb@micr)o(os)o
(oft)o(.c)o(om)p Fp(\).)i(Researc)o(h)e(supp)q(orted)h(b)o(y)f(N.S.F.)
-75 2485 y(Gran)o(t)j(CCR-9310214.)-22 2516 y Fq(z)-6
2532 y Fp(Computer)j(Science)g(Division)q(,)i(Univ)o(ersit)o(y)f(of)e
(California,)j(Berk)o(eley)m(,)e(CA)f(94720)h(\()p Fo(vazirani@c)o(s.)o
(ber)o(ke)o(ley)o(.ed)o(u)p Fp(\).)k(Researc)o(h)c(sup-)-75
2578 y(p)q(orted)e(b)o(y)f(N.S.F.)f(Gran)o(t)h(CCR-9310214)962
2779 y Fs(1)p eop
%%Page: 2 2
2 1 bop -75 -26 a Fs(not)15 b(realizable.)24 b(It)16
b(has)g(b)q(een)h(argued)e(that)g(the)h(T)l(uring)h(Mac)o(hine)f(mo)q
(del)h(\(actually)l(,)f(the)g(p)q(olynomial)h(time)g(equiv)m(a-)-75
31 y(len)o(t)e(cellular)j(automaton)13 b(mo)q(del\))j(is)f(the)h
(inevitable)h(c)o(hoice)f(once)f(w)o(e)g(assume)g(that)f(w)o(e)h(can)g
(implemen)o(t)h(only)g(\014nite)-75 87 y(precision)e(computational)f
(primitiv)o(es.)20 b(Giv)o(en)13 b(the)f(widespread)i(b)q(elief)g(that)
e Fn(NP)20 b Fm(6\022)13 b Fn(BPP)7 b Fs(,)13 b(this)g(w)o(ould)f(seem)
h(to)f(put)-75 144 y(a)h(wide)i(range)e(of)h(imp)q(ortan)o(t)f
(computational)h(problems)g(\(the)g Fn(NP)7 b Fs(-hard)14
b(problems\))g(w)o(ell)g(b)q(ey)o(ond)h(the)e(capabilit)o(y)i(of)-75
200 y(computers.)-4 274 y(Ho)o(w)o(ev)o(er,)g(the)h(T)l(uring)h(Mac)o
(hine)g(fails)g(to)f(capture)g(all)i(ph)o(ysically)g(realizable)g
(computing)f(devices)h(for)d(a)h(funda-)-75 331 y(men)o(tal)f(reason:)k
(the)c(T)l(uring)h(Mac)o(hine)f(is)h(based)f(on)g(a)f(classical)j(ph)o
(ysics)f(mo)q(del)f(of)g(the)g(Univ)o(erse,)g(whereas)g(curren)o(t)-75
387 y(ph)o(ysical)d(theory)f(asserts)f(that)g(the)h(Univ)o(erse)g(is)h
(quan)o(tum)e(ph)o(ysical.)20 b(Can)11 b(w)o(e)f(get)h(inheren)o(tly)h
(new)f(kinds)h(of)f(\(discrete\))-75 444 y(computing)16
b(devices)h(based)e(on)h(quan)o(tum)f(ph)o(ysics?)22
b(Early)15 b(w)o(ork)f(on)i(the)f(computational)h(p)q(ossibilities)i
(of)d(quan)o(tum)-75 500 y(ph)o(ysics)h([6])f(ask)o(ed)g(the)h(opp)q
(osite)g(question:)21 b(do)q(es)16 b(quan)o(tum)f(mec)o(hanic's)h
(insistence)i(on)d(unitary)h(ev)o(olution)g(restrict)-75
557 y(the)g(class)g(of)g(e\016cien)o(tly)h(computable)g(problems?)23
b(They)16 b(concluded)i(that)d(as)h(far)f(as)h(deterministic)i
(computation)d(is)-75 613 y(concerned,)f(the)f(only)h(additional)g
(constrain)o(t)f(imp)q(osed)h(b)o(y)f(quan)o(tum)f(mec)o(hanics)i(is)g
(that)e(the)h(computation)g(m)o(ust)f(b)q(e)-75 669 y(rev)o(ersible,)h
(and)f(therefore)f(b)o(y)g(Bennett's)h([7)o(])f(w)o(ork)g(it)g(follo)o
(ws)h(that)f(quan)o(tum)g(computers)g(are)g(at)g(least)h(as)f(p)q(o)o
(w)o(erful)g(as)-75 726 y(classical)17 b(computers.)i(The)d(issue)g(of)
e(the)h(extra)g(computational)g(p)q(o)o(w)o(er)g(of)g(quan)o(tum)f(mec)
o(hanics)i(o)o(v)o(er)f(probabilistic)-75 782 y(computers)e(w)o(as)f
(\014rst)h(raised)g(b)o(y)g(b)o(y)g(F)l(eynman)g([25)o(])g(in)h(1982.)k
(In)13 b(that)g(pap)q(er,)g(F)l(eynman)g(p)q(oin)o(ted)h(out)f(a)g(v)o
(ery)f(curious)-75 839 y(problem:)20 b(the)15 b(natural)f(sim)o
(ulation)i(of)e(a)g(quan)o(tum)g(ph)o(ysical)i(system)e(on)g(a)g
(probabilistic)j(T)l(uring)e(Mac)o(hine)g(requires)-75
895 y(an)k(exp)q(onen)o(tial)i(slo)o(wdo)o(wn.)33 b(Moreo)o(v)o(er,)19
b(it)g(is)h(unclear)h(ho)o(w)e(to)g(carry)g(out)g(the)g(sim)o(ulation)i
(more)e(e\016cien)o(tly)l(.)34 b(In)-75 952 y(view)16
b(of)f(F)l(eynman's)g(observ)m(ation,)h(w)o(e)f(m)o(ust)g(re-examine)i
(the)e(foundations)h(of)f(computational)h(complexit)o(y)h(theory)l(,)
-75 1008 y(and)j(the)g(complexit)o(y-theoretic)i(form)d(of)h(the)g(Ch)o
(urc)o(h-T)l(uring)h(thesis,)g(and)f(study)g(the)h(computational)f(p)q
(o)o(w)o(er)f(of)-75 1065 y(computing)d(devices)g(based)g(on)f(quan)o
(tum)g(ph)o(ysics.)-4 1139 y(A)d(precise)h(mo)q(del)g(of)e(a)h(quan)o
(tum)g(ph)o(ysical)h(computer)f(-)g(hereafter)g(referred)g(to)f(as)h
(the)g(quan)o(tum)g(T)l(uring)g(Mac)o(hine)-75 1195 y(-)17
b(w)o(as)g(form)o(ulated)f(b)o(y)i(Deutsc)o(h)f([20)o(].)25
b(There)18 b(are)e(t)o(w)o(o)g(w)o(a)o(ys)g(of)h(thinking)i(ab)q(out)e
(quan)o(tum)f(computers.)26 b(One)18 b(w)o(a)o(y)-75
1252 y(that)e(ma)o(y)g(app)q(eal)i(to)e(computer)g(scien)o(tists)i(is)f
(to)f(think)i(of)e(a)g(quan)o(tum)h(T)l(uring)g(Mac)o(hine)h(as)e(a)g
(quan)o(tum)h(ph)o(ysical)-75 1308 y(analogue)j(of)f(a)g(probabilistic)
j(T)l(uring)e(Mac)o(hine)h(-)e(it)h(has)f(an)h(in\014nite)h(tap)q(e)f
(and)g(a)f(transition)h(function,)h(and)f(the)-75 1365
y(actions)c(of)f(the)h(mac)o(hine)g(are)g(lo)q(cal)h(and)f(completely)h
(sp)q(eci\014ed)g(b)o(y)f(this)g(transition)g(function.)22
b(Unlik)o(e)c(probabilistic)-75 1421 y(T)l(uring)d(Mac)o(hines,)h(quan)
o(tum)e(T)l(uring)i(Mac)o(hines)f(allo)o(w)g(branc)o(hing)h(with)f
(complex)g(\\probabilit)o(y)h(amplitudes",)g(but)-75
1478 y(imp)q(ose)i(the)f(further)g(requiremen)o(t)h(that)e(the)i(mac)o
(hine's)f(ev)o(olution)h(b)q(e)g(time-rev)o(ersible.)27
b(This)18 b(view)g(is)g(elab)q(orated)-75 1534 y(in)f
Fm(x)p Fs(3.2.)k(Another)16 b(w)o(a)o(y)e(is)j(to)e(view)i(a)e(quan)o
(tum)h(computer)g(as)f(e\013ecting)h(a)g(transformation)e(in)j(a)f
(space)g(of)f(complex)-75 1590 y(sup)q(erp)q(ositions)i(of)f
(con\014gurations.)22 b(Quan)o(tum)15 b(ph)o(ysics)i(requires)g(that)e
(this)h(transformation)e(b)q(e)j(unitary)l(.)22 b(A)16
b(quan-)-75 1647 y(tum)g(algorithm)g(ma)o(y)f(then)h(b)q(e)h(regarded)f
(as)f(the)h(decomp)q(osition)i(of)d(a)h(unitary)g(transformation)e(in)o
(to)i(a)g(pro)q(duct)g(of)-75 1703 y(unitary)h(transformations,)d(eac)o
(h)j(of)f(whic)o(h)h(mak)o(es)e(only)i(simple)h(lo)q(cal)g(c)o(hanges.)
23 b(This)17 b(view)f(is)h(elab)q(orated)g(in)g Fm(x)p
Fs(3.3.)-75 1760 y(Both)e(form)o(ulations)g(pla)o(y)g(an)h(imp)q(ortan)
o(t)e(role)i(in)g(the)f(study)g(of)g(quan)o(tum)g(computation.)-4
1834 y(One)21 b(imp)q(ortan)o(t)g(concern)h(is)f(whether)g(quan)o(tum)g
(T)l(uring)h(Mac)o(hines)g(are)e(really)i(analog)f(devices,)j(since)e
(they)-75 1890 y(in)o(v)o(olv)o(e)13 b(complex)h(transition)f
(amplitudes.)21 b(It)13 b(is)g(instructiv)o(e)h(to)e(examine)i(the)f
(analogous)f(question)h(for)g(probabilistic)-75 1947
y(T)l(uring)j(Mac)o(hines.)22 b(There,)16 b(one)g(migh)o(t)g(w)o(orry)e
(that)h(probabilistic)j(mac)o(hines)f(are)e(not)h(discrete,)g(and)g
(therefore)f(not)-75 2003 y(\\reasonable",)20 b(since)h(they)f(allo)o
(w)g(transition)g(probabilities)j(to)c(b)q(e)h(real)g(n)o(um)o(b)q
(ers.)34 b(Ho)o(w)o(ev)o(er,)20 b(there)g(is)g(extensiv)o(e)-75
2060 y(w)o(ork)c(sho)o(wing)i(that)e(probabilistic)k(computation)d(can)
g(b)q(e)h(carried)g(out)f(in)h(a)f(suc)o(h)g(a)g(w)o(a)o(y)f(that)h(it)
g(is)h(so)f(insensitiv)o(e)-75 2116 y(to)d(the)h(transition)g
(probabilities)j(that)c(they)h(can)g(b)q(e)g(allo)o(w)o(ed)h(to)e(v)m
(ary)h(arbitrarily)g(in)h(a)f(large)f(range)h([34)o(,)g(44)o(,)g(47)o
(].)k(In)-75 2173 y(this)c(pap)q(er,)g(w)o(e)g(sho)o(w)f(in)i(a)e
(similar)i(sense,)f(that)f(quan)o(tum)h(T)l(uring)g(Mac)o(hines)h(are)e
(discrete)i(devices:)21 b(the)15 b(transition)-75 2229
y(amplitudes)21 b(need)f(only)f(b)q(e)h(accurate)f(to)f
Fl(O)q Fs(\(log)8 b Fl(T)e Fs(\))19 b(bits)g(of)g(precision)i(to)d
(supp)q(ort)i Fl(T)25 b Fs(steps)19 b(of)f(computation.)32
b(As)-75 2286 y(Lipton)19 b([30)o(])e(p)q(oin)o(ted)i(out,)f(it)h(is)f
(crucial)h(that)f(the)g(n)o(um)o(b)q(er)g(of)g(bits)g(is)g
Fl(O)q Fs(\(log)8 b Fl(T)e Fs(\))18 b(and)g(not)g Fl(O)q
Fs(\()p Fl(T)6 b Fs(\))17 b(\(as)g(it)h(w)o(as)f(in)i(an)-75
2342 y(early)14 b(v)o(ersion)f(of)g(this)h(pap)q(er\),)g(since)h
Fl(k)f Fs(bits)g(of)f(precision)i(requires)f(pinning)i(do)o(wn)d(the)g
(transition)h(amplitude)h(to)e(one)-75 2399 y(part)h(in)h(2)98
2382 y Fk(k)119 2399 y Fs(.)k(Since)d(the)e(transition)h(amplitude)g
(is)g(some)f(ph)o(ysical)h(quan)o(tit)o(y)f(suc)o(h)h(as)e(the)i(angle)
f(of)g(a)g(p)q(olarizer)h(or)f(the)-75 2455 y(length)g(of)g(a)f
Fl(\031)i Fs(pulse,)g(w)o(e)f(m)o(ust)f(not)g(assume)h(that)f(w)o(e)g
(can)h(sp)q(ecify)h(it)f(to)f(b)q(etter)h(than)f(one)h(part)f(in)i
(some)e(p)q(olynomial)-75 2511 y(in)j Fl(T)6 b Fs(,)15
b(and)g(therefore)g(the)g(precision)i(m)o(ust)e(b)q(e)h
Fl(O)q Fs(\(log)7 b Fl(T)f Fs(\).)-4 2586 y(Another)15
b(basic)h(question)g(one)f(ma)o(y)g(ask)f(is)i(whether)g(it)f(is)h(p)q
(ossible)h(to)e(de\014ne)h(the)f(notion)h(of)f(a)g(general)g(purp)q
(ose)962 2779 y(2)p eop
%%Page: 3 3
3 2 bop -75 -26 a Fs(quan)o(tum)15 b(computer.)22 b(In)16
b(the)g(classical)h(case,)f(this)g(question)h(is)f(answ)o(ered)g
(a\016rmativ)o(ely)f(b)o(y)h(sho)o(wing)g(that)f(there)g(is)-75
31 y(an)i(e\016cien)o(t)h(univ)o(ersal)g(T)l(uring)g(Mac)o(hine.)26
b(In)18 b(this)f(pap)q(er,)h(w)o(e)f(pro)o(v)o(e)f(that)h(there)g(is)h
(an)f(e\016cien)o(t)g(quan)o(tum)g(T)l(uring)-75 87 y(Mac)o(hine.)j
(When)c(giv)o(en)f(as)g(input)h(the)f(sp)q(eci\014cation)i(of)e(an)g
(arbitrary)f(QTM)h Fl(M)5 b Fs(,)15 b(an)g(input)h Fl(x)f
Fs(to)f Fl(M)5 b Fs(,)15 b(a)g(time)g(b)q(ound)-75 144
y Fl(T)6 b Fs(,)15 b(and)g(an)g(accuracy)g Fl(\017)p
Fs(,)h(the)f(univ)o(ersal)h(mac)o(hine)g(pro)q(duces)g(a)f(sup)q(erp)q
(osition)i(whose)e(Euclidean)i(distance)f(from)f(the)-75
200 y(time)h Fl(T)22 b Fs(sup)q(erp)q(osition)17 b(of)f
Fl(M)21 b Fs(on)15 b Fl(x)h Fs(is)g(at)f(most)g Fl(\017)p
Fs(.)23 b(Moreo)o(v)o(er,)14 b(the)i(sim)o(ulation)g(time)h(is)f(b)q
(ounded)h(b)o(y)f(a)f(p)q(olynomial)-75 257 y(in)20 b
Fl(T)6 b Fs(,)20 b Fm(j)p Fl(x)p Fm(j)o Fs(,)g(and)g(1)p
Fl(=\017)p Fs(.)32 b(Deutsc)o(h)19 b([20)o(])g(ga)o(v)o(e)g(a)g
(di\013eren)o(t)g(construction)h(of)f(a)g(univ)o(ersal)i(quan)o(tum)e
(T)l(uring)h(Mac)o(hine.)-75 313 y(The)d(sim)o(ulation)h(o)o(v)o
(erhead)e(in)h(Deutsc)o(h's)g(construction)g(is)g(exp)q(onen)o(tial)h
(in)f Fl(T)23 b Fs(\(the)16 b(issue)i(Deutsc)o(h)f(w)o(as)e(in)o
(terested)-75 369 y(in)20 b(w)o(as)e(computabilit)o(y)l(,)j(not)e
(computational)g(complexit)o(y\).)32 b(The)19 b(structure)g(of)f(the)h
(e\016cien)o(t)h(univ)o(ersal)g(quan)o(tum)-75 426 y(T)l(uring)e(Mac)o
(hine)f(constructed)h(in)g(this)f(pap)q(er)h(is)f(v)o(ery)g(simple.)27
b(It)17 b(is)h(just)e(a)h(deterministic)i(T)l(uring)f(Mac)o(hine)g
(with)-75 482 y(a)g(single)h(t)o(yp)q(e)f(of)f(quan)o(tum)h(op)q
(eration)g(|)g(a)g(quan)o(tum)f(coin)i(\015ip)g(\(an)e(op)q(eration)h
(that)f(p)q(erforms)h(a)f(rotation)g(on)h(a)-75 539 y(single)e(bit\).)k
(The)c(existence)g(of)f(this)g(simple)i(univ)o(ersal)f(quan)o(tum)f(T)l
(uring)h(Mac)o(hine)g(has)f(a)f(b)q(earing)i(on)f(the)h(ph)o(ysical)-75
595 y(realizabilit)o(y)j(of)d(quan)o(tum)g(T)l(uring)i(Mac)o(hines)f
(in)g(general,)g(since)h(it)f(establishes)h(that)e(it)h(is)g
(su\016cien)o(t)g(to)f(ph)o(ysically)-75 652 y(realize)g(a)e(simple)h
(quan)o(tum)g(op)q(eration)f(on)g(a)g(single)i(bit)f(\(in)g(addition)g
(to)f(main)o(taining)h(coherence)g(and)g(carrying)f(out)-75
708 y(deterministic)19 b(op)q(erations,)d(of)h(course\).)24
b(Adleman,)17 b(et.)24 b(al.)17 b([1)o(])g(and)f(Solo)o(v)m(a)o(y)h
(and)g(Y)l(ao)f([40)o(])h(ha)o(v)o(e)f(further)g(clari\014ed)-75
765 y(this)k(p)q(oin)o(t)g(b)o(y)f(sho)o(wing)g(that)g(quan)o(tum)g
(coin)h(\015ips)g(with)g(amplitudes)h(3)p Fl(=)p Fs(5)d(and)i(4)p
Fl(=)p Fs(5)e(are)h(su\016cien)o(t)h(for)f(univ)o(ersal)-75
821 y(quan)o(tum)c(computation.)-4 895 y(Quan)o(tum)e(computation)g(is)
h(necessarily)h(time)f(rev)o(ersible,)h(since)f(quan)o(tum)f(ph)o
(ysics)i(requires)f(unitary)g(ev)o(olution.)-75 952 y(This)h(mak)o(es)f
(it)h(quite)g(complicated)h(to)e(correctly)h(implemen)o(t)h(ev)o(en)f
(simple)h(primitiv)o(es)g(suc)o(h)e(as)h(lo)q(oping,)g(branc)o(hing)-75
1008 y(and)h(comp)q(osition.)23 b(These)16 b(are)f(describ)q(ed)j(in)f
Fm(x)p Fs(4.2.)k(In)16 b(addition,)h(w)o(e)e(also)h(require)h
(programming)e(primitiv)o(es,)i(suc)o(h)-75 1065 y(as)e(c)o(hanging)h
(the)g(computational)g(basis,)f(whic)o(h)i(are)e(purely)i(quan)o(tum)e
(mec)o(hanical.)22 b(These)16 b(are)f(describ)q(ed)j(in)e
Fm(x)p Fs(5.1.)-75 1121 y(Another)e(imp)q(ortan)o(t)f(primitiv)o(e)i
(is)f(the)g(abilit)o(y)h(to)e(carry)g(out)g(an)o(y)h(sp)q(eci\014ed)i
(unitary)e(transformation)e(of)h(p)q(olynomial)-75 1178
y(dimension)h(to)d(a)h(sp)q(eci\014ed)i(degree)f(of)e(accuracy)l(.)20
b(In)12 b Fm(x)q Fs(6)f(w)o(e)h(sho)o(w)g(ho)o(w)f(to)h(build)i(a)e
(quan)o(tum)g(T)l(uring)g(that)g(implemen)o(ts)-75 1234
y(this)17 b(primitiv)o(e.)25 b(Finally)l(,)17 b(all)h(these)e(pieces)i
(are)e(put)h(together)e(in)i Fm(x)q Fs(7)f(to)f(construct)h(the)h(univ)
o(ersal)g(quan)o(tum)f(T)l(uring)-75 1290 y(Mac)o(hine.)-4
1365 y(W)l(e)11 b(can)h(still)h(ask)f(whether)f(the)h(quan)o(tum)g(T)l
(uring)g(Mac)o(hine)g(is)g(the)g(most)f(general)h(mo)q(del)h(for)e(a)g
(computing)i(device)-75 1421 y(based)j(on)f(quan)o(tum)g(ph)o(ysics.)22
b(One)16 b(approac)o(h)f(to)g(arguing)h(a\016rmativ)o(ely)f(is)h(to)f
(consider)h(v)m(arious)g(other)g(reasonable)-75 1478
y(mo)q(dels,)h(and)g(to)e(sho)o(w)h(that)g(the)g(quan)o(tum)g(T)l
(uring)h(Mac)o(hine)g(can)g(e\016cien)o(tly)h(sim)o(ulate)f(eac)o(h)f
(of)g(them.)23 b(An)17 b(earlier)-75 1534 y(v)o(ersion)c(of)f(this)i(w)
o(ork)e([11)o(])g(left)h(op)q(en)h(the)f(question)g(of)g(whether)g
(standard)f(v)m(arian)o(ts)h(of)f(a)h(quan)o(tum)f(T)l(uring)i(Mac)o
(hine,)-75 1590 y(suc)o(h)e(as)f(mac)o(hines)i(with)f(m)o(ultiple)i
(tap)q(es)d(or)h(with)g(mo)q(di\014ed)h(tap)q(e)f(access,)g(are)f(more)
h(p)q(o)o(w)o(erful)g(than)f(the)h(basic)g(mo)q(del.)-75
1647 y(Y)l(ao)h([46)o(])g(sho)o(w)o(ed)g(that)f(these)i(mo)q(dels)g
(are)f(p)q(olynomially)i(equiv)m(alen)o(t)g(to)e(the)g(basic)h(mo)q
(del,)g(as)f(are)g(quan)o(tum)g(circuits)-75 1703 y(\(whic)o(h)j(w)o
(ere)f(in)o(tro)q(duced)h(in)g([21)o(].)k(The)15 b(e\016ciency)i(of)d
(Y)l(ao's)h(sim)o(ulation)h(has)f(b)q(een)h(impro)o(v)o(ed)g(in)g([10)o
(])f(to)f(sho)o(w)h(that)-75 1760 y(the)i(sim)o(ulation)h(o)o(v)o
(erhead)e(is)i(a)e(p)q(olynomial)j(with)e(degree)g(indep)q(enden)o(t)i
(of)e(the)g(n)o(um)o(b)q(er)g(of)f(tap)q(es.)25 b(Arguably)l(,)18
b(the)-75 1816 y(full)g(computational)g(p)q(o)o(w)o(er)f(of)f(quan)o
(tum)h(ph)o(ysics)h(for)f(discrete)h(systems)e(is)i(captured)f(b)o(y)g
(the)h(quan)o(tum)f(analog)f(of)-75 1873 y(a)h(cellular)i(automaton.)k
(It)17 b(is)h(still)g(an)f(op)q(en)h(question)f(whether)g(a)g(quan)o
(tum)f(cellular)j(automaton)d(migh)o(t)h(b)q(e)g(more)-75
1929 y(p)q(o)o(w)o(erful)d(than)g(a)f(quan)o(tum)h(T)l(uring)g(Mac)o
(hine)g(\(there)g(is)g(also)g(an)g(issue)g(ab)q(out)g(the)g(correct)f
(de\014nition)i(of)f(a)f(quan)o(tum)-75 1986 y(cellular)18
b(automaton\).)i(The)d(di\016cult)o(y)g(has)f(to)f(do)h(with)g(decomp)q
(osing)h(a)f(unitary)g(transformation)f(that)g(represen)o(ts)-75
2042 y(man)o(y)h(o)o(v)o(erlapping)i(sites)f(of)f(activit)o(y)h(in)o
(to)g(a)f(pro)q(duct)h(of)g(simple,)h(lo)q(cal)g(unitary)f
(transformations.)23 b(This)17 b(problem)-75 2099 y(has)e(b)q(een)h
(solv)o(ed)g(in)g(the)f(sp)q(ecial)i(case)f(of)e(linearly)j(b)q(ounded)
g(quan)o(tum)e(cellular)i(automata)d([24)o(,)g(45].)-4
2173 y(Finally)l(,)g(sev)o(eral)e(researc)o(hers)g(ha)o(v)o(e)f
(explored)i(the)f(computational)h(p)q(o)o(w)o(er)e(of)h(quan)o(tum)g(T)
l(uring)h(Mac)o(hines.)19 b(Early)-75 2229 y(w)o(ork)h(b)o(y)h(Deutsc)o
(h)g(and)h(Jozsa)f([22)o(])g(sho)o(w)o(ed)g(ho)o(w)f(to)h(exploit)h
(some)f(inheren)o(tly)i(quan)o(tum)e(mec)o(hanical)h(features)-75
2286 y(of)e(QTMs.)34 b(Their)20 b(results,)i(in)f(conjunction)g(with)f
(subsequen)o(t)h(results)f(b)o(y)g(Berthiaume)h(and)f(Brassard)g([12)o
(,)f(13],)-75 2342 y(established)c(the)e(existence)i(of)e(oracles)g
(under)h(whic)o(h)g(there)f(are)g(computational)h(problems)g(that)e
(QTMs)h(can)h(solv)o(e)f(in)-75 2399 y(p)q(olynomial)k(time)g(with)f
(certain)o(t)o(y)l(,)f(whereas)h(if)g(w)o(e)g(require)h(a)e(classical)j
(probabilistic)g(T)l(uring)e(mac)o(hine)h(to)e(pro)q(duce)-75
2455 y(the)g(correct)f(answ)o(er)f(with)i(certain)o(t)o(y)l(,)f(then)h
(it)g(m)o(ust)f(tak)o(e)f(exp)q(onen)o(tial)j(time)f(on)g(some)f
(inputs.)20 b(On)15 b(the)g(other)f(hand,)-75 2511 y(these)g
(computational)g(problems)h(are)e(in)i Fn(BPP)21 b Fs(|)14
b(the)g(class)g(of)f(problems)i(that)e(can)h(b)q(e)g(solv)o(ed)h(in)f
(p)q(olynomial)i(time)-75 2568 y(b)o(y)g(probabilistic)h(T)l(uring)g
(mac)o(hines)f(that)f(are)g(allo)o(w)o(ed)h(to)f(giv)o(e)h(the)g(wrong)
f(answ)o(er)g(with)h(small)g(probabilit)o(y)l(.)22 b(Since)-75
2624 y Fn(BPP)e Fs(is)14 b(widely)g(considered)g(the)f(class)h(of)e
(e\016cien)o(tly)j(computable)e(problems,)h(these)f(results)g(left)h
(op)q(en)f(the)g(question)962 2779 y(3)p eop
%%Page: 4 4
4 3 bop -75 -26 a Fs(of)15 b(whether)g(quan)o(tum)g(computers)g(are)g
(more)g(p)q(o)o(w)o(erful)g(than)g(classical)i(computers.)-4
48 y(In)c(this)g(pap)q(er,)g(w)o(e)g(giv)o(e)g(the)f(\014rst)h(formal)f
(evidence)j(that)d(quan)o(tum)g(T)l(uring)h(Mac)o(hines)h(violate)f
(the)g(mo)q(dern)g(form)-75 105 y(of)h(the)g(Ch)o(urc)o(h-T)l(uring)h
(thesis,)f(b)o(y)g(sho)o(wing)g(that)g(relativ)o(e)g(to)g(an)g(oracle)g
(there)g(is)h(a)f(problem)g(that)g(can)g(b)q(e)h(solv)o(ed)f(in)-75
161 y(p)q(olynomial)19 b(time)e(on)g(a)f(quan)o(tum)h(T)l(uring)g(Mac)o
(hine,)h(but)f(cannot)g(b)q(e)g(solv)o(ed)h(in)f Fl(n)1430
145 y Fk(o)p Fj(\(log)6 b Fk(n)p Fj(\))1567 161 y Fs(time)17
b(on)g(a)g(probabilistic)-75 218 y(T)l(uring)h(Mac)o(hine)g(with)g(an)o
(y)f(\014xed)i(error)d(probabilit)o(y)j Fl(<)e Fs(1)p
Fl(=)p Fs(2.)26 b(A)18 b(detailed)h(discussion)g(ab)q(out)e(the)h
(implications)h(of)-75 274 y(these)d(oracle)g(results)g(is)h(in)g(the)e
(in)o(tro)q(duction)i(to)f Fm(x)p Fs(8.4.)21 b(Simon)16
b([39)o(])g(subsequen)o(tly)h(strengthened)f(our)g(result)g(in)h(the)
-75 331 y(time)h(parameter)g(b)o(y)g(pro)o(ving)g(the)g(existence)i(of)
d(an)i(oracle)f(relativ)o(e)h(to)e(whic)o(h)i(a)f(certain)h(problem)f
(can)h(b)q(e)g(solv)o(ed)-75 387 y(in)j(p)q(olynomial)g(time)f(on)f(a)h
(quan)o(tum)f(T)l(uring)i(Mac)o(hine,)g(but)f(cannot)f(b)q(e)h(solv)o
(ed)h(in)f(less)g(than)g(2)1732 371 y Fk(n=)p Fj(2)1811
387 y Fs(steps)g(on)f(a)-75 444 y(probabilistic)h(T)l(uring)e(Mac)o
(hine)g(\(Simon's)f(problem)h(is)g(in)h Fn(NP)f Fm(\\)13
b Fn(co{NP)26 b Fs(and)18 b(therefore)h(do)q(es)f(not)g(address)h(the)
-75 500 y(non-determinism)i(issue\).)31 b(More)19 b(imp)q(ortan)o(tly)l
(,)g(Simon's)h(pap)q(er)f(also)g(in)o(tro)q(duced)h(an)f(imp)q(ortan)o
(t)f(new)i(tec)o(hnique)-75 557 y(whic)o(h)i(w)o(as)e(one)g(of)h(the)g
(ingredien)o(ts)h(in)f(a)g(remark)m(able)g(result)g(pro)o(v)o(ed)g
(subsequen)o(tly)h(b)o(y)e(Shor)h([36)o(].)36 b(Shor)21
b(ga)o(v)o(e)-75 613 y(p)q(olynomial)g(time)f(quan)o(tum)f(algorithms)h
(for)f(the)g(factoring)g(and)h(discrete)g(log)g(problems.)33
b(These)20 b(t)o(w)o(o)e(problems)-75 669 y(ha)o(v)o(e)12
b(b)q(een)i(w)o(ell-studied,)h(and)e(their)h(presumed)f(in)o
(tractabilit)o(y)h(forms)e(the)g(basis)i(of)e(m)o(uc)o(h)h(of)f(mo)q
(dern)h(cryptograph)o(y)l(.)-75 726 y(These)f(results)f(ha)o(v)o(e)g
(injected)i(a)e(greater)g(sense)g(of)g(urgency)h(to)f(the)g(actual)h
(implemen)o(tation)g(of)f(a)g(quan)o(tum)g(computer.)-75
782 y(The)18 b(class)g Fn(BQP)7 b Fs(,)18 b(of)f(languages)h(that)e
(are)h(e\016cien)o(tly)i(decidable)h(\(with)e(small)g(error-probabilit)
o(y\))g(on)f(a)g(quan)o(tum)-75 846 y(T)l(uring)e(Mac)o(hine,)g
(satis\014es:)20 b Fn(BPP)f Fm(\022)13 b Fn(BQP)21 b
Fm(\022)13 b Fn(P)851 829 y Fl(])p Fn(P)912 846 y Fs(.)20
b(This)15 b(rules)g(out)f(the)h(p)q(ossibilit)o(y)h(of)e(giving)i(a)e
(mathematical)-75 902 y(pro)q(of)i(that)h(quan)o(tum)f(T)l(uring)i(Mac)
o(hines)f(are)g(more)f(p)q(o)o(w)o(erful)h(than)g(classical)h
(probabilistic)i(T)l(uring)d(Mac)o(hines)g(\(in)-75 959
y(the)e(unrelativized)j(setting\))d(unless)h(there)f(is)h(a)f(ma)s(jor)
f(breakthrough)h(in)h(complexit)o(y)g(theory)l(.)-4 1033
y(It)g(is)g(natural)g(to)g(ask)f(whether)i(quan)o(tum)e(T)l(uring)i
(Mac)o(hines)g(can)f(solv)o(e)g(ev)o(ery)g(problem)h(in)f
Fl(N)5 b(P)22 b Fs(in)17 b(p)q(olynomial)-75 1089 y(time.)33
b(Bennett,)21 b(Bernstein,)h(Brassard)c(and)i(V)l(azirani)h([9)o(])f
(giv)o(e)f(evidence)j(sho)o(wing)d(the)h(limitations)h(of)e(quan)o(tum)
-75 1146 y(T)l(uring)f(Mac)o(hines.)26 b(They)17 b(sho)o(w)g(that)f
(relativ)o(e)i(to)e(an)h(oracle)g(c)o(hosen)h(uniformly)g(at)e(random,)
h(with)g(probabilit)o(y)i(1,)-75 1202 y(the)12 b(class)h
Fn(NP)19 b Fs(cannot)12 b(b)q(e)h(solv)o(ed)g(on)f(a)g(quan)o(tum)g(T)l
(uring)h(Mac)o(hine)f(in)h(time)g Fl(o)p Fs(\(2)1360
1186 y Fk(n=)p Fj(2)1418 1202 y Fs(\).)19 b(They)12 b(also)g(sho)o(w)g
(that)f(relativ)o(e)-75 1259 y(to)k(a)h(p)q(erm)o(utation)f(oracle)i(c)
o(hosen)f(uniformly)g(at)g(random,)f(with)h(probabilit)o(y)h(1,)e(the)h
(class)g Fn(NP)i Fm(\\)11 b Fn(co{NP)23 b Fs(cannot)-75
1315 y(b)q(e)d(solv)o(ed)f(on)g(a)f(quan)o(tum)h(T)l(uring)g(Mac)o
(hine)h(in)g(time)f Fl(o)p Fs(\(2)999 1299 y Fk(n=)p
Fj(3)1057 1315 y Fs(\).)31 b(The)19 b(former)f(b)q(ound)i(is)f(tigh)o
(t)g(since)h(recen)o(t)f(w)o(ork)-75 1372 y(of)d(Gro)o(v)o(er)g([28)o
(])g(sho)o(ws)h(ho)o(w)f(to)g(accept)h(the)g(class)g
Fn(NP)24 b Fs(relativ)o(e)18 b(to)e(an)o(y)g(oracle)h(on)g(a)g(quan)o
(tum)f(computer)h(in)h(time)-75 1428 y Fl(O)q Fs(\(2)2
1412 y Fk(n=)p Fj(2)60 1428 y Fs(\).)-4 1502 y(Sev)o(eral)d(designs)h
(ha)o(v)o(e)e(b)q(een)i(prop)q(osed)f(for)g(realizing)h(quan)o(tum)f
(computers)30 b([17)o(],)f([23)o(].)19 b(A)c(n)o(um)o(b)q(er)g(of)g
(authors)-75 1559 y(ha)o(v)o(e)d(argued)h(that)e(there)i(are)f
(fundamen)o(tal)h(problems)g(in)g(building)j(quan)o(tum)c(computers,)g
(most)g(notably)h(the)f(e\013ects)-75 1615 y(of)k(the)h(decoherence)i
(of)d(quan)o(tum)h(sup)q(erp)q(ositions,)h(or)e(the)h(en)o(tanglemen)o
(t)g(of)g(the)g(system)f(with)h(the)g(en)o(vironmen)o(t.)-75
1672 y(V)l(ery)e(recen)o(tly)l(,)g(there)g(ha)o(v)o(e)f(b)q(een)i(a)f
(sequence)g(of)g(imp)q(ortan)o(t)f(results)h(sho)o(wing)g(ho)o(w)f(to)g
(implemen)o(t)i(quan)o(tum)f(error-)-75 1728 y(correcting)i(co)q(des)g
(and)g(also)g(use)g(these)g(co)q(des)g(to)f(mak)o(e)h(quan)o(tum)f
(algorithms)h(\(quite\))g(robust)f(against)g(the)h(e\013ects)-75
1785 y(of)e(decoherence)h([16])e(and)31 b([38)o(].)-4
1859 y(Quan)o(tum)15 b(computation)h(touc)o(hes)g(up)q(on)g(the)g
(foundations)g(of)g(b)q(oth)g(computer)g(science)h(and)f(quan)o(tum)f
(ph)o(ysics.)-75 1915 y(The)c(nature)f(of)h(quan)o(tum)f(ph)o(ysics)h
(w)o(as)f(clari\014ed)i(b)o(y)f(the)g(Einstein-P)o(o)q(dolsky-Rosen)i
(parado)o(x)d(and)g(Bell's)i(inequalities)-75 1972 y(\(discussed)21
b(in)f([25)o(]\))f(whic)o(h)i(demonstrate)e(the)h(di\013erence)h(b)q
(et)o(w)o(een)f(its)f(statistical)h(prop)q(erties)h(and)f(those)f(of)g
(an)o(y)-75 2028 y(\\classical")f(mo)q(del.)27 b(The)18
b(computational)f(di\013erences)i(b)q(et)o(w)o(een)f(quan)o(tum)f(and)g
(classical)i(ph)o(ysics)f(are)f(if)h(an)o(ything)-75
2085 y(more)13 b(striking,)h(and)g(can)g(b)q(e)g(exp)q(ected)h(to)e
(o\013er)g(new)h(insigh)o(ts)g(in)o(to)g(the)f(nature)h(of)f(quan)o
(tum)g(ph)o(ysics.)21 b(F)l(or)12 b(example,)-75 2141
y(one)23 b(migh)o(t)f(naiv)o(ely)i(argue)e(that)g(it)h(is)g(imp)q
(ossible)i(to)d(exp)q(erimen)o(tally)i(v)o(erify)f(the)g(exp)q(onen)o
(tially)h(large)f(size)g(of)-75 2198 y(the)c(Hilb)q(ert)i(space)e(asso)
q(ciated)h(with)f(a)g(discrete)h(quan)o(tum)f(system,)g(since)h(an)o(y)
f(observ)m(ation)h(leads)f(to)g(a)g(collapse)-75 2254
y(of)c(its)g(sup)q(erp)q(osition.)22 b(Ho)o(w)o(ev)o(er,)14
b(an)i(exp)q(erimen)o(t)g(demonstrating)f(the)g(exp)q(onen)o(tial)i(sp)
q(eedup)g(o\013ered)e(b)o(y)g(quan)o(tum)-75 2310 y(computation)d(o)o
(v)o(er)g(classical)h(computation)f(w)o(ould)h(establish)g(that)f
(something)g(lik)o(e)i(the)e(exp)q(onen)o(tially)i(large)e(Hilb)q(ert)
-75 2367 y(space)21 b(m)o(ust)g(exist.)37 b(Finally)l(,)24
b(it)d(is)g(imp)q(ortan)o(t,)h(as)e(F)l(eynman)i(p)q(oin)o(ted)f(out)g
([25)o(],)h(to)e(clarify)i(the)f(computational)-75 2423
y(o)o(v)o(erhead)16 b(required)h(to)f(sim)o(ulate)h(a)f(quan)o(tum)g
(mec)o(hanical)i(system.)23 b(The)16 b(simple)i(form)d(of)h(the)h(univ)
o(ersal)g(quan)o(tum)-75 2480 y(T)l(uring)d(Mac)o(hine)g(constructed)f
(here)h({)f(the)g(fact)f(that)h(it)g(has)g(only)h(a)f(single)i
(non-trivial)f(quan)o(tum)f(op)q(eration)h(de\014ned)-75
2536 y(on)20 b(a)g(single)h(bit)f({)g(suggests)f(that)h(ev)o(en)g(v)o
(ery)g(simple)h(quan)o(tum)f(mec)o(hanical)h(systems)f(are)f(capable)i
(of)f(univ)o(ersal)-75 2593 y(quan)o(tum)15 b(computation,)g(and)g(are)
g(therefore)g(hard)g(to)g(sim)o(ulate)g(on)h(classical)g(computers.)962
2779 y(4)p eop
%%Page: 5 5
5 4 bop -4 -26 a Fs(This)21 b(pap)q(er)f(is)h(organized)g(as)f(follo)o
(ws.)35 b(Section)22 b(2)e(in)o(tro)q(duces)h(some)f(of)g(the)g
(mathematical)h(mac)o(hinery)g(and)-75 31 y(notation)16
b(w)o(e)g(will)h(use.)23 b(In)17 b Fm(x)p Fs(3)f(w)o(e)g(in)o(tro)q
(duce)h(the)f(quan)o(tum)g(T)l(uring)h(Mac)o(hine)f(as)g(a)g(natural)g
(extension)h(of)e(classical)-75 87 y(probabilistic)k(T)l(uring)f(Mac)o
(hines.)26 b(W)l(e)18 b(also)f(sho)o(w)f(that)h(quan)o(tum)f(T)l(uring)
i(Mac)o(hines)g(need)g(not)f(b)q(e)g(sp)q(eci\014ed)j(with)-75
144 y(an)g(unreasonable)g(amoun)o(t)f(of)g(precision.)35
b(In)20 b Fm(x)q Fs(4)f(and)h Fm(x)p Fs(5)f(w)o(e)h(demonstrate)f(the)h
(basic)g(constructions)g(whic)o(h)g(will)-75 200 y(allo)o(w)d(us)g(to)f
(build)j(up)f(large,)f(complicated)h(quan)o(tum)f(T)l(uring)g(Mac)o
(hines)h(in)f(subsequen)o(t)h(sections.)26 b(Man)o(y)16
b(actions)-75 257 y(whic)o(h)g(are)f(quite)h(easy)f(for)f(classical)j
(mac)o(hines,)f(suc)o(h)f(as)g(completing)h(a)f(partially)i(sp)q
(eci\014ed)g(mac)o(hine,)e(running)i(one)-75 313 y(mac)o(hine)e(after)f
(another,)g(or)h(rep)q(eating)g(the)g(op)q(eration)f(of)h(a)f(mac)o
(hine)h(a)g(giv)o(en)g(n)o(um)o(b)q(er)g(of)f(times,)h(will)h(require)g
(non-)-75 369 y(trivial)g(constructions)f(for)f(quan)o(tum)h(T)l(uring)
g(Mac)o(hines.)20 b(In)c Fm(x)p Fs(6,)e(w)o(e)h(sho)o(w)f(ho)o(w)g(to)g
(build)j(a)e(single)h(quan)o(tum)e(T)l(uring)-75 426
y(Mac)o(hine)i(whic)o(h)g(can)g(carry)f(out)g(an)o(y)g(unitary)h
(transformation)e(whic)o(h)i(is)g(pro)o(vided)g(as)f(input.)22
b(Then,)15 b(in)h Fm(x)q Fs(7,)e(w)o(e)i(use)-75 482
y(this)g(sim)o(ulation)h(of)f(unitary)g(transformations)f(to)g(build)j
(a)e(univ)o(ersal)h(quan)o(tum)f(computer.)22 b(Finally)l(,)17
b(in)g Fm(x)p Fs(8)f(w)o(e)g(giv)o(e)-75 539 y(our)f(results,)g(b)q
(oth)g(p)q(ositiv)o(e)i(and)e(negativ)o(e,)g(on)g(the)g(p)q(o)o(w)o(er)
g(of)g(quan)o(tum)g(T)l(uring)h(Mac)o(hines.)-75 700
y Ft(2)69 b(Prelimi)o(naries)-75 819 y Fs(Let)15 b Fn(C)g
Fs(denote)h(the)f(\014eld)i(of)d(complex)i(n)o(um)o(b)q(ers.)21
b(F)l(or)14 b Fl(\013)f Fm(2)g Fn(C)p Fs(,)h(w)o(e)h(denote)h(b)o(y)f
Fl(\013)1351 802 y Fy(\003)1386 819 y Fs(its)g(complex)h(conjugate.)-4
893 y(Let)e Fl(V)23 b Fs(b)q(e)15 b(a)f(v)o(ector)f(space)h(o)o(v)o(er)
f Fn(C)p Fs(.)20 b(An)14 b(inner-pro)q(duct)h(o)o(v)o(er)f
Fl(V)23 b Fs(is)15 b(a)e(complex)i(function)g(\()p Fm(\001)p
Fl(;)8 b Fm(\001)p Fs(\))k(de\014ned)j(on)f Fl(V)j Fm(\002)8
b Fl(V)-75 950 y Fs(whic)o(h)16 b(satis\014es)-19 1061
y(1.)22 b Fm(8)p Fl(x)12 b Fm(2)h Fl(V)s(;)8 b Fs(\()p
Fl(x;)g(x)p Fs(\))i Fm(\025)j Fs(0.)19 b(Moreo)o(v)o(er)14
b(\()p Fl(x;)8 b(x)p Fs(\))j(=)i(0)i(i\013)g Fl(x)e Fs(=)g(0.)-19
1155 y(2.)22 b Fm(8)p Fl(x;)8 b(y)r(;)g(z)13 b Fm(2)g
Fl(V)s(;)8 b Fs(\()p Fl(\013x)g Fs(+)j Fl(\014)r(y)r(;)d(z)r
Fs(\))j(=)i Fl(\013)p Fs(\()p Fl(x;)8 b(z)r Fs(\))h(+)i
Fl(\014)r Fs(\()p Fl(y)r(;)d(z)r Fs(\).)-19 1249 y(3.)22
b Fm(8)p Fl(x;)8 b(y)14 b Fm(2)f Fl(V)s(;)8 b Fs(\()p
Fl(x;)g(y)r Fs(\))h(=)k(\()p Fl(y)r(;)8 b(x)p Fs(\))512
1232 y Fy(\003)530 1249 y Fs(.)-4 1360 y(The)22 b(inner-pro)q(duct)h
(yields)g(a)f(norm)f(giv)o(en)h(b)o(y)g Fm(k)p Fl(x)p
Fm(k)h Fs(=)h(\()p Fl(x;)8 b(x)p Fs(\))1151 1344 y Fj(1)p
Fk(=)p Fj(2)1204 1360 y Fs(.)40 b(In)22 b(addition)h(to)e(the)h
(triangle)g(inequalit)o(y)-75 1417 y Fm(k)p Fl(x)10 b
Fs(+)g Fl(y)r Fm(k)j(\024)g(k)p Fl(x)p Fm(k)c Fs(+)h
Fm(k)p Fl(y)r Fm(k)p Fs(,)15 b(the)g(norm)g(also)g(satis\014es)g(the)h
(Sc)o(h)o(w)o(arz)e(inequalit)o(y)j Fm(k)p Fs(\()p Fl(x;)8
b(y)r Fs(\))p Fm(k)j(\024)i(k)p Fl(x)p Fm(k)o(k)p Fl(y)r
Fm(k)o Fs(.)-4 1491 y(An)i Fr(inner-pr)n(o)n(duct)h(sp)n(ac)n(e)f
Fs(is)g(a)g(v)o(ector)g(space)g Fl(V)25 b Fs(together)14
b(with)i(an)f(inner-pro)q(duct)i(\()p Fm(\001)p Fl(;)8
b Fm(\001)p Fs(\).)-4 1565 y(An)17 b(inner-pro)q(duct)i(space)f
Fm(H)g Fs(o)o(v)o(er)f Fn(C)g Fs(is)h(a)f Fr(Hilb)n(ert)g(sp)n(ac)n(e)g
Fs(if)g(it)h(is)g(complete)g(under)g(the)g(induced)h(norm;)f(where)-75
1621 y Fm(H)i Fs(is)g(complete)h(if)f(ev)o(ery)f(Cauc)o(h)o(y)h
(sequence)g(con)o(v)o(erges.)33 b(i.e.)g(if)20 b Fm(f)p
Fl(x)1181 1628 y Fk(n)1205 1621 y Fm(g)f Fs(is)h(a)f(sequence)i(with)f
Fl(x)1666 1628 y Fk(n)1709 1621 y Fm(2)h(H)p Fs(,)g(suc)o(h)f(that)-75
1678 y(lim)-12 1685 y Fk(n;m)p Fy(!1)131 1678 y Fm(k)p
Fl(x)180 1685 y Fk(n)213 1678 y Fm(\000)11 b Fl(x)285
1685 y Fk(m)318 1678 y Fm(k)h Fs(=)h(0,)i(then)g(there)g(is)h(an)f
Fl(x)g Fs(in)h Fm(H)g Fs(with)g(lim)1095 1685 y Fk(n)p
Fy(!1)1197 1678 y Fm(k)p Fl(x)1246 1685 y Fk(n)1279 1678
y Fm(\000)10 b Fl(x)p Fm(k)j Fs(=)g(0.)-4 1752 y(Giv)o(en)19
b(an)o(y)f(inner-pro)q(duct)i(space)f Fl(V)9 b Fs(,)19
b(eac)o(h)g(v)o(ector)f Fl(x)g Fm(2)g Fl(V)28 b Fs(de\014nes)20
b(a)e(linear)i(functional)f Fl(x)1662 1736 y Fy(\003)1700
1752 y Fs(:)f Fl(V)28 b Fm(!)18 b Fn(C)h Fs(where)-75
1809 y Fl(x)-49 1792 y Fy(\003)-29 1809 y Fs(\()p Fl(y)r
Fs(\))12 b(=)h(\()p Fl(x;)8 b(y)r Fs(\).)18 b(The)d(set)g(of)f(suc)o(h)
h(linear)h(functionals)g(is)g(also)f(an)f(inner-pro)q(duct)j(space,)e
(and)g(will)i(b)q(e)e(referred)g(to)f(as)-75 1865 y(the)g
Fr(ve)n(ctor-dual)g Fs(of)f Fl(V)24 b Fs(and)13 b(denoted)i
Fl(V)626 1849 y Fy(\003)646 1865 y Fs(.)k(In)c(the)e(case)h(that)f
Fl(V)23 b Fs(is)15 b(a)e(Hilb)q(ert)i(space,)f Fl(V)1458
1849 y Fy(\003)1491 1865 y Fs(is)g(called)h(the)f Fr(dual)g
Fs(of)g Fl(V)9 b Fs(,)14 b(and)-75 1921 y(is)i(the)f(set)g(of)g(all)h
(con)o(tin)o(uous)f(linear)i(functionals)f(on)f Fl(V)10
b Fs(,)15 b(and)g(the)g(dual)h(space)g Fl(V)1373 1905
y Fy(\003)1408 1921 y Fs(is)g(also)f(a)g(Hilb)q(ert)i(space.)-4
1996 y(In)f(Dirac's)g(notation,)f(a)h(v)o(ector)g(from)f(an)h
(inner-pro)q(duct)i(space)e Fl(V)26 b Fs(is)16 b(iden)o(ti\014ed)i
(using)f(the)f(\\k)o(et")f(notation)h Fm(j)f(i)o Fs(,)-75
2052 y(with)i(some)g(sym)o(b)q(ol\(s\))f(placed)i(inside)h(to)d
(distinguish)j(that)d(v)o(ector)g(from)g(all)i(others.)24
b(W)l(e)17 b(denote)g(elemen)o(ts)g(of)g(the)-75 2109
y(dual)g(space)f(using)h(the)f(\\bra")g(notation)f Fm(h)g(j)p
Fs(.)22 b(Th)o(us)16 b(the)g(dual)h(of)f Fm(j)p Fl(\036)p
Fm(i)f Fs(is)i Fm(h)p Fl(\036)p Fm(j)o Fs(,)f(and)h(the)f(inner)h(pro)q
(duct)f(of)g(v)o(ectors)f Fm(j)p Fl( )r Fm(i)-75 2165
y Fs(and)g Fm(j)p Fl(\036)p Fm(i)g Fs(whic)o(h)h(is)g(the)f(same)g(as)g
(the)g(result)h(of)e(applying)j(functional)f Fm(h)p Fl( )r
Fm(j)e Fs(to)h(the)g(v)o(ector)f Fm(j)p Fl(\036)p Fm(i)p
Fs(,)h(is)g(denoted)h(b)o(y)f Fm(h)p Fl( )r Fm(j)p Fl(\036)p
Fm(i)n Fs(.)-4 2239 y(Let)j Fl(U)24 b Fs(b)q(e)19 b(a)f(linear)h(op)q
(erator)f(on)g Fl(V)10 b Fs(.)29 b(In)19 b(Dirac's)f(notation,)h(w)o(e)
f(denote)g(the)h(result)g(of)f(applying)i Fl(U)j Fs(to)18
b Fm(j)p Fl(\036)p Fm(i)f Fs(as)-75 2296 y Fl(U)5 b Fm(j)p
Fl(\036)p Fm(i)o Fs(.)20 b Fl(U)f Fs(also)14 b(acts)g(as)f(a)h(linear)h
(op)q(erator)f(on)g(the)g(dual)h(space)f Fl(V)1079 2279
y Fy(\003)1112 2296 y Fs(mapping)h(eac)o(h)f(linear)i(functional)f
Fm(h)p Fl(\036)p Fm(j)e Fs(of)h(the)g(dual)-75 2352 y(space)i(to)f(the)
h(linear)g(functional)h(whic)o(h)g(applies)g Fl(U)j Fs(follo)o(w)o(ed)c
(b)o(y)g Fm(h)p Fl(\036)p Fm(j)o Fs(.)21 b(W)l(e)16 b(denote)g(the)g
(result)g(of)f(applying)i Fl(U)k Fs(to)15 b Fm(h)p Fl(\036)p
Fm(j)-75 2409 y Fs(b)o(y)g Fm(h)p Fl(\036)p Fm(j)p Fl(U)5
b Fs(.)-4 2483 y(F)l(or)13 b(an)o(y)h(inner-pro)q(duct)i(space)e
Fl(V)c Fs(,)k(w)o(e)g(can)g(consider)i(the)e(usual)h(v)o(ector)e(space)
i(basis)f(or)g(Hamel)h(basis:)20 b Fm(fj)p Fl(\022)1900
2490 y Fk(i)1913 2483 y Fm(ig)1954 2490 y Fk(i)p Fy(2)p
Fk(I)2009 2483 y Fs(.)-75 2539 y(Ev)o(ery)e(v)o(ector)g
Fm(j)p Fl(\036)p Fm(i)f(2)h Fl(V)28 b Fs(can)19 b(b)q(e)g(expressed)g
(as)f(a)g(\014nite)h(linear)h(com)o(bination)f(of)e(basis)i(v)o
(ectors.)29 b(In)19 b(the)f(case)h(that)-75 2596 y Fm(k)p
Fl(\022)-31 2603 y Fk(i)-17 2596 y Fm(k)c Fs(=)g(1)i(and)f(\()p
Fm(h)p Fl(\022)257 2603 y Fk(i)271 2596 y Fm(j)p Fl(;)8
b Fm(j)p Fl(\022)339 2603 y Fk(j)356 2596 y Fm(i)p Fs(\))15
b(=)g(0)h(for)g Fl(i)f Fm(6)p Fs(=)g Fl(j)s Fs(,)h(w)o(e)h(refer)f(to)g
(the)h(basis)g(as)f(an)h(orthonormal)e(basis.)25 b(With)17
b(resp)q(ect)g(to)f(an)962 2779 y(5)p eop
%%Page: 6 6
6 5 bop -75 -26 a Fs(orthonormal)17 b(basis,)i(w)o(e)f(can)g(write)g
(eac)o(h)g(v)o(ector)f Fm(j)p Fl(\036)p Fm(i)g(2)g Fl(V)28
b Fs(as)18 b Fm(j)p Fl(\036)p Fm(i)e Fs(=)1198 -58 y
Fi(P)1242 -14 y Fk(i)p Fy(2)p Fk(I)1305 -26 y Fl(\013)1334
-19 y Fk(i)1348 -26 y Fm(j)p Fl(\022)1382 -19 y Fk(i)1396
-26 y Fm(i)p Fs(,)i(where)g Fl(\013)1608 -19 y Fk(i)1640
-26 y Fs(=)f Fm(h)p Fl(\022)1731 -19 y Fk(i)1745 -26
y Fm(j)p Fl(\036)p Fm(i)p Fs(.)28 b(Similarly)-75 31
y(eac)o(h)17 b(dual)h(v)o(ector)e Fm(h)p Fl(\036)p Fm(j)g(2)g
Fl(V)426 14 y Fy(\003)463 31 y Fs(can)h(b)q(e)h(written)f(as)g(as)g
Fm(h)p Fl(\036)p Fm(j)e Fs(=)1013 -1 y Fi(P)1057 42 y
Fk(i)p Fy(2)p Fk(I)1120 31 y Fl(\014)1146 38 y Fk(i)1160
31 y Fm(h)p Fl(\022)1199 38 y Fk(i)1213 31 y Fm(j)o Fs(,)j(where)f
Fl(\013)1418 38 y Fk(i)1448 31 y Fs(=)f Fm(h)p Fl(\036)p
Fm(j)p Fl(\022)1578 38 y Fk(i)1592 31 y Fm(i)o Fs(.)26
b(Th)o(us)17 b(eac)o(h)g(elemen)o(t)-75 87 y Fm(j)p Fl(\036)p
Fm(i)f(2)i Fl(V)27 b Fs(can)18 b(b)q(e)h(though)o(t)e(of)g(as)h(a)f
(column)i(v)o(ector)e(of)g(the)h Fl(\013)1043 94 y Fk(i)1057
87 y Fs('s,)g(and)g(eac)o(h)g(elemen)o(t)h Fm(h)p Fl(\036)p
Fm(j)d(2)h Fl(V)28 b Fs(can)18 b(b)q(e)g(though)o(t)f(of)-75
144 y(as)i(a)h(ro)o(w)e(v)o(ector)h(of)h(the)f Fl(\014)425
151 y Fk(i)439 144 y Fs('s.)33 b(Similarly)22 b(eac)o(h)d(linear)i(op)q
(erator)e Fl(U)25 b Fs(ma)o(y)19 b(b)q(e)h(represen)o(ted)g(b)o(y)g
(the)g(set)f(of)g Fr(matrix)-75 200 y(elements)13 b Fm(fh)p
Fl(\022)172 207 y Fk(i)186 200 y Fm(j)o Fl(U)5 b Fm(j)p
Fl(\022)268 207 y Fk(j)286 200 y Fm(ig)327 207 y Fk(i;j)r
Fy(2)p Fk(I)408 200 y Fs(,)14 b(arranged)f(in)i(a)f(\\square")f(matrix)
h(with)g(ro)o(ws)f(and)h(columns)h(b)q(oth)f(indexed)i(b)o(y)e
Fl(I)t Fs(.)19 b(Then,)-75 257 y(the)g(\\column")f(of)g
Fl(U)24 b Fs(with)19 b(index)g Fl(i)f Fs(is)h(the)g(v)o(ector)f
Fl(U)5 b Fm(j)p Fl(\022)931 264 y Fk(i)945 257 y Fm(i)18
b Fs(and)g(the)h(\\ro)o(w")e(of)h Fl(U)23 b Fs(with)c(index)h
Fl(i)e Fs(is)h(the)f(dual)i(v)o(ector)-75 313 y Fm(h)p
Fl(\022)-36 320 y Fk(i)-22 313 y Fm(j)p Fl(U)5 b Fs(.)-4
387 y(F)l(or)18 b(a)g(Hilb)q(ert)j(space)e Fm(H)p Fs(,)h
Fm(fj)p Fl(\022)536 394 y Fk(i)550 387 y Fm(i)o(g)590
394 y Fk(i)p Fy(2)p Fk(I)664 387 y Fs(is)g(a)e Fr(Hilb)n(ert)h(sp)n(ac)
n(e)g(b)n(asis)e Fs(for)i Fm(H)g Fs(if)h(it)f(is)g(a)g(maximal)g(set)f
(of)h(orthonormal)-75 444 y(v)o(ectors)c(in)j Fm(H)p
Fs(.)23 b(Ev)o(ery)16 b(v)o(ector)g Fm(j)p Fl(\036)p
Fm(i)e(2)g(H)j Fs(can)g(b)q(e)g(expressed)g(as)f(the)g(limit)i(of)d(a)h
(sequence)i(of)e(v)o(ectors,)f(eac)o(h)h(of)g(whic)o(h)-75
500 y(can)f(b)q(e)h(expressed)g(as)f(a)g(\014nite)h(linear)g(com)o
(bination)g(of)f(basis)h(v)o(ectors.)-4 574 y(Giv)o(en)i(a)g(linear)h
(op)q(erator)f Fl(U)23 b Fs(in)c(an)f(inner)h(pro)q(duct)g(space,)g(if)
f(there)h(is)f(a)g(linear)i(op)q(erator)d Fl(U)1699 558
y Fy(\003)1737 574 y Fs(whic)o(h)i(satis\014es)-75 631
y Fm(h)p Fl(U)-21 614 y Fy(\003)-2 631 y Fl(\036)p Fm(j)p
Fl( )r Fm(i)h Fs(=)g Fm(h)p Fl(\036)p Fm(j)p Fl(U)5 b( )r
Fm(i)19 b Fs(for)g(all)i Fl(\036;)8 b( )r Fs(,)19 b(then)h
Fl(U)724 614 y Fy(\003)764 631 y Fs(is)g(called)i(the)e
Fr(adjoint)g Fs(or)f Fr(Hermitian)i(c)n(onjugate)e Fs(of)h
Fl(U)5 b Fs(.)34 b(If)20 b(a)g(linear)-75 687 y(op)q(erator)f(in)i(an)e
(inner)i(pro)q(duct)g(space)f(has)g(an)f(adjoin)o(t,)i(it)f(is)g
(unique.)36 b(The)20 b(adjoin)o(t)g(of)f(a)h(linear)h(op)q(erator)e(in)
h(a)-75 744 y(Hilb)q(ert)h(space)e(or)f(in)i(a)f(\014nite)h
(dimensional)h(inner)g(pro)q(duct)e(space)g(alw)o(a)o(ys)g(exists.)32
b(It)19 b(is)g(easy)g(to)g(see)g(that)f(if)i(the)-75
800 y(adjoin)o(ts)e(of)f Fl(U)185 807 y Fj(1)223 800
y Fs(and)h Fl(U)345 807 y Fj(2)383 800 y Fs(exist)g(then)g(\()p
Fl(U)648 807 y Fj(1)679 800 y Fs(+)13 b Fl(U)758 807
y Fj(2)777 800 y Fs(\))795 784 y Fy(\003)832 800 y Fs(=)18
b Fl(U)921 784 y Fy(\003)916 812 y Fj(1)952 800 y Fs(+)12
b Fl(U)1035 784 y Fy(\003)1030 812 y Fj(2)1073 800 y
Fs(and)18 b(\()p Fl(U)1213 807 y Fj(1)1233 800 y Fl(U)1264
807 y Fj(2)1283 800 y Fs(\))1301 784 y Fy(\003)1338 800
y Fs(=)f Fl(U)1426 784 y Fy(\003)1421 812 y Fj(2)1446
800 y Fl(U)1482 784 y Fy(\003)1477 812 y Fj(1)1502 800
y Fs(.)28 b(An)18 b(op)q(erator)f Fl(U)23 b Fs(is)18
b(called)-75 857 y Fr(Hermitian)i Fs(or)c Fr(self-adjoint)21
b Fs(if)c(it)g(is)h(its)f(o)o(wn)f(adjoin)o(t)h(\()p
Fl(U)955 840 y Fy(\003)990 857 y Fs(=)e Fl(U)5 b Fs(\).)25
b(The)17 b(linear)h(op)q(erator)e Fl(U)21 b Fs(is)d(called)g
Fr(unitary)f Fs(if)h(its)-75 913 y(adjoin)o(t)d(exists)h(and)f
(satis\014es)g Fl(U)496 896 y Fy(\003)516 913 y Fl(U)j
Fs(=)13 b Fl(U)5 b(U)685 896 y Fy(\003)717 913 y Fs(=)13
b Fl(I)t Fs(.)-4 987 y(If)18 b(w)o(e)g(represen)o(t)g(linear)i(op)q
(erators)d(as)h(\\square")f(matrices)h(indexed)i(o)o(v)o(er)e(an)g
(orthonormal)f(basis,)i(then)g Fl(U)1954 971 y Fy(\003)1991
987 y Fs(is)-75 1044 y(represen)o(ted)i(b)o(y)f(the)h(conjugate)f
(transp)q(ose)g(of)g Fl(U)5 b Fs(.)36 b(So,)22 b(in)f(Dirac's)f
(notation)g(w)o(e)g(ha)o(v)o(e)h(the)f(con)o(v)o(enien)o(t)h(iden)o
(tit)o(y)-75 1100 y Fm(h)p Fl(\036)p Fm(j)o Fl(U)18 1084
y Fy(\003)38 1100 y Fm(j)p Fl( )r Fm(i)11 b Fs(=)i(\()p
Fm(h)p Fl( )r Fm(j)n Fl(U)5 b Fm(j)p Fl(\036)p Fm(i)p
Fs(\))351 1084 y Fy(\003)370 1100 y Fs(.)-4 1174 y(Recall)16
b(that)d(if)i(the)g(inner-pro)q(duct)h(space)e Fl(V)24
b Fs(is)15 b(the)g(tensor)f(pro)q(duct)g(of)g(t)o(w)o(o)f(inner-pro)q
(duct)j(spaces)f Fl(V)1821 1181 y Fj(1)1840 1174 y Fl(;)8
b(V)1888 1181 y Fj(2)1907 1174 y Fs(,)14 b(then)-75 1231
y(for)k(eac)o(h)h(pair)h(of)e(v)o(ectors)g Fm(j)p Fl(\036)455
1238 y Fj(1)475 1231 y Fm(i)g(2)i Fl(V)588 1238 y Fj(1)607
1231 y Fl(;)8 b Fm(j)p Fl(\036)668 1238 y Fj(2)687 1231
y Fm(i)18 b(2)h Fl(V)799 1238 y Fj(2)838 1231 y Fs(there)g(is)g(an)g
(asso)q(ciated)g(tensor)g(pro)q(duct)g Fm(j)p Fl(\036)1649
1238 y Fj(1)1668 1231 y Fm(i)13 b(\012)g(j)p Fl(\036)1787
1238 y Fj(2)1806 1231 y Fm(i)19 b Fs(in)h Fl(V)9 b Fs(.)31
b(In)-75 1287 y(Dirac's)15 b(notation,)f(w)o(e)h(denote)h
Fm(j)p Fl(\036)527 1294 y Fj(1)546 1287 y Fm(i)10 b(\012)g(j)p
Fl(\036)659 1294 y Fj(2)679 1287 y Fm(i)15 b Fs(as)f
Fm(j)p Fl(\036)807 1294 y Fj(1)827 1287 y Fm(i)o(j)p
Fl(\036)884 1294 y Fj(2)904 1287 y Fm(i)p Fs(.)-4 1361
y(The)k Fr(norm)g Fs(of)g Fl(U)23 b Fs(is)c(de\014ned)g(as)f
Fm(k)p Fl(U)5 b Fm(k)17 b Fs(=)h(sup)811 1372 y Fy(kj)p
Fk(x)p Fy(i)o(k)p Fj(=1)945 1361 y Fm(k)p Fl(U)5 b Fm(j)p
Fl(x)p Fm(i)o(k)o Fs(.)29 b(A)18 b(linear)i(op)q(erator)d(is)i(called)g
Fr(b)n(ounde)n(d)f Fs(if)h Fm(k)p Fl(U)5 b Fm(k)17 b
Fs(is)-75 1418 y(\014nite.)k(W)l(e)15 b(will)i(freely)f(use)f(the)h
(follo)o(wing)g(standard)e(facts)h(ab)q(out)g(b)q(ounded)i(linear)f(op)
q(erators:)436 1516 y(If)f Fl(U)517 1497 y Fy(\003)552
1516 y Fs(exists)g(then)h Fm(k)p Fl(U)840 1497 y Fy(\003)859
1516 y Fm(k)42 b Fs(=)f Fm(k)p Fl(U)5 b Fm(k)882 b Fs(\(1\))735
1585 y Fm(k)p Fl(U)789 1592 y Fj(1)809 1585 y Fl(U)840
1592 y Fj(2)859 1585 y Fm(k)42 b(\024)f(k)p Fl(U)1054
1592 y Fj(1)1074 1585 y Fm(kk)p Fl(U)1151 1592 y Fj(2)1170
1585 y Fm(k)771 b Fs(\(2\))634 1654 y Fm(k)p Fl(U)688
1661 y Fj(1)708 1654 y Fm(k)9 b(\000)i(k)p Fl(U)840 1661
y Fj(2)859 1654 y Fm(k)42 b(\024)f(k)p Fl(U)1054 1661
y Fj(1)1084 1654 y Fs(+)10 b Fl(U)1160 1661 y Fj(2)1180
1654 y Fm(k)j(\024)g(k)p Fl(U)1318 1661 y Fj(1)1337 1654
y Fm(k)d Fs(+)g Fm(k)p Fl(U)1469 1661 y Fj(2)1489 1654
y Fm(k)452 b Fs(\(3\))-4 1770 y(Notice)18 b(that)g(a)g(unitary)h(op)q
(erator)e Fl(U)24 b Fs(m)o(ust)17 b(satisfy)i Fm(k)p
Fl(U)5 b Fm(k)17 b Fs(=)h(1.)29 b(W)l(e)19 b(will)h(often)e(use)h(the)f
(follo)o(wing)h(fact)f(whic)o(h)-75 1826 y(tells)d(us)g(that)e(if)i(w)o
(e)f(appro)o(ximate)g(a)g(series)h(of)f(unitary)g(transformations)f
(with)i(other)f(unitary)g(transformations,)f(the)-75
1883 y(error)h(increases)j(only)e(additiv)o(ely)l(.)-75
2002 y Fn(F)l(act)j(2.0.1)k Fr(If)16 b Fl(U)249 2009
y Fj(1)269 2002 y Fl(;)8 b(U)326 1986 y Fy(0)321 2014
y Fj(1)340 2002 y Fl(;)g(U)392 2009 y Fj(2)410 2002 y
Fl(;)g(U)467 1986 y Fy(0)462 2014 y Fj(2)498 2002 y Fr(ar)n(e)16
b(unitary)h(tr)n(ansformations)e(on)h(an)h(inner-pr)n(o)n(duct)f(sp)n
(ac)n(e)f(then)545 2101 y Fm(k)p Fl(U)604 2082 y Fy(0)599
2112 y Fj(1)618 2101 y Fl(U)654 2082 y Fy(0)649 2112
y Fj(2)679 2101 y Fm(\000)10 b Fl(U)755 2108 y Fj(1)775
2101 y Fl(U)806 2108 y Fj(2)826 2101 y Fm(k)29 b(\024)g(k)p
Fl(U)1001 2082 y Fy(0)996 2112 y Fj(1)1025 2101 y Fm(\000)11
b Fl(U)1102 2108 y Fj(1)1122 2101 y Fm(k)e Fs(+)i Fm(k)p
Fl(U)1259 2082 y Fy(0)1254 2112 y Fj(2)1283 2101 y Fm(\000)g
Fl(U)1360 2108 y Fj(2)1380 2101 y Fm(k)-4 2220 y Fs(This)k(fact)g
(follo)o(ws)g(from)g(Statemen)o(ts)f(3)h(and)g(2)g(ab)q(o)o(v)o(e,)g
(since)415 2314 y Fm(k)p Fl(U)474 2298 y Fy(0)469 2326
y Fj(1)489 2314 y Fl(U)525 2298 y Fy(0)520 2326 y Fj(2)550
2314 y Fm(\000)10 b Fl(U)626 2321 y Fj(1)646 2314 y Fl(U)677
2321 y Fj(2)697 2314 y Fm(k)41 b(\024)h(k)p Fl(U)897
2298 y Fy(0)892 2326 y Fj(1)911 2314 y Fl(U)947 2298
y Fy(0)942 2326 y Fj(2)972 2314 y Fm(\000)11 b Fl(U)1049
2321 y Fj(1)1068 2314 y Fl(U)1104 2298 y Fy(0)1099 2326
y Fj(2)1119 2314 y Fm(k)25 b Fs(+)h Fm(k)p Fl(U)1282
2321 y Fj(1)1301 2314 y Fl(U)1337 2298 y Fy(0)1332 2326
y Fj(2)1362 2314 y Fm(\000)10 b Fl(U)1438 2321 y Fj(1)1458
2314 y Fl(U)1489 2321 y Fj(2)1509 2314 y Fm(k)761 2371
y(\024)42 b(k)p Fl(U)897 2354 y Fy(0)892 2382 y Fj(1)921
2371 y Fm(\000)11 b Fl(U)998 2378 y Fj(1)1018 2371 y
Fm(k)o(k)p Fl(U)1099 2354 y Fy(0)1094 2382 y Fj(2)1114
2371 y Fm(k)25 b Fs(+)g Fm(k)p Fl(U)1276 2378 y Fj(1)1296
2371 y Fm(kk)p Fl(U)1378 2354 y Fy(0)1373 2382 y Fj(2)1402
2371 y Fm(\000)11 b Fl(U)1479 2378 y Fj(2)1498 2371 y
Fm(k)-75 2507 y Fh(2.1)56 b(Miscellaneous)17 b(notation)-4
2629 y Fs(If)e Fl(d)g Fs(is)h(a)e(direction)j Fm(2)c(f)p
Fl(L;)8 b(R)p Fm(g)p Fs(,)13 b(then)667 2617 y(\026)659
2629 y Fl(d)h Fs(is)i(the)f(opp)q(osite)h(of)f Fl(d)p
Fs(.)962 2779 y(6)p eop
%%Page: 7 7
7 6 bop -4 -26 a Fs(Giv)o(en)19 b(t)o(w)o(o)e(probabilit)o(y)j
(distributions)g Fm(P)757 -19 y Fj(1)794 -26 y Fs(and)f
Fm(P)918 -19 y Fj(2)956 -26 y Fs(o)o(v)o(er)f(the)g(same)h(domain)f
Fl(I)t Fs(,)h(the)g Fr(total)g(variation)h(distanc)n(e)-75
31 y Fs(b)q(et)o(w)o(een)c Fm(P)133 38 y Fj(1)167 31
y Fs(and)f Fm(P)287 38 y Fj(2)322 31 y Fs(is)h(equal)g(to)548
13 y Fj(1)p 548 20 18 2 v 548 46 a(2)578 -1 y Fi(P)622
42 y Fk(i)p Fy(2)p Fk(I)685 31 y Fm(jP)730 38 y Fj(1)749
31 y Fs(\()p Fl(i)p Fs(\))9 b Fm(\000)i(P)888 38 y Fj(2)907
31 y Fs(\()p Fl(i)p Fs(\))p Fm(j)o Fs(.)-4 105 y(W)l(e)k(will)i(refer)e
(to)f(the)i(cardinalit)o(y)g(of)f(a)g(set)g Fl(S)i Fs(as)e(card\()p
Fl(S)s Fs(\))f(and)h(the)h(length)g(of)e(a)h(string)g
Fl(x)h Fs(as)e Fm(j)p Fl(x)p Fm(j)p Fs(.)-75 266 y Ft(3)69
b(Quan)n(tum)23 b(T)-6 b(uring)23 b(Mac)n(hines)-75 387
y Fh(3.1)56 b(A)19 b(ph)n(ysics-lik)n(e)e(view)h(of)g(randomized)f
(computation)-75 490 y Fs(Before)f(w)o(e)f(formally)h(de\014ne)h(a)e
(quan)o(tum)h(T)l(uring)g(Mac)o(hine)g(\(QTM\),)f(w)o(e)g(in)o(tro)q
(duce)i(the)e(necessary)h(terminology)g(in)-75 547 y(the)f(familiar)g
(setting)g(of)f(probabilistic)j(computation.)j(As)14
b(a)g(b)q(on)o(us,)h(w)o(e)f(will)j(b)q(e)e(able)g(to)f(precisely)j(lo)
q(cate)e(the)f(p)q(oin)o(t)-75 603 y(of)h(departure)g(in)h(the)f
(de\014nition)i(of)e(a)g(QTM.)-4 677 y(Quan)o(tum)j(mec)o(hanics)i(mak)
o(es)e(a)g(distinction)i(b)q(et)o(w)o(een)f(a)f(system's)g(ev)o
(olution)h(and)g(its)f(measuremen)o(t.)30 b(In)19 b(the)-75
734 y(absence)j(of)f(measuremen)o(t,)h(the)f(time)h(ev)o(olution)g(of)e
(a)h(probabilistic)j(TM)d(can)g(b)q(e)h(describ)q(ed)h(b)o(y)e(a)g
(sequence)h(of)-75 790 y(probabilit)o(y)17 b(distributions.)22
b(The)16 b(distribution)h(at)e(eac)o(h)g(step)h(giv)o(es)f(the)h(lik)o
(eliho)q(o)q(d)i(of)d(eac)o(h)h(p)q(ossible)h(con\014guration)-75
847 y(of)d(the)h(mac)o(hine.)20 b(W)l(e)15 b(can)f(also)h(think)g(of)f
(the)h(probabilistic)h(TM)e(as)g(sp)q(ecifying)j(an)d(in\014nite)j
(dimensional)f(sto)q(c)o(hastic)-75 903 y(matrix)58 887
y Fj(1)98 903 y Fl(M)25 b Fs(whose)20 b(ro)o(ws)f(and)i(columns)g(are)f
(indexed)i(b)o(y)e(con\014gurations.)35 b(Eac)o(h)20
b(column)h(of)f(this)h(matrix)f(giv)o(es)-75 960 y(the)e(distribution)h
(resulting)f(from)f(the)h(corresp)q(onding)g(con\014guration)g(after)f
(a)g(single)i(step)e(of)g(the)h(mac)o(hine.)27 b(If)18
b(w)o(e)-75 1016 y(represen)o(t)f(the)g(probabilit)o(y)i(distribution)g
(at)d(one)h(time)h(step)f(b)o(y)g(a)g(v)o(ector)f Fm(j)p
Fl(v)r Fm(i)o Fs(,)i(then)f(the)g(distribution)i(at)e(the)g(next)-75
1072 y(step)c(is)h(giv)o(en)g(b)o(y)g(the)f(pro)q(duct)h
Fl(M)5 b Fm(j)p Fl(v)r Fm(i)o Fs(.)19 b(In)14 b(quan)o(tum)f(ph)o
(ysics)i(terminology)l(,)e(w)o(e)g(call)i(the)f(distribution)h(at)d
(eac)o(h)i(step)f(a)-75 1129 y(\\linear)k(sup)q(erp)q(osition")h(of)d
(con\014gurations,)h(and)h(w)o(e)e(call)j(the)e(co)q(e\016cien)o(t)h
(of)f(eac)o(h)g(con\014guration)g(\(its)g(probabilit)o(y\))-75
1185 y(its)f(\\amplitude.")21 b(The)16 b(sto)q(c)o(hastic)f(matrix)g
(is)g(referred)h(to)e(as)h(the)g(\\time)g(ev)o(olution)h(op)q(erator".)
-4 1260 y(Three)h(commen)o(ts)f(are)g(in)i(order.)24
b(First,)17 b(not)f(ev)o(ery)g(sto)q(c)o(hastic)h(matrix)g(has)f(an)h
(asso)q(ciated)g(probabilistic)i(TM.)-75 1316 y(Sto)q(c)o(hastic)e
(matrices)h(obtained)f(from)g(probabilistic)i(TM)e(are)g(\014nitely)i
(sp)q(eci\014ed)g(and)e(map)g(eac)o(h)h(con\014guration)f(b)o(y)-75
1372 y(making)f(only)h(lo)q(cal)g(c)o(hanges)f(to)f(it.)22
b(Second,)17 b(the)f(supp)q(ort)g(of)g(the)g(sup)q(erp)q(osition)h(can)
g(b)q(e)f(exp)q(onen)o(tial)i(in)e(the)h(run-)-75 1429
y(ning)e(time)f(of)g(the)g(mac)o(hine.)20 b(Third,)15
b(w)o(e)e(need)i(to)f(constrain)g(the)g(en)o(tries)g(allo)o(w)o(ed)h
(in)f(the)h(transition)f(function)h(of)e(our)-75 1485
y(probabilistic)h(TM.)e(Otherwise,)h(it)f(is)h(p)q(ossible)h(to)e(sm)o
(uggle)g(hard)g(to)g(compute)g(quan)o(tities)h(in)o(to)f(the)g
(transition)h(ampli-)-75 1542 y(tudes,)i(for)f(instance)i(b)o(y)f
(letting)h(the)f Fl(i)606 1525 y Fk(th)656 1542 y Fs(bit)g(indicate)i
(whether)e(the)g Fl(i)p Fs(th)f(deterministic)j(TM)e(halts)g(on)g(a)f
(blank)i(tap)q(e.)-75 1598 y(A)h(common)f(restriction)i(is)f(to)f(allo)
o(w)h(amplitudes)h(only)g(from)e(the)h(set)f Fm(f)p Fs(0)p
Fl(;)1270 1580 y Fj(1)p 1270 1587 V 1270 1614 a(2)1293
1598 y Fl(;)8 b Fs(1)p Fm(g)p Fs(.)23 b(More)16 b(generally)l(,)i(w)o
(e)f(migh)o(t)g(allo)o(w)-75 1655 y(an)o(y)g(real)g(n)o(um)o(b)q(er)h
(in)g(the)f(in)o(terv)m(al)h([0)p Fl(;)8 b Fs(1])15 b(whic)o(h)j(can)g
(b)q(e)f(computed)h(b)o(y)f(some)g(deterministic)i(algorithm)e(to)g
(within)-75 1711 y(an)o(y)d(desired)i(2)187 1695 y Fy(\000)p
Fk(n)252 1711 y Fs(in)f(time)g(p)q(olynomial)h(in)f Fl(n)p
Fs(.)20 b(It)15 b(is)g(easily)g(sho)o(wn)g(that)e(the)i(\014rst)f(p)q
(ossibilit)o(y)j(is)e(computationally)g(no)-75 1768 y(more)g
(restrictiv)o(e)g(than)g(the)h(second.)-4 1842 y(Returning)h(to)e(the)h
(ev)o(olution)h(of)e(the)i(probabilistic)h(TM,)d(when)h(w)o(e)g(observ)
o(e)g(the)g(mac)o(hine)h(after)e(some)h(n)o(um)o(b)q(er)-75
1898 y(of)21 b(steps,)i(w)o(e)f(do)f(not)g(see)h(the)g(linear)h(sup)q
(erp)q(osition)g(\(probabilit)o(y)g(distribution\),)h(but)e(just)g(a)f
(sample)h(from)f(it.)-75 1955 y(If)h(w)o(e)f(\\observ)o(e")f(the)i(en)o
(tire)g(mac)o(hine,)h(then)f(w)o(e)f(see)h(a)f(con\014guration)g
(sampled)i(at)d(random)h(according)h(to)f(the)-75 2011
y(sup)q(erp)q(osition.)29 b(The)18 b(same)f(holds)h(if)g(w)o(e)g
(observ)o(e)f(just)g(a)h(part)f(of)g(the)h(mac)o(hine.)27
b(In)19 b(this)f(case,)g(the)f(sup)q(erp)q(osition)-75
2068 y(\\collapses")f(to)e(one)h(that)g(corresp)q(onds)g(to)f(the)i
(probabilit)o(y)g(distribution)h(conditioned)f(on)f(the)h(v)m(alue)g
(observ)o(ed.)k(By)-75 2124 y(the)c(linearit)o(y)i(of)e(the)g(la)o(w)g
(of)g(alternativ)o(es)683 2108 y Fj(2)703 2124 y Fs(,)g(the)g(mere)h
(act)f(of)f(making)i(observ)m(ations)f(at)g(times)h(earlier)g(than)f
Fl(t)h Fs(do)q(es)-75 2181 y(not)e(c)o(hange)g(the)h(probabilit)o(y)g
(for)f(eac)o(h)g(outcome)g(in)h(an)f(observ)m(ation)h(at)e(time)i
Fl(t)p Fs(.)k(So,)15 b(ev)o(en)h(though)f(the)g(unobserv)o(ed)-75
2237 y(sup)q(erp)q(osition)j(ma)o(y)e(ha)o(v)o(e)g(supp)q(ort)h(that)e
(gro)o(ws)h(exp)q(onen)o(tially)i(with)f(running)h(time,)e(w)o(e)h
(need)g(only)g(k)o(eep)g(trac)o(k)e(of)-75 2293 y(a)20
b(constan)o(t)f(amoun)o(t)g(of)g(information)h(when)g(sim)o(ulating)h
(a)f(probabilistic)i(TM)d(whic)o(h)i(is)f(observ)o(ed)g(at)f(eac)o(h)h
(step.)-75 2350 y(The)14 b(computational)h(p)q(ossibilities)i(of)d
(quan)o(tum)g(ph)o(ysics)g(arise)h(out)f(of)f(the)h(fact)g(that)f
(observing)i(a)f(quan)o(tum)f(system)-75 2406 y(c)o(hanges)i(its)h
(later)f(b)q(eha)o(vior.)p -75 2446 839 2 v -23 2473
a Fg(1)-6 2489 y Fp(Recall)g(that)e(a)g(matrix)h(is)g(sto)q(c)o(hastic)
g(if)f(it)h(has)f(non-negativ)o(e)i(real)f(en)o(tries)g(that)f(sum)g
(to)g(1)g(in)h(eac)o(h)g(column.)-23 2518 y Fg(2)-6 2534
y Fp(The)h(la)o(w)h(of)f(alternativ)o(es)j(sa)o(ys)e(exactly)h(that)e
(the)h(probabilit)o(y)j(of)c(an)g(ev)o(en)o(t)h Ff(A)f
Fp(do)q(esn't)h(c)o(hange)h(if)e(w)o(e)g(\014rst)h(c)o(hec)o(k)g(to)f
(see)g(whether)-75 2580 y(ev)o(en)o(t)e Ff(B)i Fp(has)f(happ)q(ened,)g
Ff(P)5 b Fp(\()p Ff(A)p Fp(\))10 b(=)h Ff(P)5 b Fp(\()p
Ff(A)p Fe(j)p Ff(B)r Fp(\))p Ff(P)g Fp(\()p Ff(B)r Fp(\))i(+)h
Ff(P)d Fp(\()p Ff(A)p Fe(j)p 815 2549 31 2 v Ff(B)r Fp(\))p
Ff(P)g Fp(\()p 906 2549 V Ff(B)q Fp(\))962 2779 y Fs(7)p
eop
%%Page: 8 8
8 7 bop -75 -26 a Fh(3.2)56 b(De\014ning)18 b(a)h(QTM)-75
78 y Fs(Our)f(mo)q(del)h(of)f(randomized)h(computation)f(is)g(already)h
(surprisingly)g(close)g(to)f(Deutsc)o(h's)f(mo)q(del)i(of)f(a)f(QTM.)h
(The)-75 134 y(ma)s(jor)11 b(c)o(hange)i(that)e(is)i(required)h(is)f
(that)f(in)h(quan)o(tum)f(ph)o(ysics,)i(the)e(amplitudes)i(in)g(a)e
(system's)g(linear)h(sup)q(erp)q(osition)-75 191 y(and)j(the)f(matrix)g
(elemen)o(ts)h(in)g(a)f(system's)g(time)g(ev)o(olution)i(op)q(erator)d
(are)h(allo)o(w)o(ed)h(to)f(b)q(e)h(complex)g(n)o(um)o(b)q(ers)g
(rather)-75 247 y(than)c(just)f(p)q(ositiv)o(e)i(reals.)19
b(When)12 b(an)g(observ)m(ation)g(is)h(made,)f(the)g(probabilit)o(y)h
(asso)q(ciated)f(with)g(eac)o(h)g(con\014guration)g(is)-75
304 y(not)h(the)g(con\014guration's)g(amplitude)i(in)f(the)g(sup)q(erp)
q(osition,)h(but)e(rather)g(the)g(squared)h(magnitude)g(of)e(its)i
(amplitude.)-75 360 y(So)f(instead)h(of)e(alw)o(a)o(ys)h(ha)o(ving)g(a)
g(linear)h(sup)q(erp)q(osition)h(whose)d(en)o(tries)i(sum)f(to)f(1,)h
(w)o(e)g(will)i(no)o(w)d(alw)o(a)o(ys)g(ha)o(v)o(e)h(a)g(linear)-75
417 y(sup)q(erp)q(osition)21 b(whose)d(Euclidean)j(length)f(is)f(1.)30
b(This)20 b(means)e(that)g(QTMs)h(m)o(ust)f(b)q(e)i(de\014ned)g(so)e
(that)g(their)i(time)-75 473 y(ev)o(olution)c(preserv)o(es)f(the)g
(Euclidean)j(length)e(of)e(sup)q(erp)q(ositions.)-4 547
y(Making)h(these)g(c)o(hanges)g(to)g(our)g(mo)q(del,)h(w)o(e)e(arriv)o
(e)h(at)g(the)g(follo)o(wing)h(de\014nitions.)-4 621
y(F)l(or)11 b(completeness,)i(let)g(us)f(recall)h(the)g(de\014nition)g
(of)f(a)g(deterministic)i(TM.)d(There)h(are)g(man)o(y)g(standard)f(v)m
(ariations)-75 678 y(to)h(the)g(de\014nition)i(of)e(deterministic)i
(TM,)d(none)i(of)e(whic)o(h)i(a\013ect)f(their)g(computational)h(p)q(o)
o(w)o(er.)18 b(In)13 b(this)g(pap)q(er)f(w)o(e)g(will)-75
734 y(mak)o(e)j(our)h(c)o(hoices)h(consisten)o(t)f(with)g(those)f(in)i
(Deutsc)o(h's)e(pap)q(er)h([20]:)k(w)o(e)c(consider)h(TMs)e(with)h(a)f
(t)o(w)o(o-w)o(a)o(y)f(in\014nite)-75 791 y(tap)q(e)g(and)h(a)f(single)
h(tap)q(e)g(head)g(whic)o(h)g(m)o(ust)e(mo)o(v)o(e)h(left)h(or)e(righ)o
(t)h(one)h(square)f(on)g(eac)o(h)h(step.)k(W)l(e)c(also)f(giv)o(e)g
(standard)-75 847 y(de\014nitions)h(for)e(in)o(terpreting)i(the)e
(input,)i(output,)e(and)h(running)g(time)g(of)f(a)h(deterministic)h
(TM.)e(Note)g(that)g(although)-75 904 y(w)o(e)j(usually)i(restrict)e
(our)g(discussion)i(to)e(TMs)f(with)i(tap)q(e)f(head)h(mo)o(v)o(emen)o
(ts)e Fm(f)p Fl(L;)8 b(R)p Fm(g)p Fs(,)15 b(w)o(e)h(will)i(sometimes)e
(consider)-75 960 y Fr(gener)n(alize)n(d)d Fs(TMs)i(with)h(tap)q(e)f
(head)g(mo)o(v)o(emen)o(ts)g Fm(f)p Fl(L;)8 b(N)r(;)g(R)p
Fm(g)k Fs(\(where)j Fl(N)20 b Fs(means)15 b(no)g(head)h(mo)o(v)o(emen)o
(t\).)-75 1078 y Fn(De\014nition)j(3.2.1)j Fr(A)f Fs(deterministic)g(T)
l(uring)g(Mac)o(hine)g Fr(is)f(de\014ne)n(d)g(by)g(a)h(triplet)f
Fs(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))18 b Fr(wher)n(e:)30
b Fs(\006)20 b Fr(is)g(a)h(\014nite)-75 1134 y(alphab)n(et)16
b(with)g(an)f(identi\014e)n(d)g(blank)g(symb)n(ol)f Fs(#)p
Fr(,)i Fl(Q)f Fr(is)h(a)f(\014nite)g(set)g(of)h(states)f(with)h(an)f
(identi\014e)n(d)g(initial)g(state)g Fl(q)1914 1141 y
Fj(0)1950 1134 y Fr(and)-75 1191 y(\014nal)g(state)h
Fl(q)156 1198 y Fk(f)192 1191 y Fm(6)p Fs(=)d Fl(q)260
1198 y Fj(0)280 1191 y Fr(,)j(and)g Fl(\016)r Fr(,)h(the)f
Fs(deterministic)h(transition)f(function)p Fr(,)h(is)f(a)g(function)593
1288 y Fl(\016)47 b Fs(:)e Fl(Q)26 b Fm(\002)h Fs(\006)h
Fm(!)i Fs(\006)c Fm(\002)h Fl(Q)f Fm(\002)h(f)p Fl(L;)8
b(R)p Fm(g)-75 1385 y Fr(The)19 b(TM)f(has)h(a)g(two-way)h(in\014nite)d
(tap)n(e)i(of)g(c)n(el)r(ls)f(indexe)n(d)g(by)h Fn(Z)g
Fr(and)g(a)g(single)e(r)n(e)n(ad/write)j(tap)n(e)f(he)n(ad)g(that)g
(moves)-75 1441 y(along)d(the)g(tap)n(e.)-4 1515 y(A)e
Fs(con\014guration)h Fr(or)g Fs(instan)o(taneous)e(description)j
Fr(of)f(the)f(TM)g(is)g(a)h(c)n(omplete)f(description)g(of)h(the)g(the)
g(c)n(ontents)e(of)-75 1572 y(the)k(tap)n(e,)g(the)g(lo)n(c)n(ation)f
(of)g(the)h(tap)n(e)g(he)n(ad,)g(and)g(the)g(state)g
Fl(q)e Fm(2)f Fl(Q)i Fr(of)h(the)g(\014nite)f(c)n(ontr)n(ol.)21
b(A)o(t)16 b(any)h(time)g(only)f(a)h(\014nite)-75 1628
y(numb)n(er)f(of)g(tap)n(e)h(c)n(el)r(ls)e(may)i(c)n(ontain)e
(non-blank)g(symb)n(ols.)-4 1703 y(F)m(or)i(any)g(c)n(on\014gur)n
(ation)g Fl(c)h Fr(of)g(TM)f Fl(M)5 b Fr(,)18 b(the)g(suc)n(c)n(essor)e
(c)n(on\014gur)n(ation)h Fl(c)1278 1686 y Fy(0)1307 1703
y Fr(is)g(de\014ne)n(d)g(by)g(applying)h(the)g(tr)n(ansition)-75
1759 y(function)f(to)g(the)h(curr)n(ent)f(state)g Fl(q)i
Fr(and)e(curr)n(ently)g(sc)n(anne)n(d)f(symb)n(ol)g Fl(\033)j
Fr(in)e(the)g(obvious)h(way.)24 b(We)17 b(write)h Fl(c)c
Fm(!)1881 1766 y Fk(M)1935 1759 y Fl(c)1955 1742 y Fy(0)1984
1759 y Fr(to)-75 1815 y(denote)i(that)h Fl(c)183 1799
y Fy(0)211 1815 y Fr(fol)r(lows)f(fr)n(om)g Fl(c)g Fr(in)g(one)g(step.)
-4 1890 y(By)f(c)n(onvention,)f(we)h(r)n(e)n(quir)n(e)g(the)g
Fs(initial)h(con\014guration)g Fr(of)f Fl(M)20 b Fr(to)c(b)n(e)e
(satisfy)h(the)g(fol)r(lowing)g(c)n(onditions:)k(the)d(tap)n(e)-75
1946 y(he)n(ad)j(is)e(in)h(c)n(el)r(l)g(0,)h(c)n(al)r(le)n(d)e(the)i
Fs(start)d(cell)p Fr(,)k(and)e(the)h(machine)f(is)g(in)g(state)g
Fl(q)1285 1953 y Fj(0)1305 1946 y Fr(.)27 b(A)o(n)18
b(initial)f(c)n(on\014gur)n(ation)h(has)g Fs(input)-75
2003 y Fl(x)13 b Fm(2)g Fs(\(\006)c Fm(\000)h Fs(#\))168
1986 y Fy(\003)204 2003 y Fr(if)16 b Fl(x)g Fr(is)g(written)g(on)g(the)
g(tap)n(e)h(in)e(p)n(ositions)g Fs(0)p Fl(;)8 b Fs(1)p
Fl(;)g Fs(2)p Fl(;)g(:)f(:)h(:)k Fr(and)17 b(al)r(l)f(other)g(tap)n(e)h
(c)n(el)r(ls)e(ar)n(e)h(blank.)k(The)c(TM)-75 2059 y
Fs(halts)f Fr(on)g(input)h Fl(x)f Fr(if)g(it)g(eventual)r(ly)g(enters)f
(the)i(\014nal)e(state)h Fl(q)999 2066 y Fk(f)1022 2059
y Fr(.)20 b(The)15 b(numb)n(er)g(of)h(steps)e(a)i(TM)e(takes)h(to)g
(halt)h(on)f(input)-75 2115 y Fl(x)h Fr(is)f(its)g Fs(running)g(time)h
Fr(on)g(input)f Fl(x)p Fr(.)21 b(If)15 b(a)h(TM)f(halts)g(then)g(its)h
Fs(output)f Fr(is)g(the)h(string)f(in)g Fs(\006)1528
2099 y Fy(\003)1563 2115 y Fr(c)n(onsisting)e(of)j(those)g(tap)n(e)-75
2172 y(c)n(ontents)f(fr)n(om)i(the)f(leftmost)g(non-blank)f(symb)n(ol)h
(to)h(the)f(rightmost)h(non-blank)e(symb)n(ol,)h(or)g(the)h(empty)g
(string)f(if)g(the)-75 2228 y(entir)n(e)g(tap)n(e)g(is)g(blank.)k(A)c
(TM)f(which)i(halts)f(on)g(al)r(l)g(inputs)g(ther)n(efor)n(e)h(c)n
(omputes)f(a)h(function)e(fr)n(om)i Fs(\(\006)9 b Fm(\000)i
Fs(#\))1853 2212 y Fy(\003)1888 2228 y Fr(to)17 b Fs(\006)1976
2212 y Fy(\003)1996 2228 y Fr(.)-4 2346 y Fs(W)l(e)g(no)o(w)g(giv)o(e)g
(a)g(sligh)o(tly)i(mo)q(di\014ed)f(v)o(ersion)g(of)f(the)g
(de\014nition)i(of)e(a)g(QTM)g(pro)o(vided)h(b)o(y)g(Deutsc)o(h)f([20)o
(].)26 b(As)17 b(in)-75 2403 y(the)f(case)h(of)f(probabilistic)i(TM,)e
(w)o(e)g(m)o(ust)f(limit)j(the)e(transition)h(amplitudes)h(to)d
(e\016cien)o(tly)j(computable)f(n)o(um)o(b)q(ers.)-75
2459 y(Adleman,)j(et.)31 b(al.)18 b([1])g(and)h(Solo)o(v)m(a)o(y)g(and)
g(Y)l(ao)f([40)o(])h(ha)o(v)o(e)f(separately)h(sho)o(wn)f(that)g
(further)h(restricting)g(QTMs)g(to)-75 2516 y(rational)g(amplitudes)i
(do)q(es)f(not)f(reduce)h(their)g(computational)g(p)q(o)o(w)o(er.)31
b(In)20 b(fact,)g(they)f(ha)o(v)o(e)g(sho)o(wn)g(that)g(the)g(set)-75
2572 y(of)j(amplitudes)h Fm(f)p Fs(0)p Fl(;)8 b Fm(\006)330
2554 y Fj(3)p 330 2561 18 2 v 330 2588 a(5)352 2572 y
Fl(;)g Fm(\006)413 2554 y Fj(4)p 413 2561 V 413 2588
a(5)435 2572 y Fl(;)g Fs(1)p Fm(g)21 b Fs(are)g(su\016cien)o(t)i(to)f
(construct)f(a)h(univ)o(ersal)h(QTM.)f(W)l(e)g(giv)o(e)g(a)g
(de\014nition)i(of)e(the)-75 2629 y(computation)13 b(of)f(a)h(QTM)f
(with)i(a)e(particular)i(string)e(as)h(input,)h(but)f(w)o(e)f(defer)i
(discussing)g(what)e(it)i(means)e(for)h(a)f(QTM)962 2779
y(8)p eop
%%Page: 9 9
9 8 bop -75 -26 a Fs(to)16 b(halt)h(or)f(giv)o(e)h(output)f(un)o(til)i
Fm(x)p Fs(3.5.)24 b(Again,)17 b(w)o(e)f(will)i(usually)g(restrict)f
(our)f(discussion)i(to)e(QTMs)h(with)g(tap)q(e)g(head)-75
31 y(mo)o(v)o(emen)o(ts)11 b Fm(f)p Fl(L;)d(R)p Fm(g)p
Fs(,)i(but)i(will)i(sometimes)d(consider)i(\\generalized")g(QTMs)f
(with)g(tap)q(e)g(head)g(mo)o(v)o(emen)o(ts)f Fm(f)p
Fl(L;)d(N)r(;)g(R)p Fm(g)p Fs(.)-75 87 y(As)17 b(w)o(e)g(p)q(oin)o(ted)
h(out)e(in)i(the)f(in)o(tro)q(duction,)h(unlik)o(e)h(in)f(the)f(case)g
(of)f(deterministic)j(TMs,)e(these)g(c)o(hoices)h(do)f(mak)o(e)f(a)-75
144 y(greater)e(di\013erence)j(in)f(the)f(case)g(of)g(QTMs.)20
b(This)15 b(p)q(oin)o(t)h(is)g(also)f(discussed)i(later)e(in)h(the)f
(pap)q(er.)-75 257 y Fn(De\014nition)k(3.2.2)j Fr(Cal)r(l)408
246 y Fs(~)401 257 y Fn(C)e Fr(the)g(set)g(c)n(onsisting)e(of)i
Fl(\013)g Fm(2)g Fn(C)g Fr(such)h(that)g(ther)n(e)f(is)f(a)i
(deterministic)f(algorithm)g(that)-75 314 y(c)n(omputes)c(the)h(r)n(e)n
(al)f(and)g(imaginary)g(p)n(arts)h(of)f Fl(\013)g Fr(to)h(within)f
Fs(2)1016 297 y Fy(\000)p Fk(n)1083 314 y Fr(in)g(time)g(p)n(olynomial)
g(in)g Fl(n)p Fr(.)-4 388 y(A)i Fs(quan)o(tum)g(T)l(uring)h(Mac)o(hine)
g Fr(\(QTM\))e Fl(M)24 b Fr(is)19 b(de\014ne)n(d)f(by)g(a)h(triplet)g
Fs(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))17 b Fr(wher)n(e:)26
b Fs(\006)18 b Fr(is)h(a)g(\014nite)f(alphab)n(et)-75
444 y(with)i(an)f(identi\014e)n(d)f(blank)g(symb)n(ol)h
Fs(#)p Fr(,)h Fl(Q)f Fr(is)f(a)i(\014nite)e(set)h(of)g(states)g(with)h
(an)f(identi\014e)n(d)f(initial)g(state)i Fl(q)1806 451
y Fj(0)1845 444 y Fr(and)f(\014nal)-75 501 y(state)d
Fl(q)54 508 y Fk(f)90 501 y Fm(6)p Fs(=)d Fl(q)158 508
y Fj(0)178 501 y Fr(,)j(and)g Fl(\016)r Fr(,)g(the)h
Fs(quan)o(tum)e(transition)g(function)p Fr(,)i(is)f(a)h(function)627
599 y Fl(\016)47 b Fs(:)d Fl(Q)27 b Fm(\002)f Fs(\006)j
Fm(!)1019 588 y Fs(~)1012 599 y Fn(C)1050 581 y Fj(\006)16
b Fy(\002)h Fk(Q)f Fy(\002)g(f)p Fk(L;R)p Fy(g)-75 693
y Fr(The)h(QTM)f(has)h(a)g(two-way)i(in\014nite)c(tap)n(e)i(of)g(c)n
(el)r(ls)f(indexe)n(d)h(by)g Fn(Z)g Fr(and)g(a)g(single)f(r)n(e)n
(ad/write)h(tap)n(e)g(he)n(ad)h(that)f(moves)-75 749
y(along)k(the)h(tap)n(e.)36 b(We)22 b(de\014ne)f(c)n(on\014gur)n
(ations,)g(initial)g(c)n(on\014gur)n(ations,)g(and)h(\014nal)e(c)n
(on\014gur)n(ations)g(exactly)h(as)h(for)-75 805 y(deterministic)16
b(TMs.)-4 880 y(L)n(et)f Fm(S)k Fr(b)n(e)d(the)h(inner-pr)n(o)n(duct)f
(sp)n(ac)n(e)g(of)g(\014nite)g(c)n(omplex)g(line)n(ar)f(c)n
(ombinations)h(of)g(c)n(on\014gur)n(ations)f(of)i Fl(M)k
Fr(with)c(the)-75 936 y(Euclide)n(an)c(norm.)20 b(We)14
b(c)n(al)r(l)f(e)n(ach)h(element)e Fl(\036)h Fm(2)g(S)k
Fr(a)c Fs(sup)q(erp)q(osition)j Fr(of)e Fl(M)5 b Fr(.)20
b(The)13 b(QTM)g Fl(M)18 b Fr(de\014nes)13 b(a)h(line)n(ar)e(op)n(er)n
(ator)-75 993 y Fl(U)-44 1000 y Fk(M)8 993 y Fs(:)g Fm(S)k(!)d(S)s
Fr(,)h(c)n(al)r(le)n(d)e(the)h Fs(time)f(ev)o(olution)g(op)q(erator)g
Fr(of)h Fl(M)18 b Fr(as)13 b(fol)r(lows:)19 b(If)12 b
Fl(M)18 b Fr(starts)13 b(in)f(c)n(on\014gur)n(ation)g(c)k(with)d(curr)n
(ent)-75 1049 y(state)g Fl(p)f Fr(and)h(sc)n(anne)n(d)e(symb)n(ol)h
Fl(\033)r Fr(.)19 b(Then)12 b(after)h(one)g(step)f Fl(M)18
b Fr(wil)r(l)13 b(b)n(e)f(in)g(sup)n(erp)n(osition)g(of)h(c)n
(on\014gur)n(ations)f Fl( )h Fs(=)1864 1017 y Fi(P)1908
1060 y Fk(i)1930 1049 y Fl(\013)1959 1056 y Fk(i)1973
1049 y Fr(c)1994 1056 y Fk(i)2008 1049 y Fr(,)-75 1105
y(wher)n(e)g(e)n(ach)f(non-zer)n(o)g Fl(\013)360 1112
y Fk(i)387 1105 y Fr(c)n(orr)n(esp)n(onds)f(to)i(a)g(tr)n(ansition)e
Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)s(;)g(q)r(;)f(d)p
Fs(\))p Fr(,)j(and)i(c)1305 1112 y Fk(i)1332 1105 y Fr(is)g(the)h(new)f
(c)n(on\014gur)n(ation)g(that)h(r)n(esults)-75 1162 y(fr)n(om)20
b(applying)f(this)h(tr)n(ansition)e(to)i(c)s(.)30 b(Extending)19
b(this)h(map)g(to)g(the)f(entir)n(e)g(sp)n(ac)n(e)g Fm(S)k
Fr(thr)n(ough)d(line)n(arity)f(gives)g(the)-75 1218 y(line)n(ar)c(time)
i(evolution)f(op)n(er)n(ator)h Fl(U)562 1225 y Fk(M)601
1218 y Fr(.)-4 1332 y Fs(Note)12 b(that)f(w)o(e)h(de\014ned)i
Fm(S)h Fs(b)o(y)d(giving)h(an)g(orthonormal)e(basis)i(for)e(it:)19
b(namely)13 b(the)f(con\014gurations)h(of)f Fl(M)5 b
Fs(.)19 b(In)13 b(terms)-75 1388 y(of)d(this)h(standard)g(basis,)g(eac)
o(h)g(sup)q(erp)q(osition)h Fl( )i Fm(2)f(S)h Fs(ma)o(y)c(b)q(e)h
(represen)o(ted)g(as)f(a)h(v)o(ector)f(of)g(complex)h(n)o(um)o(b)q(ers)
g(indexed)-75 1445 y(b)o(y)18 b(con\014gurations.)28
b(The)18 b(time)g(ev)o(olution)h(op)q(erator)e Fl(U)929
1452 y Fk(M)986 1445 y Fs(ma)o(y)g(b)q(e)i(represen)o(ted)f(b)o(y)g
(the)g(\(coun)o(table)g(dimensional\))-75 1501 y(\\square")13
b(matrix)h(with)h(columns)g(and)f(ro)o(ws)f(indexed)j(b)o(y)e
(con\014gurations)g(where)h(the)f(matrix)g(elemen)o(t)h(from)e(column)
-75 1558 y Fl(c)h Fs(and)g(ro)o(w)e Fl(c)151 1541 y Fy(0)177
1558 y Fs(giv)o(es)i(the)g(amplitude)h(with)f(whic)o(h)h
(con\014guration)f Fl(c)f Fs(leads)i(to)e(con\014guration)h
Fl(c)1576 1541 y Fy(0)1602 1558 y Fs(in)g(a)g(single)h(step)f(of)f
Fl(M)5 b Fs(.)-4 1632 y(F)l(or)11 b(con)o(v)o(enience,)j(w)o(e)d(will)j
(o)o(v)o(erload)d(notation)h(and)g(use)g(the)g(expression)h
Fl(\016)r Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g(q)r(;)f(d)o
Fs(\))i(to)i(denote)h(the)h(amplitude)-75 1688 y(in)j
Fl(\016)r Fs(\()p Fl(p;)8 b(\033)r Fs(\))13 b(of)i Fm(j)p
Fl(\034)5 b Fm(i)o(j)p Fl(q)r Fm(i)o(j)p Fl(d)p Fm(i)o
Fs(.)-4 1763 y(The)12 b(next)f(de\014nition)j(pro)o(vides)e(an)g
(extremely)g(imp)q(ortan)o(t)g(condition)h(that)e(QTMs)g(m)o(ust)h
(satisfy)f(to)g(b)q(e)i(consisten)o(t)-75 1819 y(with)f(quan)o(tum)f
(ph)o(ysics.)20 b(W)l(e)11 b(ha)o(v)o(e)g(in)o(tro)q(duced)i(this)f
(condition)h(in)f(the)g(form)e(stated)h(b)q(elo)o(w)h(for)f(exp)q
(ository)h(purp)q(oses.)-75 1876 y(As)e(w)o(e)g(shall)i(see)e(later)g
(\(in)h Fm(x)p Fs(3.3\),)f(there)g(are)g(other)g(equiv)m(alen)o(t)i
(form)o(ulations)e(of)g(this)g(condition)i(that)d(are)h(more)g
(familiar)-75 1932 y(to)15 b(quan)o(tum)f(ph)o(ysics.)-75
2046 y Fn(De\014nition)19 b(3.2.3)j Fr(We)h(wil)r(l)g(say)g(that)g
Fl(M)28 b Fr(is)23 b Fs(w)o(ell-formed)h Fr(if)e(the)i(its)e(time)h
(evolution)g(op)n(er)n(ator)h Fl(U)1780 2053 y Fk(M)1842
2046 y Fr(pr)n(eserves)-75 2102 y(Euclide)n(an)16 b(length.)-4
2216 y Fs(W)l(ell-formedness)d(is)f(a)g(necessary)g(condition)h(for)e
(a)g(QTM)h(to)f(b)q(e)h(consisten)o(t)g(with)g(quan)o(tum)g(ph)o
(ysics.)20 b(As)11 b(w)o(e)h(shall)-75 2272 y(see)i(in)h(the)e(next)h
(subsection,)h(w)o(ell-formedness)g(is)f(equiv)m(alen)o(t)i(to)d
(unitary)h(time)g(ev)o(olution,)g(whic)o(h)h(is)f(a)g(fundamen)o(tal)
-75 2329 y(requiremen)o(t)i(of)f(quan)o(tum)f(ph)o(ysics.)-4
2403 y(Next,)h(w)o(e)h(de\014ne)h(the)f(rules)h(for)e(observing)i(the)f
(QTM)f Fl(M)5 b Fs(.)23 b(F)l(or)15 b(those)h(familiar)g(with)h(quan)o
(tum)e(mec)o(hanics,)i(w)o(e)-75 2459 y(should)h(state)e(that)h(the)g
(de\014nition)i(b)q(elo)o(w)e(restricts)g(the)g(measuremen)o(ts)g(to)f
(b)q(e)i(in)g(the)f(computational)g(basis)h(of)e Fm(S)s
Fs(.)-75 2516 y(This)i(is)g(b)q(ecause)g(the)f(actual)g(basis)h(in)g
(whic)o(h)g(the)f(measuremen)o(t)g(is)h(p)q(erformed)f(m)o(ust)g(b)q(e)
h(e\016cien)o(tly)h(computable,)-75 2572 y(and)12 b(therefore)h(w)o(e)f
(ma)o(y)l(,)g(without)g(loss)g(of)g(generalit)o(y)l(,)h(p)q(erform)g
(the)f(rotation)f(to)h(that)g(basis)g(during)i(the)e(computation)-75
2629 y(itself.)962 2779 y(9)p eop
%%Page: 10 10
10 9 bop -75 -26 a Fn(De\014nition)19 b(3.2.4)j Fr(When)17
b(QTM)g Fl(M)22 b Fr(in)16 b(sup)n(erp)n(osition)h Fl( )e
Fs(=)1050 -58 y Fi(P)1093 -14 y Fk(i)1115 -26 y Fl(\013)1144
-19 y Fk(i)1158 -26 y Fr(c)1179 -19 y Fk(i)1210 -26 y
Fr(is)i(observe)n(d)f(or)i(me)n(asur)n(e)n(d,)f(c)n(on\014gur)n(ation)f
(c)2008 -19 y Fk(i)-75 31 y Fr(is)g(se)n(en)f(with)h(pr)n(ob)n(ability)
g Fm(j)p Fl(\013)p Fm(j)446 10 y Fj(2)466 31 y Fr(.)k(Mor)n(e)n(over,)c
(the)h(sup)n(erp)n(osition)f(of)g Fl(M)21 b Fr(is)16
b(up)n(date)n(d)h(to)g Fl( )1484 14 y Fy(0)1507 31 y
Fs(=)c Fr(c)1576 38 y Fk(i)1590 31 y Fr(.)-4 105 y(We)k(may)h(also)f(p)
n(erform)h(a)g Fs(partial)e(measuremen)o(t)p Fr(,)i(say)f(only)g(on)g
(the)g(\014rst)g(c)n(el)r(l)g(of)g(the)h(tap)n(e.)24
b(In)16 b(this)i(c)n(ase,)f(sup-)-75 161 y(p)n(ose)f(that)i(the)f
(\014rst)f(c)n(el)r(l)f(may)i(c)n(ontain)f(the)h(values)f
Fs(0)h Fr(or)g Fs(1)p Fr(,)f(and)h(supp)n(ose)f(the)h(sup)n(erp)n
(osition)f(was)h Fl( )e Fs(=)1784 129 y Fi(P)1828 173
y Fk(i)1850 161 y Fl(\013)p Fs(0)1902 168 y Fk(i)1916
161 y Fr(c)s Fs(0)1963 168 y Fk(i)1987 161 y Fs(+)-75
186 y Fi(P)-31 229 y Fk(i)-10 218 y Fl(\013)p Fs(1)42
225 y Fk(i)57 218 y Fr(c)s Fs(1)104 225 y Fk(i)117 218
y Fr(,)i(wher)n(e)h(the)g(c)s Fs(0)402 225 y Fk(i)432
218 y Fr(ar)n(e)g(those)f(c)n(on\014gur)n(ations)f(that)i(have)g(a)g
Fs(0)f Fr(in)g(the)g(\014rst)g(c)n(el)r(l,)g(and)g(c)s
Fs(1)1664 225 y Fk(i)1695 218 y Fr(ar)n(e)g(those)h(c)n(on\014g-)-75
274 y(ur)n(ations)h(that)h(have)g(a)f Fs(1)g Fr(in)g(the)h(\014rst)f(c)
n(el)r(l.)29 b(Me)n(asuring)18 b(the)i(\014rst)e(c)n(el)r(l)h(r)n
(esults)f(in)h Fl(P)6 b(r)q Fs([0])17 b(=)1604 242 y
Fi(P)1648 286 y Fk(i)1669 274 y Fm(j)p Fl(\013)p Fs(0)1734
281 y Fk(i)1748 274 y Fm(j)1761 253 y Fj(2)1780 274 y
Fr(.)30 b(Mor)n(e)n(over,)-75 331 y(if)19 b(a)g Fs(0)f
Fr(is)h(observe)n(d,)g(the)g(new)f(sup)n(erp)n(osition)h(is)f(given)g
(by)1047 313 y Fj(1)p 996 320 120 2 v 996 325 a Fm(p)p
1034 325 82 2 v 32 x Fk(P)5 b(r)q Fj([0])1128 299 y Fi(P)1172
342 y Fk(i)1193 331 y Fl(\013)p Fs(0)1245 338 y Fk(i)1260
331 y Fr(c)s Fs(0)1307 338 y Fk(i)1320 331 y Fr(.)29
b(i.e.)f(the)19 b(p)n(art)g(of)g(the)h(sup)n(erp)n(osition)-75
405 y(c)n(onsistent)14 b(with)j(the)g(answer,)f(with)g(amplitudes)h(sc)
n(ale)n(d)e(to)i(give)f(a)g(unit)g(ve)n(ctor.)-4 502
y Fs(Note)g(that)g(the)h(w)o(ell-formedness)h(condition)f(on)g(a)f(QTM)
h(simply)h(sa)o(ys)e(that)g(the)h(the)f(time)h(ev)o(olution)h(op)q
(erator)-75 558 y(of)c(a)h(QTM)f(m)o(ust)g(satisfy)g(the)h(condition)h
(that)e(in)h(eac)o(h)g(successiv)o(e)h(sup)q(erp)q(osition,)g(the)f
(sum)g(of)f(the)g(probabilities)j(of)-75 615 y(all)f(p)q(ossible)h
(con\014gurations)e(m)o(ust)g(b)q(e)h(1.)-4 689 y(Notice)d(that)f(a)g
(QTM)g(di\013ers)h(from)f(a)h(classical)h(TM)e(in)h(that)f(the)h
(\\user")f(has)h(decisions)h(b)q(ey)o(ond)g(just)e(c)o(ho)q(osing)h(an)
-75 745 y(input.)20 b(A)14 b(priori)h(it)f(is)g(not)g(clear)g(whether)g
(m)o(ultiple)i(observ)m(ations)e(migh)o(t)f(increase)i(the)f(p)q(o)o(w)
o(er)f(of)h(QTMs)f(This)h(p)q(oin)o(t)-75 802 y(is)k(discussed)g(in)g
(more)f(detail)h(in)g([10)o(],)f(and)g(there)g(it)g(is)h(sho)o(wn)f
(that)f(one)h(ma)o(y)g(assume)f(without)i(loss)f(of)f(generalit)o(y)-75
858 y(that)j(the)g(QTM)g(is)h(only)g(observ)o(ed)f(once.)33
b(Therefore,)20 b(in)g(this)g(pap)q(er,)h(w)o(e)e(shall)h(mak)o(e)f
(simplifying)j(assumptions)-75 915 y(ab)q(out)16 b(the)h(measuremen)o
(t)f(of)g(the)g(\014nal)h(result)g(of)f(the)h(QTM.)f(The)g(fact)g(that)
g(these)g(assumptions)h(do)f(not)g(result)h(in)-75 971
y(an)o(y)e(loss)g(of)g(generalit)o(y)h(follo)o(ws)f(from)f(the)i
(results)f(in)h([10)o(].)-4 1045 y(In)j(general,)g(the)f(\\output")g
(of)g(a)g(QTM)g(is)h(a)f(sample)h(from)e(a)h(probabilit)o(y)i
(distribution.)31 b(W)l(e)18 b(can)g(regard)g(t)o(w)o(o)-75
1102 y(QTMs)d(as)g(functionally)i(equiv)m(alen)o(t,)f(for)f(practical)h
(purp)q(oses,)f(if)h(their)f(output)g(distributions)i(are)e(su\016cien)
o(tly)h(close)-75 1158 y(to)e(eac)o(h)g(other.)20 b(A)14
b(formal)g(de\014nition)i(of)e(what)g(it)h(means)f(for)g(one)h(QTM)f
(to)g(sim)o(ulate)h(another)f(is)h(also)f(giv)o(en)h(in)h([10)o(].)-75
1215 y(As)e(in)i(the)e(case)h(of)f(classical)i(TMs,)d(the)i(formal)f
(de\014nition)i(is)f(quite)g(un)o(wieldy)l(.)22 b(In)15
b(the)g(actual)f(constructions,)h(it)f(will)-75 1271
y(b)q(e)k(easy)f(to)f(see)i(in)g(what)f(sense)g(they)g(are)g(sim)o
(ulations.)27 b(Therefore)17 b(w)o(e)g(will)i(not)e(replicate)h(the)f
(formal)g(de\014nitions)-75 1327 y(from)d([10])g(here.)21
b(W)l(e)15 b(giv)o(e)g(a)g(more)g(informal)h(de\014nition)h(b)q(elo)o
(w:)-75 1424 y Fn(De\014nition)i(3.2.5)j Fr(We)d(say)e(that)i(QTM)e
Fl(M)735 1408 y Fy(0)765 1424 y Fr(simulates)g Fl(M)23
b Fr(with)c(slowdown)f Fl(f)23 b Fr(with)18 b(ac)n(cur)n(acy)h
Fl(\017)p Fr(,)f(if)g(the)g(fol)r(lowing)-75 1481 y(holds:)k(let)17
b Fm(D)i Fr(b)n(e)d(a)i(distribution)f(such)g(that)h(observing)e
Fl(M)22 b Fr(on)17 b(input)g Fl(x)g Fr(after)h Fl(T)23
b Fr(steps)16 b(pr)n(o)n(duc)n(es)h(a)h(sample)e(fr)n(om)i
Fm(D)q Fr(.)-75 1537 y(let)h Fm(D)28 1521 y Fy(0)59 1537
y Fr(b)n(e)g(a)g(distribution)g(such)h(that)f(observing)g
Fl(M)861 1521 y Fy(0)891 1537 y Fr(on)g(input)h Fl(x)f
Fr(after)g Fl(f)5 b Fs(\()p Fl(T)h Fs(\))19 b Fr(steps)g(pr)n(o)n(duc)n
(es)f(a)i(sample)f(fr)n(om)g Fm(D)1996 1521 y Fy(0)2008
1537 y Fr(.)-75 1594 y(Then)c(we)i(say)f(that)h Fl(M)333
1577 y Fy(0)361 1594 y Fr(simulates)f Fl(M)21 b Fr(with)c(ac)n(cur)n
(acy)f Fl(\017)h Fr(if)f Fm(jD)11 b(\000)g(D)1131 1577
y Fy(0)1143 1594 y Fm(j)h(\024)h Fl(\017)p Fr(.)-4 1690
y Fs(W)l(e)k(will)h(sometimes)f(\014nd)h(it)f(con)o(v)o(enien)o(t)h(to)
e(measure)h(the)g(accuracy)g(of)g(a)f(sim)o(ulation)i(b)o(y)f
(calculating)i(the)e(Eu-)-75 1747 y(clidean)h(distance)e(b)q(et)o(w)o
(een)g(the)g(target)e(sup)q(erp)q(osition)k(and)e(the)g(sup)q(erp)q
(osition)h(ac)o(hiev)o(ed)g(b)o(y)e(the)h(sim)o(ulation.)23
b(The)-75 1803 y(follo)o(wing)e(sho)o(ws)f(that)f(the)i(v)m(ariation)g
(distance)g(b)q(et)o(w)o(een)g(the)f(resulting)i(distributions)g(is)f
(at)e(most)h(4)g(times)h(this)-75 1860 y(Euclidean)c(distance.)-75
1957 y Fn(Lemma)g(3.2.6)23 b Fr(L)n(et)14 b Fl(\036;)8
b( )13 b Fm(2)g(S)18 b Fr(such)d(that)h Fm(k)p Fl(\036)p
Fm(k)c Fs(=)h Fm(k)p Fl( )r Fm(k)e Fs(=)i(1)p Fr(,)i(and)h
Fm(k)p Fl(\036)9 b Fm(\000)i Fl( )r Fm(k)g(\024)i Fl(\017)p
Fr(.)21 b(Then)15 b(the)g(total)g(variation)h(distanc)n(e)-75
2013 y(b)n(etwe)n(en)f(the)i(pr)n(ob)n(ability)f(distributions)g(r)n
(esulting)f(fr)n(om)h(me)n(asur)n(ements)f(of)i Fl(\036)f
Fr(and)g Fl( )i Fr(is)e(at)g(most)h Fs(4)p Fl(\017)p
Fr(.)-75 2110 y Fn(Pro)q(of.)38 b Fs(Let)21 b Fl(\036)i
Fs(=)300 2078 y Fi(P)344 2121 y Fk(i)365 2110 y Fl(\013)394
2117 y Fk(i)408 2110 y Fm(j)p Fl(i)p Fm(i)e Fs(and)g
Fl( )j Fs(=)682 2078 y Fi(P)726 2121 y Fk(i)747 2110
y Fl(\014)773 2117 y Fk(i)787 2110 y Fm(j)p Fl(i)p Fm(i)o
Fs(.)38 b(Observing)22 b Fl(\036)f Fs(giv)o(es)h(eac)o(h)f
Fm(j)p Fl(i)p Fm(i)f Fs(with)i(probabilit)o(y)g Fm(j)p
Fl(\013)1837 2117 y Fk(i)1851 2110 y Fm(j)1863 2089 y
Fj(2)1883 2110 y Fs(,)g(while)-75 2166 y(observing)g
Fl( )h Fs(giv)o(es)e(eac)o(h)h Fm(j)p Fl(i)p Fm(i)e Fs(with)i
(probabilit)o(y)h Fm(j)o Fl(\014)868 2173 y Fk(i)882
2166 y Fm(j)895 2145 y Fj(2)914 2166 y Fs(.)39 b(Let)22
b Fl(\031)i Fs(=)g Fl(\036)14 b Fm(\000)h Fl( )24 b Fs(=)1366
2134 y Fi(P)1410 2178 y Fk(i)1424 2166 y Fs(\()p Fl(\013)1471
2173 y Fk(i)1499 2166 y Fm(\000)15 b Fl(\014)1575 2173
y Fk(i)1589 2166 y Fs(\))p Fm(j)p Fl(i)p Fm(i)n Fs(.)39
b(Then)22 b(the)f(latter)-75 2223 y(probabilit)o(y)l(,)16
b Fm(j)p Fl(\014)205 2230 y Fk(i)219 2223 y Fm(j)231
2202 y Fj(2)251 2223 y Fs(,)f(can)g(b)q(e)h(expressed)g(as:)431
2302 y Fl(\014)457 2309 y Fk(i)471 2302 y Fl(\014)499
2283 y Fy(\003)497 2313 y Fk(i)531 2302 y Fs(=)d(\()p
Fl(\013)626 2309 y Fk(i)650 2302 y Fs(+)e Fl(\015)720
2309 y Fk(i)733 2302 y Fs(\)\()p Fl(\013)798 2309 y Fk(i)822
2302 y Fs(+)f Fl(\015)891 2309 y Fk(i)905 2302 y Fs(\))923
2283 y Fy(\003)955 2302 y Fs(=)j Fm(j)p Fl(\013)1045
2309 y Fk(i)1059 2302 y Fm(j)1071 2281 y Fj(2)1101 2302
y Fs(+)e Fm(j)o Fl(\015)1183 2309 y Fk(i)1197 2302 y
Fm(j)1210 2281 y Fj(2)1239 2302 y Fs(+)g Fl(\013)1314
2309 y Fk(i)1328 2302 y Fl(\015)1355 2283 y Fy(\003)1352
2313 y Fk(i)1384 2302 y Fs(+)f Fl(\015)1453 2309 y Fk(i)1467
2302 y Fl(\013)1496 2283 y Fy(\003)1496 2313 y Fk(i)-75
2380 y Fs(Therefore,)15 b(the)g(total)g(v)m(ariation)g(distance)h(b)q
(et)o(w)o(een)g(these)f(t)o(w)o(o)f(distributions)j(is)f(at)e(most)184
2419 y Fi(X)208 2510 y Fk(i)251 2459 y Fm(k)p Fl(\015)298
2466 y Fk(i)311 2459 y Fm(k)334 2438 y Fj(2)364 2459
y Fs(+)c Fm(j)p Fl(\013)451 2466 y Fk(i)465 2459 y Fl(\015)492
2440 y Fy(\003)489 2470 y Fk(i)511 2459 y Fm(j)g Fs(+)g
Fm(j)p Fl(\015)616 2466 y Fk(i)629 2459 y Fl(\013)658
2440 y Fy(\003)658 2470 y Fk(i)678 2459 y Fm(j)j(\024)752
2419 y Fi(X)776 2510 y Fk(i)819 2459 y Fm(j)p Fl(\015)856
2466 y Fk(i)869 2459 y Fm(j)882 2438 y Fj(2)912 2459
y Fs(+)d Fm(h)p Fl(\015)s Fm(j)o(j)p Fl(\013)p Fm(i)f
Fs(+)i Fm(h)p Fl(\013)p Fm(j)o(j)p Fl(\015)s Fm(i)g(\024)i
Fl(\017)1323 2440 y Fj(2)1354 2459 y Fs(+)d(2)p Fm(k)p
Fl(\013)p Fm(k)o(k)p Fl(\015)s Fm(k)i(\024)h Fl(\017)1647
2440 y Fj(2)1677 2459 y Fs(+)d(2)p Fl(\017)-75 2572 y
Fs(Finally)l(,)17 b(note)e(that)f(since)i(w)o(e)f(ha)o(v)o(e)g(unit)h
(sup)q(erp)q(ositions,)h(w)o(e)d(m)o(ust)h(ha)o(v)o(e)g
Fl(\017)e Fm(\024)g Fs(2.)610 b Fd(2)951 2779 y Fs(10)p
eop
%%Page: 11 11
11 10 bop -75 -26 a Fh(3.3)56 b(Quan)n(tum)18 b(computing)f(as)i(a)g
(unitary)f(transformation)-75 78 y Fs(In)g(the)g(preceding)h(sections,)
g(w)o(e)e(in)o(tro)q(duced)i(QTMs)e(as)h(an)f(extension)i(of)e(the)h
(notion)g(of)f(probabilistic)j(TMs.)27 b(W)l(e)-75 134
y(stated)15 b(there)g(that)g(a)g(QTM)g(is)h(w)o(ell-formed)h(if)e(it)h
(preserv)o(es)g(the)f(norm)g(of)g(the)h(sup)q(erp)q(ositions.)22
b(In)16 b(this)g(section,)f(w)o(e)-75 191 y(explore)k(a)g(di\013eren)o
(t,)g(and)g(extremely)g(useful,)h(alternativ)o(e)f(view)g(of)f(QTMs:)27
b(in)19 b(terms)f(of)g(prop)q(erties)i(of)e(the)h(time)-75
247 y(ev)o(olution)e(op)q(erator.)k(W)l(e)16 b(pro)o(v)o(e)f(that)g(a)h
(QTM)g(is)g(w)o(ell-formed)h(i\013)f(its)g(time)g(ev)o(olution)h(is)g
(unitary)l(.)22 b(Indeed)c(unitary)-75 304 y(time)i(ev)o(olution)h(is)f
(a)f(fundamen)o(tal)h(constrain)o(t)g(imp)q(osed)g(b)o(y)g(quan)o(tum)f
(mec)o(hanics,)j(and)e(w)o(e)f(c)o(hose)h(to)f(state)g(the)-75
360 y(w)o(ell-formedness)d(condition)h(in)f(the)f(last)g(section)h
(mainly)g(for)f(exp)q(ository)g(purp)q(oses.)-4 434 y(Understanding)h
(unitary)g(ev)o(olution)g(from)f(an)g(in)o(tuitiv)o(e)i(p)q(oin)o(t)f
(of)f(view)h(is)g(quite)g(imp)q(ortan)o(t)g(to)e(comprehending)-75
491 y(the)19 b(computational)g(p)q(ossibilitie)q(s)i(of)e(quan)o(tum)f
(mec)o(hanics.)32 b(Let)20 b(us)f(explore)g(this)h(in)f(the)g(setting)g
(of)g(a)f(quan)o(tum)-75 547 y(mec)o(hanical)g(system)e(that)g
(consists)g(of)g Fl(n)h Fs(parts)f(eac)o(h)h(of)f(whic)o(h)h(can)f(b)q
(e)i(in)f(one)g(of)f(t)o(w)o(o)f(states,)g(lab)q(eled)k
Fm(j)p Fs(0)p Fm(i)c Fs(and)i Fm(j)p Fs(1)p Fm(i)-75
604 y Fs(\(these)12 b(could)h(b)q(e)g Fl(n)f Fs(particles,)h(eac)o(h)f
(with)g(a)g(spin)h(state\).)18 b(If)12 b(this)h(w)o(ere)e(a)h
(classical)h(system,)f(then)h(at)e(an)o(y)h(giv)o(en)g(instan)o(t)-75
660 y(it)h(w)o(ould)h(b)q(e)g(in)g(a)e(single)j(con\014guration)e(whic)
o(h)h(could)g(b)q(e)g(describ)q(ed)h(b)o(y)e Fl(n)g Fs(bits.)20
b(Ho)o(w)o(ev)o(er,)12 b(in)i(quan)o(tum)f(ph)o(ysics,)h(the)-75
717 y(system)i(is)h(allo)o(w)o(ed)g(to)f(b)q(e)h(in)g(a)f(linear)i(sup)
q(erp)q(osition)g(of)e(con\014gurations,)g(and)h(indeed)h(the)e(instan)
o(taneous)h(state)e(of)-75 773 y(the)e(system)f(is)h(describ)q(ed)i(b)o
(y)d(a)h(unit)g(v)o(ector)f(in)i(the)e(2)863 756 y Fk(n)899
773 y Fs(dimensional)j(v)o(ector)d(space,)h(whose)g(basis)g(v)o(ectors)
f(corresp)q(ond)-75 829 y(to)j(all)h(the)g(2)146 813
y Fk(n)184 829 y Fs(con\014gurations.)21 b(Therefore)16
b(to)e(describ)q(e)k(the)d(instan)o(taneous)h(state)e(of)h(the)h
(system,)f(w)o(e)g(m)o(ust)g(sp)q(ecify)-75 886 y(2)-52
869 y Fk(n)-14 886 y Fs(complex)h(n)o(um)o(b)q(ers.)k(The)15
b(implications)i(of)e(this)h(are)e(quite)i(extraordinary:)j(ev)o(en)d
(for)e(a)h(small)g(system)g(consisting)-75 942 y(of)k(200)g(particles,)
i(nature)e(m)o(ust)g(k)o(eep)h(trac)o(k)f(of)g(2)842
926 y Fj(200)916 942 y Fs(complex)h(n)o(um)o(b)q(ers)g(just)f(to)g
(`remem)o(b)q(er')g(its)h(instan)o(taneous)-75 999 y(state.)25
b(Moreo)o(v)o(er,)15 b(it)j(m)o(ust)e(up)q(date)i(these)f(n)o(um)o(b)q
(ers)g(at)g(eac)o(h)g(instan)o(t)g(to)f(ev)o(olv)o(e)h(the)h(system)e
(in)i(time.)26 b(This)17 b(is)h(an)-75 1055 y(extra)o(v)m(agan)o(t)12
b(amoun)o(t)g(of)h(e\013ort,)f(since)j(2)648 1039 y Fj(200)716
1055 y Fs(is)e(larger)g(than)h(the)f(standard)g(estimates)g(on)g(the)g
(n)o(um)o(b)q(er)h(of)f(particles)h(in)-75 1112 y(the)i(visible)i(univ)
o(erse.)23 b(So)15 b(if)i(nature)e(puts)h(in)h(suc)o(h)f(extra)o(v)m
(agan)o(t)e(amoun)o(ts)h(of)h(e\013ort)e(to)i(ev)o(olv)o(e)g(ev)o(en)g
(a)f(tin)o(y)h(system)-75 1168 y(at)j(the)i(lev)o(el)g(of)f(quan)o(tum)
g(mec)o(hanics,)i(it)e(w)o(ould)h(mak)o(e)e(sense)i(that)e(w)o(e)h
(should)h(design)g(our)f(computers)g(to)g(tak)o(e)-75
1225 y(adv)m(an)o(tage)15 b(of)f(this.)-4 1299 y(Ho)o(w)o(ev)o(er,)21
b(unitary)g(ev)o(olution)h(and)f(the)h(rules)g(for)e(measuremen)o(t)h
(in)h(quan)o(tum)f(mec)o(hanics)h(place)g(signi\014can)o(t)-75
1355 y(constrain)o(ts)12 b(on)h(ho)o(w)f(these)h(features)g(can)g(b)q
(e)g(exploited)h(for)f(computational)g(purp)q(oses.)19
b(One)14 b(of)e(the)h(basic)h(primitiv)o(es)-75 1412
y(that)h(allo)o(ws)h(these)g(features)f(to)g(b)q(e)h(exploited)h(while)
h(resp)q(ecting)e(the)g(unitarit)o(y)g(constrain)o(ts)f(is)h(the)g
(discrete)h(fourier)-75 1468 y(transform)j(|)h(this)g(is)h(describ)q
(ed)h(in)f(more)e(detail)i(in)g Fm(x)p Fs(8.4.)36 b(Here)22
b(w)o(e)e(consider)i(some)f(v)o(ery)f(simple)j(cases:)31
b(One)-75 1525 y(in)o(teresting)21 b(phenomenon)g(supp)q(orted)g(b)o(y)
f(unitary)g(ev)o(olution)h(is)f(the)h(in)o(terference)g(of)e
(computational)i(paths.)34 b(In)-75 1581 y(a)19 b(probabilistic)j
(computation)e(the)g(probabilit)o(y)g(of)g(mo)o(ving)f(from)g(one)h
(con\014guration)g(to)f(another)g(is)h(the)g(sum)f(of)-75
1637 y(the)d(probabilities)j(of)d(eac)o(h)h(p)q(ossible)h(path)e(from)g
(the)g(former)g(to)g(the)g(latter.)23 b(The)17 b(same)f(is)h(true)f(of)
g(the)h(probabilit)o(y)-75 1694 y(amplitudes)f(in)f(quan)o(tum)e
(computation,)h(but)h(not)e(necessarily)j(of)e(the)g(probabilities)i
(of)e(observ)m(ations.)20 b(Consider)15 b(for)-75 1784
y(example)j(applying)g(the)g(transformation)d Fl(U)21
b Fs(=)787 1712 y Fi( )861 1729 y Fj(1)p 846 1736 48
2 v 846 1741 a Fy(p)p 875 1741 18 2 v 27 x Fj(2)994 1729
y(1)p 980 1736 48 2 v 980 1741 a Fy(p)p 1009 1741 18
2 v 27 x Fj(2)861 1794 y(1)p 846 1801 48 2 v 846 1806
a Fy(p)p 875 1806 18 2 v 28 x Fj(2)939 1812 y Fm(\000)994
1794 y Fj(1)p 979 1801 48 2 v 979 1806 a Fy(p)p 1009
1806 18 2 v 1009 1834 a Fj(2)1052 1712 y Fi(!)1102 1784
y Fs(t)o(wice)d(in)g(sequence)g(to)e(the)h(same)g(tap)q(e)g(cell)i
(whic)o(h)-75 1873 y(at)c(\014rst)g(con)o(tains)h(the)f(sym)o(b)q(ol)h
(0.)21 b(If)15 b(w)o(e)g(observ)o(e)h(the)f(cell)j(after)c(the)i
(\014rst)f(application)i(of)e Fl(U)5 b Fs(,)15 b(w)o(e)h(see)f(either)i
(sym)o(b)q(ol)-75 1930 y(with)h(probabilit)o(y)h(1)p
Fl(=)p Fs(2.)26 b(If)18 b(w)o(e)f(then)h(observ)o(e)g(after)f(applying)
i Fl(U)j Fs(a)c(second)g(time,)g(the)g(sym)o(b)q(ols)g(are)f(again)h
(equally)-75 1986 y(lik)o(ely)l(.)34 b(Ho)o(w)o(ev)o(er,)19
b(since)i Fl(U)424 1970 y Fj(2)463 1986 y Fs(is)f(the)f(iden)o(tit)o(y)
l(,)i(if)f(w)o(e)f(only)h(observ)o(e)f(at)g(the)g(end,)i(w)o(e)e(see)g
(a)g(0)g(with)h(probabilit)o(y)h(1.)-75 2043 y(So,)16
b(ev)o(en)h(though)f(there)h(are)f(t)o(w)o(o)f(computational)i(paths)f
(that)g(lead)h(from)f(the)g(initial)j(0)d(to)g(a)g(\014nal)h(sym)o(b)q
(ol)g(1,)f(they)-75 2099 y(in)o(terfere)g(destructiv)o(ely)i
(cancelling)g(eac)o(h)e(other)g(out.)22 b(The)17 b(t)o(w)o(o)d(paths)i
(leading)i(to)d(a)h(0)g(in)o(terfere)g(constructiv)o(ely)h(so)-75
2156 y(that)e(ev)o(en)h(though)g(b)q(oth)f(ha)o(v)o(e)h(probabilit)o(y)
h(1)p Fl(=)p Fs(4)e(when)h(w)o(e)f(observ)o(e)h(t)o(wice)g(w)o(e)f(ha)o
(v)o(e)g(probabilit)o(y)i(1)f(of)f(reac)o(hing)h(0)f(if)-75
2212 y(w)o(e)h(observ)o(e)h(only)g(once.)25 b(Suc)o(h)17
b(a)g(b)q(o)q(osting)g(of)f(probabilities,)j(b)o(y)e(an)f(exp)q(onen)o
(tial)j(factor,)c(lies)j(at)e(the)h(heart)g(of)f(the)-75
2269 y(QTM's)f(adv)m(an)o(tage)f(o)o(v)o(er)h(a)f(probabilistic)k(TM)d
(in)h(solving)g(the)f(F)l(ourier)g(sampling)i(problem.)-4
2343 y(Another)d(constrain)o(t)h(inheren)o(t)g(in)h(computation)e
(using)i(unitary)f(transformations)e(is)i(rev)o(ersibilit)o(y)l(.)22
b(W)l(e)15 b(sho)o(w)f(in)-75 2399 y Fm(x)p Fs(4.2)h(that)g(for)h(an)o
(y)f(QTM)h Fl(M)21 b Fs(there)16 b(is)g(a)g(corresp)q(onding)g(QTM)g
Fl(M)1135 2383 y Fk(R)1164 2399 y Fs(,)g(whose)f(time)i(ev)o(olution)f
(op)q(erator)f(is)i(the)f(con-)-75 2456 y(jugate)d(transp)q(ose)h(of)f
(the)h(time)h(ev)o(olution)f(op)q(erator)f(of)h Fl(M)5
b Fs(,)14 b(and)g(therefore)f(undo)q(es)i(the)f(actions)g(of)g
Fl(M)5 b Fs(.)19 b(Sections)c(3.5)-75 2512 y(and)g(4.1)g(are)g(dev)o
(oted)g(to)f(de\014ning)j(the)e(mac)o(hinery)h(to)f(deal)h(with)f(this)
h(feature)f(of)f(QTMs.)-4 2586 y(W)l(e)j(pro)o(v)o(e)f(b)q(elo)o(w)h
(in)h(App)q(endix)h(A)e(that)f(a)h(QTM)f(is)i(w)o(ell-formed)g(if)f
(and)g(only)g(if)h(its)f(time)g(ev)o(olution)h(op)q(erator)951
2779 y(11)p eop
%%Page: 12 12
12 11 bop -75 -26 a Fs(is)19 b(unitary)l(.)30 b(This)19
b(establishes)g(that)f(our)g(de\014nition)i(\(whic)o(h)f(did)h(not)e
(men)o(tion)g(unitary)h(ev)o(olution)g(for)f(exp)q(ository)-75
31 y(purp)q(oses\))g(do)q(es)f(satisfy)g(the)h(fundamen)o(tal)g
(constrain)o(t)f(imp)q(osed)h(b)o(y)g(quan)o(tum)f(mec)o(hanics)h(|)g
(unitary)g(ev)o(olution.)-75 87 y(Actually)i(one)f(could)h(still)g(ask)
f(wh)o(y)f(this)i(is)f(consisten)o(t)g(with)g(quan)o(tum)g(mec)o
(hanics,)i(since)f(the)f(space)g Fm(S)i Fs(of)e Fr(\014nite)-75
144 y Fs(linear)j(com)o(binations)f(of)f(con\014gurations)g(is)h(not)g
(a)f(Hilb)q(ert)i(space)f(since)g(it)g(is)g(not)f(complete.)37
b(T)l(o)20 b(see)h(that)f(this)-75 200 y(do)q(esn't)d(presen)o(t)h(a)f
(problem,)h(notice)g(that)f Fm(S)j Fs(is)e(a)f(dense)h(subset)f(of)g
(the)h(Hilb)q(ert)h(space)e Fm(H)h Fs(of)f(all)i(\(not)d(just)h
(\014nite\))-75 257 y(linear)h(com)o(binations)f(of)f
(con\014gurations.)25 b(Moreo)o(v)o(er,)15 b(an)o(y)h(unitary)h(op)q
(erator)f Fl(U)21 b Fs(on)c Fm(S)j Fs(has)c(a)g(unique)j(extension)1994
245 y(^)1986 257 y Fl(U)-75 313 y Fs(to)c Fm(H)p Fs(;)i(and)146
301 y(^)138 313 y Fl(U)j Fs(is)d(unitary)f(and)g(its)g(in)o(v)o(erse)g
(is)764 301 y(^)747 313 y Fl(U)783 300 y Fy(\003)803
313 y Fs(.)22 b(The)16 b(pro)q(of)f(is)h(quite)h(simple.)23
b(Let)1464 301 y(^)1456 313 y Fl(U)e Fs(and)1613 301
y(^)1597 313 y Fl(U)1633 300 y Fy(\003)1668 313 y Fs(b)q(e)c(the)f(con)
o(tin)o(uous)-75 369 y(extensions)h(of)f Fl(U)22 b Fs(and)16
b Fl(U)376 353 y Fy(\003)412 369 y Fs(to)g Fm(H)p Fs(.)25
b(Let)16 b Fl(x;)8 b(y)16 b Fm(2)f(H)p Fs(.)25 b(Then)16
b(there)h(are)f(sequences)i Fm(f)p Fl(x)1404 376 y Fk(n)1427
369 y Fm(g)p Fl(;)8 b Fm(f)p Fl(y)1516 376 y Fk(n)1538
369 y Fm(g)15 b(2)g(S)k Fs(suc)o(h)e(that)f Fl(x)1898
376 y Fk(n)1936 369 y Fm(!)f Fl(x)-75 426 y Fs(and)i
Fl(y)37 433 y Fk(n)76 426 y Fm(!)e Fl(y)r Fs(.)25 b(Moreo)o(v)o(er,)15
b(for)h(all)i Fl(n)p Fs(,)f(\()p Fl(U)5 b(x)685 433 y
Fk(n)708 426 y Fl(;)j(y)751 433 y Fk(n)774 426 y Fs(\))15
b(=)g(\()p Fl(x)901 433 y Fk(n)924 426 y Fl(;)8 b(U)981
409 y Fy(\003)1000 426 y Fl(y)1022 433 y Fk(n)1046 426
y Fs(\).)24 b(T)l(aking)17 b(limits,)h(w)o(e)f(get)f(that)g(\()1667
414 y(^)1659 426 y Fl(U)5 b(x;)j(y)r Fs(\))14 b(=)h(\()p
Fl(x;)1929 414 y Fs(^)1913 426 y Fl(U)1949 413 y Fy(\003)1968
426 y Fl(y)r Fs(\),)-75 482 y(as)g(desired.)-4 557 y(As)j(an)g(aside,)h
(w)o(e)f(should)h(brie\015y)h(men)o(tion)e(that)g(another)g(resolution)
h(of)e(this)i(issue)g(is)g(ac)o(hiev)o(ed)g(b)o(y)f(follo)o(wing)-75
613 y(F)l(eynman)c([26)o(],)f(who)h(suggested)f(that)g(if)i(w)o(e)e
(use)h(a)g(quan)o(tum)f(mec)o(hanical)i(system)f(with)g(Hamiltonian)h
Fl(U)d Fs(+)7 b Fl(U)1887 596 y Fy(\003)1907 613 y Fs(,)14
b(then)-75 669 y(the)19 b(resulting)h(system)f(has)g(a)g(lo)q(cal,)h
(time)g(in)o(v)m(arian)o(t)f(Hamiltonian.)33 b(It)19
b(is)h(easy)f(to)f(probabilistically)k(reco)o(v)o(er)d(the)-75
726 y(computation)c(of)g(the)g(original)h(system)f(from)g(the)g
(computation)g(of)g(the)g(new)h(one.)-4 800 y(It)j(is)i(in)o(teresting)
f(to)g(note)f(that)h(the)g(follo)o(wing)g(theorem)g(w)o(ould)g(not)f(b)
q(e)i(true)f(if)g(w)o(e)g(de\014ned)h(QTMs)f(using)g(a)-75
857 y(one-w)o(a)o(y)e(in\014nite)j(tap)q(e.)31 b(In)19
b(that)f(case,)i(the)f(trivial)h(QTM)e(whic)o(h)i(alw)o(a)o(ys)e(mo)o
(v)o(es)g(its)h(tap)q(e)g(head)g(righ)o(t)g(w)o(ould)g(b)q(e)-75
913 y(w)o(ell-formed,)14 b(but)g(its)f(time)h(ev)o(olution)g(w)o(ould)g
(not)f(b)q(e)h(unitary)f(since)i(it's)e(start)f(con\014guration)h
(could)i(not)e(b)q(e)h(reac)o(hed)-75 969 y(from)g(an)o(y)h(other)g
(con\014guration.)-4 1044 y Fc(Theorem)i(A.0.12)e Fr(A)h(QTM)f(is)h
(wel)r(l-forme)n(d)h(i\013)f(its)g(time)g(evolution)g(op)n(er)n(ator)h
(is)f(unitary.)-75 1183 y Fh(3.4)56 b(Precision)17 b(required)g(in)i(a)
g(QTM)-75 1287 y Fs(One)d(imp)q(ortan)o(t)g(concern)g(is)g(whether)g
(QTMs)f(are)h(really)g(analog)g(devices,)g(since)h(they)f(in)o(v)o(olv)
o(e)g(complex)h(transition)-75 1343 y(amplitudes.)k(The)15
b(issue)g(here)g(is)h(ho)o(w)e(accurately)h(these)g(transition)f
(amplitudes)i(m)o(ust)e(b)q(e)i(sp)q(eci\014ed)g(to)e(ensure)i(that)-75
1399 y(the)d(correctness)h(of)e(the)i(computation)f(is)h(not)f
(compromised.)19 b(In)14 b(an)g(earlier)g(v)o(ersion)f(of)g(this)h(pap)
q(er,)g(w)o(e)f(sho)o(w)o(ed)g(that)-75 1456 y Fl(T)-42
1439 y Fk(O)q Fj(\(1\))47 1456 y Fs(bits)i(of)e(precision)j(are)e
(su\016cien)o(t)h(to)f(correctly)g(carry)g(out)g Fl(T)20
b Fs(steps)14 b(of)g(computation)g(to)f(within)j(accuracy)e
Fl(\017)h Fs(for)-75 1512 y(an)o(y)h(constan)o(t)g Fl(\017)p
Fs(.)26 b(Lipton)17 b([30)o(])g(p)q(oin)o(ted)h(out)e(that)g(for)g(the)
h(device)i(to)d(b)q(e)h(regarded)g(as)f(a)h(discrete)h(device,)g(w)o(e)
f(m)o(ust)-75 1569 y(require)e(that)f(its)h(transition)g(amplitudes)h
(b)q(e)f(sp)q(eci\014ed)i(to)d(at)g(most)g(one)g(part)g(in)i
Fl(T)1408 1552 y Fk(O)q Fj(\(1\))1497 1569 y Fs(\(as)e(opp)q(osed)h(to)
f(accurate)h(to)-75 1625 y(within)g Fl(T)98 1609 y Fk(O)q
Fj(\(1\))186 1625 y Fs(bits)f(of)g(precision\).)20 b(This)15
b(is)f(b)q(ecause)g(the)g(transition)g(amplitude)h(represen)o(ts)f
(some)f(ph)o(ysical)i(quan)o(tit)o(y)-75 1682 y(suc)o(h)i(as)g(the)g
(angle)g(of)g(a)g(p)q(olarizer)h(or)e(the)h(length)h(of)f(a)f
Fl(\031)j Fs(pulse,)f(and)f(w)o(e)g(m)o(ust)f(not)h(assume)g(that)f(w)o
(e)h(can)g(sp)q(ecify)-75 1738 y(it)e(to)f(b)q(etter)h(than)g(one)g
(part)f(in)i(some)e(p)q(olynomial)j(in)e Fl(T)6 b Fs(,)15
b(and)g(therefore)f(the)h(n)o(um)o(b)q(er)h(of)e(bits)h(of)g(precision)
h(m)o(ust)e(b)q(e)-75 1795 y Fl(O)q Fs(\(log)8 b Fl(T)e
Fs(\).)19 b(This)d(is)f(exactly)h(what)e(w)o(e)h(pro)o(v)o(ed)g
(shortly)g(after)f(Lipton's)i(observ)m(ation,)f(and)g(w)o(e)g(presen)o
(t)g(that)f(pro)q(of)h(in)-75 1851 y(this)h(section.)-4
1925 y(The)g(next)h(theorem)f(sho)o(ws)f(that)h(b)q(ecause)i(of)d(the)i
(unitary)g(time)f(ev)o(olution)i(errors)d(in)i(the)g(sup)q(erp)q
(osition)h(made)-75 1982 y(o)o(v)o(er)c(a)h(sequence)i(of)d(steps)i
(will,)g(in)g(the)f(w)o(orst)f(case,)h(only)h(add.)-75
2106 y Fn(Theorem)h(3.4.1)22 b Fr(L)n(et)13 b Fl(U)19
b Fr(b)n(e)14 b(the)g(time)g(evolution)g(op)n(er)n(ator)h(of)f(a)g(QTM)
g Fl(M)19 b Fr(and)14 b Fl(T)k(>)13 b Fs(0)p Fr(.)20
b(If)14 b Fm(j)p Fl(\036)1597 2113 y Fj(0)1616 2106 y
Fm(i)p Fl(;)8 b Fm(j)1674 2094 y Fs(~)1668 2106 y Fl(\036)1695
2113 y Fj(0)1713 2106 y Fm(i)p Fl(;)g(:)g(:)g(:)d(;)j
Fm(j)p Fl(\036)1873 2113 y Fk(T)1899 2106 y Fm(i)p Fl(;)g
Fm(j)1957 2094 y Fs(~)1951 2106 y Fl(\036)1978 2113 y
Fk(T)2004 2106 y Fm(i)-75 2162 y Fr(ar)n(e)16 b(sup)n(erp)n(ositions)g
(of)g Fl(U)21 b Fr(such)c(that)796 2219 y Fm(kj)p Fl(\036)859
2226 y Fk(i)872 2219 y Fm(i)10 b(\000)g(j)964 2207 y
Fs(~)958 2219 y Fl(\036)985 2226 y Fk(i)999 2219 y Fm(ik)29
b(\024)g Fl(\017)815 2302 y Fm(j)p Fl(\036)855 2309 y
Fk(i)869 2302 y Fm(i)f Fs(=)i Fl(U)5 b Fm(j)1035 2290
y Fs(~)1029 2302 y Fl(\036)1056 2309 y Fk(i)p Fy(\000)p
Fj(1)1114 2302 y Fm(i)-75 2386 y Fr(then)16 b Fm(kj)68
2374 y Fs(~)62 2386 y Fl(\036)89 2393 y Fk(T)116 2386
y Fm(i)10 b(\000)g Fl(U)225 2369 y Fk(T)253 2386 y Fm(j)p
Fl(\036)293 2393 y Fj(0)312 2386 y Fm(ik)i(\024)h Fl(T)6
b(\017)p Fr(.)-75 2509 y Fn(Pro)q(of.)20 b Fs(Let)15
b Fm(j)p Fl( )211 2516 y Fk(i)224 2509 y Fm(i)e Fs(=)g
Fm(j)322 2497 y Fs(~)316 2509 y Fl(\036)343 2516 y Fk(i)357
2509 y Fm(i)c(\000)i(j)p Fl(\036)470 2516 y Fk(i)484
2509 y Fm(i)o Fs(.)20 b(Then)c(w)o(e)f(ha)o(v)o(e)468
2612 y Fm(j)487 2600 y Fs(~)481 2612 y Fl(\036)508 2619
y Fk(T)535 2612 y Fm(i)28 b Fs(=)g Fl(U)680 2593 y Fk(T)708
2612 y Fm(j)p Fl(\036)748 2619 y Fj(0)767 2612 y Fm(i)10
b Fs(+)g Fl(U)876 2593 y Fk(T)904 2612 y Fm(j)p Fl( )947
2619 y Fj(0)966 2612 y Fm(i)f Fs(+)i Fl(U)1075 2593 y
Fk(T)5 b Fy(\000)p Fj(1)1148 2612 y Fm(j)p Fl( )1191
2619 y Fj(1)1209 2612 y Fm(i)10 b Fs(+)h Fm(\001)d(\001)g(\001)g
Fs(+)i Fm(j)p Fl( )1434 2619 y Fk(T)1461 2612 y Fm(i)951
2779 y Fs(12)p eop
%%Page: 13 13
13 12 bop -75 -26 a Fs(The)15 b(theorem)g(follo)o(ws)h(b)o(y)f(the)g
(triangle)h(inequalit)o(y)h(since)f Fl(U)k Fs(is)c(unitary)f(and)h
Fm(kj)p Fl( )1387 -19 y Fk(i)1400 -26 y Fm(i)o(k)d(\024)g
Fl(\017)p Fs(.)456 b Fd(2)-75 143 y Fn(De\014nition)19
b(3.4.2)j Fr(We)17 b(say)g(that)g(QTMs)f Fl(M)21 b Fr(and)c
Fl(M)903 126 y Fy(0)931 143 y Fr(ar)n(e)g Fl(\017)p Fs(-close)h
Fr(if)f(they)g(have)g(the)g(same)f(state)h(set)f(and)h(alphab)n(et)-75
199 y(and)i(if)h(the)f(di\013er)n(enc)n(e)g(b)n(etwe)n(en)f(e)n(ach)h
(p)n(air)h(of)g(c)n(orr)n(esp)n(onding)e(tr)n(ansition)g(amplitudes)i
(has)f(magnitude)h(at)g(most)g Fl(\017)p Fr(.)-75 256
y(Note)c(that)h Fl(M)22 b Fr(and)16 b Fl(M)330 239 y
Fy(0)358 256 y Fr(c)n(an)f(b)n(e)h Fl(\017)p Fr(-close)g(even)g(if)g
(one)g(or)h(b)n(oth)f(ar)n(e)g(not)h(wel)r(l-forme)n(d.)-4
368 y Fs(The)k(follo)o(wing)g(theorem)f(sho)o(ws)g(that)g(t)o(w)o(o)g
(QTMs)g(whic)o(h)i(are)e(close)i(in)f(the)g(ab)q(o)o(v)o(e)f(sense)h
(giv)o(e)g(rise)h(to)e(time)-75 425 y(ev)o(olution)g(op)q(erators)e
(whic)o(h)i(are)f(close)h(to)f(eac)o(h)g(other,)g(ev)o(en)h(if)g(the)f
(QTMs)g(are)g(not)g(w)o(ell-formed.)32 b(As)20 b(a)e(simple)-75
481 y(consequence,)23 b(the)e(time)g(ev)o(olution)g(op)q(erator)f(of)g
(a)g(QTM)g(is)i(alw)o(a)o(ys)d(b)q(ounded,)k(ev)o(en)e(if)g(the)g(QTM)g
(is)g(not)f(w)o(ell-)-75 538 y(formed.)-75 650 y Fn(Theorem)d(3.4.3)22
b Fr(If)17 b(QTMs)f Fl(M)23 b Fr(and)17 b Fl(M)675 633
y Fy(0)705 650 y Fr(with)h(alphab)n(et)f Fs(\006)h Fr(and)f(state)g
(set)h Fl(Q)f Fr(ar)n(e)g Fl(\017)p Fr(-close,)h(then)g(the)f(di\013er)
n(enc)n(e)g(in)-75 706 y(their)f(time)g(evolutions)f(has)g(norm)h(at)g
(most)g Fs(2)f Fr(c)n(ar)n(d)p Fs(\(\006\))g Fr(c)n(ar)n(d)p
Fs(\()p Fl(Q)p Fs(\))o Fl(\017)p Fr(.)21 b(Mor)n(e)n(over,)16
b(this)f(statement)g(holds)h(even)f(if)g(one)h(or)-75
763 y(b)n(oth)g(of)h(the)f(machines)g(ar)n(e)g(not)h(wel)r(l-forme)n
(d.)-75 875 y Fn(Pro)q(of.)22 b Fs(Let)16 b(QTMs)f Fl(M)21
b Fs(and)16 b Fl(M)517 858 y Fy(0)545 875 y Fs(with)g(alphab)q(et)h
(\006)f(and)g(state)f(set)g Fl(Q)h Fs(b)q(e)h(giv)o(en)f(whic)o(h)h
(are)e Fl(\017)p Fs(-close.)23 b(Let)17 b Fl(U)j Fs(b)q(e)d(the)-75
931 y(time)f(ev)o(olution)g(of)e Fl(M)5 b Fs(,)15 b(and)g(let)h
Fl(U)544 915 y Fy(0)571 931 y Fs(b)q(e)g(the)f(time)h(ev)o(olution)g
(of)e Fl(M)1112 915 y Fy(0)1124 931 y Fs(.)-4 1006 y(No)o(w,)i
(consider)j(an)o(y)e(unit)h(length)g(sup)q(erp)q(osition)h(of)e
(con\014gurations)g Fm(j)p Fl(\036)p Fm(i)f Fs(=)1379
973 y Fi(P)1423 1017 y Fk(j)1448 1006 y Fl(\013)1477
1013 y Fk(j)1496 1006 y Fm(j)p Fl(c)1529 1013 y Fk(j)1546
1006 y Fm(i)p Fs(.)26 b(Then)18 b(w)o(e)f(can)h(express)-75
1062 y(the)d(di\013erence)i(in)f(the)f(mac)o(hines')h(op)q(eration)f
(on)g Fm(j)p Fl(\036)p Fm(i)g Fs(as)f(follo)o(ws.)521
1199 y Fl(U)5 b Fm(j)p Fl(\036)p Fm(i)10 b(\000)g Fl(U)706
1180 y Fy(0)718 1199 y Fm(j)p Fl(\036)p Fm(i)i Fs(=)836
1159 y Fi(X)858 1250 y Fk(j)903 1115 y Fi(0)903 1190
y(@)963 1159 y(X)940 1253 y Fk(i)p Fy(2)p Fk(P)5 b Fj(\()p
Fk(j)r Fj(\))1046 1199 y Fs(\()p Fl(\025)1091 1206 y
Fk(i;j)1141 1199 y Fm(\000)10 b Fl(\025)1213 1180 y Fy(0)1213
1210 y Fk(i;j)1253 1199 y Fs(\))p Fl(\013)1300 1206 y
Fk(i)1313 1115 y Fi(1)1313 1190 y(A)1357 1199 y Fm(j)p
Fl(c)1390 1206 y Fk(j)1408 1199 y Fm(i)-75 1340 y Fs(where)15
b Fl(P)6 b Fs(\()p Fl(j)s Fs(\))14 b(is)h(the)g(set)f(of)h
Fl(i)f Fs(suc)o(h)h(that)f(con\014guration)h Fl(c)933
1347 y Fk(i)962 1340 y Fs(can)f(lead)i(to)e Fl(c)1215
1347 y Fk(j)1248 1340 y Fs(in)h(a)g(single)h(step)e(of)h
Fl(M)k Fs(or)c Fl(M)1779 1324 y Fy(0)1790 1340 y Fs(,)g(and)g(where)-75
1397 y Fl(\025)-48 1404 y Fk(i;j)7 1397 y Fs(and)g Fl(\025)122
1380 y Fy(0)122 1409 y Fk(i;j)177 1397 y Fs(are)g(the)g(amplitudes)i
(with)e(whic)o(h)h Fl(c)817 1404 y Fk(i)846 1397 y Fs(leads)g(to)f
Fl(c)1036 1404 y Fk(j)1069 1397 y Fs(in)h Fl(M)k Fs(and)15
b Fl(M)1323 1380 y Fy(0)1335 1397 y Fs(.)-4 1471 y(Applying)i(the)f
(triangle)g(inequalit)o(y)h(and)f(the)g(fact)f(that)g(the)h(square)f
(of)g(the)h(sum)g(of)f Fl(n)h Fs(reals)g(is)g(at)f(most)g
Fl(n)h Fs(times)-75 1527 y(the)f(sum)g(of)g(their)h(squares,)f(w)o(e)g
(ha)o(v)o(e)297 1633 y Fm(k)p Fl(U)5 b Fm(j)p Fl(\036)p
Fm(i)k(\000)h Fl(U)504 1616 y Fy(0)516 1633 y Fm(j)p
Fl(\036)p Fm(i)o(k)596 1611 y Fj(2)657 1633 y Fs(=)734
1601 y Fi(P)778 1644 y Fk(j)804 1584 y Fi(\014)804 1609
y(\014)804 1634 y(\014)818 1601 y(P)861 1644 y Fk(i)p
Fy(2)p Fk(P)5 b Fj(\()p Fk(j)r Fj(\))970 1633 y Fs(\()p
Fl(\025)1015 1640 y Fk(i;j)1064 1633 y Fm(\000)11 b Fl(\025)1137
1616 y Fy(0)1137 1645 y Fk(i;j)1176 1633 y Fs(\))p Fl(\013)1223
1640 y Fk(i)1237 1584 y Fi(\014)1237 1609 y(\014)1237
1634 y(\014)1251 1597 y Fj(2)657 1716 y Fm(\024)734 1684
y Fi(P)778 1727 y Fk(j)804 1716 y Fs(2)k(card\(\006\))f(card\()p
Fl(Q)p Fs(\))1176 1684 y Fi(P)1220 1727 y Fk(i)p Fy(2)p
Fk(P)5 b Fj(\()p Fk(j)r Fj(\))1336 1667 y Fi(\014)1336
1692 y(\014)1336 1717 y(\014)1350 1716 y Fs(\()p Fl(\025)1395
1723 y Fk(i;j)1444 1716 y Fm(\000)10 b Fl(\025)1516 1699
y Fy(0)1516 1728 y Fk(i;j)1556 1716 y Fs(\))p Fl(\013)1603
1723 y Fk(i)1617 1667 y Fi(\014)1617 1692 y(\014)1617
1717 y(\014)1631 1680 y Fj(2)-4 1834 y Fs(Then)15 b(since)i
Fl(M)j Fs(and)15 b Fl(M)427 1818 y Fy(0)454 1834 y Fs(are)g
Fl(\017)p Fs(-close,)h(w)o(e)f(ha)o(v)o(e)193 1908 y
Fi(P)237 1951 y Fk(j)262 1940 y Fs(2)g(card\(\006\))g(card\()p
Fl(Q)p Fs(\))634 1908 y Fi(P)678 1951 y Fk(i)p Fy(2)p
Fk(P)5 b Fj(\()p Fk(j)r Fj(\))828 1891 y Fi(\014)828
1916 y(\014)828 1941 y(\014)842 1940 y Fs(\()p Fl(\025)887
1947 y Fk(i;j)937 1940 y Fm(\000)10 b Fl(\025)1009 1923
y Fy(0)1009 1952 y Fk(i;j)1049 1940 y Fs(\))p Fl(\013)1096
1947 y Fk(i)1109 1891 y Fi(\014)1109 1916 y(\014)1109
1941 y(\014)1123 1904 y Fj(2)751 2023 y Fs(=)42 b(2)15
b(card\(\006\))g(card\()p Fl(Q)p Fs(\))1200 1991 y Fi(P)1244
2034 y Fk(j)1270 1991 y Fi(P)1314 2034 y Fk(i)p Fy(2)p
Fk(P)5 b Fj(\()p Fk(j)r Fj(\))1430 1974 y Fi(\014)1430
1999 y(\014)1430 2024 y(\014)1444 2023 y Fl(\025)1471
2030 y Fk(i;j)1520 2023 y Fm(\000)11 b Fl(\025)1593 2006
y Fy(0)1593 2035 y Fk(i;j)1633 1974 y Fi(\014)1633 1999
y(\014)1633 2024 y(\014)1646 1987 y Fj(2)1666 2023 y
Fm(j)p Fl(\013)1708 2030 y Fk(i)1722 2023 y Fm(j)1734
2002 y Fj(2)751 2091 y Fm(\024)42 b Fs(2)15 b(card\(\006\))g(card\()p
Fl(Q)p Fs(\))o Fl(\017)1211 2075 y Fj(2)1239 2059 y Fi(P)1282
2103 y Fk(j)1308 2059 y Fi(P)1352 2103 y Fk(i)p Fy(2)p
Fk(P)5 b Fj(\()p Fk(j)r Fj(\))1468 2091 y Fm(j)p Fl(\013)1510
2098 y Fk(i)1524 2091 y Fm(j)1537 2070 y Fj(2)-4 2202
y Fs(Finally)14 b(since)h(for)d(an)o(y)h(con\014guration)h
Fl(c)703 2209 y Fk(j)721 2202 y Fs(,)f(there)g(are)g(at)g(most)f(2)h
(card\(\006\))f(card\()p Fl(Q)p Fs(\))h(con\014gurations)g(that)g(can)g
(lead)-75 2259 y(to)i Fl(c)1 2266 y Fk(j)34 2259 y Fs(in)h(a)f(single)h
(step,)f(w)o(e)g(ha)o(v)o(e)249 2380 y(2)g(card\(\006\))f(card\()p
Fl(Q)p Fs(\))o Fl(\017)631 2363 y Fj(2)659 2347 y Fi(P)703
2391 y Fk(j)729 2347 y Fi(P)772 2391 y Fk(i)p Fy(2)p
Fk(P)5 b Fj(\()p Fk(j)r Fj(\))888 2380 y Fm(j)p Fl(\013)930
2387 y Fk(i)944 2380 y Fm(j)957 2359 y Fj(2)1018 2380
y Fm(\024)42 b Fs(4)15 b(card\(\006\))1287 2359 y Fj(2)1322
2380 y Fs(card\()p Fl(Q)p Fs(\))1479 2359 y Fj(2)1499
2380 y Fl(\017)1517 2363 y Fj(2)1545 2347 y Fi(P)1588
2391 y Fk(i)1610 2380 y Fm(j)p Fl(\013)1652 2387 y Fk(i)1666
2380 y Fm(j)1679 2359 y Fj(2)1018 2442 y Fs(=)42 b(4)15
b(card\(\006\))1287 2421 y Fj(2)1322 2442 y Fs(card\()p
Fl(Q)p Fs(\))1479 2421 y Fj(2)1499 2442 y Fl(\017)1517
2425 y Fj(2)-4 2537 y Fs(Therefore,)f(for)h(an)o(y)g(unit)h(length)g
(sup)q(erp)q(osition)g Fm(j)p Fl(\036)p Fm(i)598 2629
y(k)p Fs(\()p Fl(U)e Fm(\000)d Fl(U)766 2610 y Fy(0)777
2629 y Fs(\))p Fm(j)p Fl(\036)p Fm(ik)27 b(\024)h Fs(2)15
b(card\(\006\))f(card\()p Fl(Q)p Fs(\))p Fl(\017)951
2779 y Fs(13)p eop
%%Page: 14 14
14 13 bop 1988 -26 a Fd(2)-4 105 y Fs(The)14 b(follo)o(wing)h
(corollary)f(sho)o(ws)g(that)f Fl(O)q Fs(\(log)8 b Fl(T)e
Fs(\))13 b(bits)i(of)f(precision)h(are)f(su\016cien)o(t)h(in)g(the)f
(transition)h(amplitudes)-75 161 y(to)g(sim)o(ulate)g
Fl(T)21 b Fs(steps)16 b(of)e(a)h(QTM)g(to)g(within)h(accuracy)f
Fl(\017)h Fs(for)f(an)o(y)f(constan)o(t)h Fl(\017)p Fs(.)-75
285 y Fn(Corollary)j(3.4.4)k Fr(L)n(et)11 b Fl(M)17 b
Fs(=)c(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))h Fr(b)n(e)i(a)h(wel)r
(l-forme)n(d)g(QTM.)f(and)g(let)h Fl(M)1301 269 y Fy(0)1324
285 y Fr(b)n(e)f(a)h(QTM)f(which)h(is)1877 267 y Fk(\017)p
1702 274 366 2 v 1702 308 a Fj(24)j Fr(c)n(ar)n(d)p Fj(\(\006\))i
Fr(c)n(ar)n(d)o Fj(\()p Fk(Q)p Fj(\))p Fk(T)2072 285
y Fr(-)-75 355 y(close)d(to)h Fl(M)5 b Fr(,)15 b(wher)n(e)g
Fl(\017)e(>)g Fs(0)p Fr(.)20 b(Then)14 b Fl(M)595 339
y Fy(0)621 355 y Fr(simulates)g Fl(M)20 b Fr(for)15 b(time)g
Fl(T)21 b Fr(with)15 b(ac)n(cur)n(acy)g Fl(\017)p Fr(.)20
b(Mor)n(e)n(over,)15 b(this)g(statment)f(holds)-75 412
y(even)i(if)g Fl(M)123 395 y Fy(0)151 412 y Fr(is)f(not)i(wel)r
(l-forme)n(d.)-75 536 y Fn(Pro)q(of.)j Fs(Let)15 b Fl(b)d
Fs(=)430 518 y Fj(1)p 253 525 372 2 v 253 559 a(24)j
Fs(card)p Fj(\(\006\))g Fs(card)p Fj(\()p Fk(Q)p Fj(\))o
Fk(T)629 536 y Fs(.)20 b(Without)15 b(loss)h(of)e(generalit)o(y)l(,)i
(w)o(e)f(further)g(assume)g Fl(\017)e(<)g Fs(1)p Fl(=)p
Fs(2.)-4 624 y(Consider)18 b(running)h Fl(M)k Fs(and)18
b Fl(M)567 607 y Fy(0)597 624 y Fs(with)g(the)g(same)g(initial)i(sup)q
(erp)q(osition.)30 b(Since)19 b Fl(M)k Fs(is)c(w)o(ell-formed,)g(b)o(y)
f(Theo-)-75 680 y(rem)h(A.0.12,)e(its)i(time)g(ev)o(olution)g(op)q
(erator)f Fl(U)24 b Fs(is)19 b(unitary)l(.)31 b(By)19
b(Theorem)f(3.4.3)f(on)i(page)f(13)g(the)h(time)g(ev)o(olution)-75
737 y(op)q(erator)14 b(of)h Fl(M)209 720 y Fy(0)221 737
y Fs(,)g Fl(U)285 720 y Fy(0)296 737 y Fs(,)g(is)h(within)g
Fl(\016)f Fs(=)622 719 y Fk(\017)p 599 726 61 2 v 599
752 a Fj(12)p Fk(T)679 737 y Fs(of)g Fl(U)5 b Fs(.)-4
811 y(Applying)16 b Fl(U)228 794 y Fy(0)254 811 y Fs(can)f(alw)o(a)o
(ys)f(b)q(e)i(expressed)f(as)f(applying)i Fl(U)k Fs(and)15
b(then)g(adding)g(a)g(p)q(erturbation)g(of)f(length)i(at)e(most)-75
867 y Fl(\016)19 b Fs(times)e(the)g(length)h(of)e(the)h(curren)o(t)g
(sup)q(erp)q(osition.)27 b(So,)17 b(the)g(length)h(of)e(the)h(sup)q
(erp)q(osition)i(of)e Fl(U)1710 851 y Fy(0)1738 867 y
Fs(at)f(time)i Fl(t)f Fs(is)h(at)-75 924 y(most)d(\(1)10
b(+)h Fl(\016)r Fs(\))174 907 y Fk(t)188 924 y Fs(.)22
b(Since)17 b Fl(\016)f Fm(\024)e Fs(1)p Fl(=T)6 b Fs(,)15
b(this)h(length)g(is)h(at)e(most)g Fl(e)p Fs(.)22 b(Therefore,)15
b(app)q(ealing)j(to)d(Theorem)g(3.4.1)g(ab)q(o)o(v)o(e,)g(the)-75
980 y(di\013erence)g(b)q(et)o(w)o(een)f(the)g(sup)q(erp)q(ositions)h
(of)e Fl(M)19 b Fs(and)14 b Fl(M)924 964 y Fy(0)949 980
y Fs(at)f(time)h Fl(T)20 b Fs(is)14 b(a)g(sup)q(erp)q(osition)h(of)e
(norm)h(at)f(most)g(3)p Fl(\016)r(T)18 b Fm(\024)1988
962 y Fk(\017)p 1987 969 18 2 v 1987 996 a Fj(4)2009
980 y Fs(.)-75 1037 y(Finally)l(,)f(Lemma)f(3.2.6)f(on)h(page)f(10)h
(tells)h(us)f(that)f(observing)h Fl(M)1102 1020 y Fy(0)1130
1037 y Fs(at)f(time)i Fl(T)k Fs(giv)o(es)16 b(a)g(sample)h(from)e(a)g
(distribution)-75 1093 y(whic)o(h)k(is)g(within)h(total)d(v)m(ariation)
i(distance)h Fl(\017)e Fs(of)g(the)h(distributions)h(sampled)f(from)f
(b)o(y)g(observing)h Fl(M)k Fs(at)18 b(time)g Fl(T)6
b Fs(.)-75 1149 y Fd(2)-75 1345 y Fh(3.5)56 b(Input/output)18
b(con)n(v)n(en)n(tions)h(for)g(QTMs)-75 1449 y Fs(Timing)13
b(is)g(of)e(crucial)j(imp)q(ortance)e(to)g(the)g(op)q(eration)g(of)g(a)
g(QTM,)f(b)q(ecause)i(computational)g(paths)f(can)g(only)h(in)o
(terfere)-75 1505 y(if)20 b(they)g(tak)o(e)e(the)i(same)f(n)o(um)o(b)q
(er)h(of)f(time)h(steps.)33 b(Equally)20 b(imp)q(ortan)o(t)f(are)h(the)
f(p)q(osition)i(of)e(the)g(tap)q(e)h(head)g(and)-75 1562
y(alignmen)o(t)i(of)e(the)h(tap)q(e)h(con)o(ten)o(ts.)36
b(In)22 b(this)f(subsection,)i(w)o(e)e(in)o(tro)q(duce)h(sev)o(eral)f
(input/output)h(con)o(v)o(en)o(tions)f(on)-75 1618 y(QTMs)f(and)h
(deterministic)i(TMs)c(whic)o(h)j(will)g(help)g(us)f(main)o(tain)g
(these)f(relationships)j(while)f(manipulating)g(and)-75
1675 y(com)o(bining)16 b(mac)o(hines.)-4 1749 y(W)l(e)i(w)o(ould)h(lik)
o(e)g(to)f(think)h(of)f(our)g(QTMs)g(as)g(\014nishing)i(their)f
(computation)f(when)h(they)f(reac)o(h)g(the)h(\014nal)g(state)-75
1805 y Fl(q)-55 1812 y Fk(f)-32 1805 y Fs(.)k(Ho)o(w)o(ev)o(er,)16
b(it)g(is)h(unclear)h(ho)o(w)d(w)o(e)i(should)g(regard)f(a)g(mac)o
(hine)h(whic)o(h)g(reac)o(hes)g(a)f(sup)q(erp)q(osition)i(in)f(whic)o
(h)g(some)-75 1862 y(con\014gurations)f(are)g(in)g(state)f
Fl(q)481 1869 y Fk(f)520 1862 y Fs(but)h(others)f(are)h(not.)21
b(W)l(e)16 b(try)g(to)f(a)o(v)o(oid)h(suc)o(h)g(di\016culties)i(b)o(y)e
(sa)o(ying)f(that)h(a)f(QTM)-75 1918 y(halts)g(on)g(a)g(particular)h
(input)g(if)g(it)g(reac)o(hes)f(a)g(sup)q(erp)q(osition)i(consisting)f
(en)o(tirely)g(of)f(con\014gurations)g(in)h(state)e Fl(q)1936
1925 y Fk(f)1959 1918 y Fs(.)-75 2042 y Fn(De\014nition)19
b(3.5.1)j Fr(A)d Fs(\014nal)f(con\014guration)h Fr(of)f(a)h(QTM)f(is)g
(any)g(c)n(on\014gur)n(ation)g(in)g(state)g Fl(q)1562
2049 y Fk(f)1585 2042 y Fr(.)28 b(If)18 b(when)g(QTM)g
Fl(M)23 b Fr(is)-75 2099 y(run)17 b(with)f(input)h Fl(x)p
Fr(,)f(at)h(time)g Fl(T)22 b Fr(the)16 b(sup)n(erp)n(osition)g(c)n
(ontains)g(only)f(\014nal)h(c)n(on\014gur)n(ations)f(and)h(at)h(any)f
(time)h(less)e(than)-75 2155 y Fl(T)24 b Fr(the)19 b(sup)n(erp)n
(osition)f(c)n(ontains)f(no)h(\014nal)g(c)n(on\014gur)n(ation,)g(then)g
Fl(M)24 b Fs(halts)18 b Fr(with)h Fs(running)g(time)g
Fl(T)24 b Fr(on)18 b(input)h Fl(x)p Fr(.)27 b(The)-75
2212 y(sup)n(erp)n(osition)18 b(of)h Fl(M)24 b Fr(at)19
b(time)g Fl(T)24 b Fr(is)18 b(c)n(al)r(le)n(d)g(the)h
Fs(\014nal)g(sup)q(erp)q(osition)h Fr(of)f Fl(M)24 b
Fr(run)19 b(on)f(input)h Fl(x)p Fr(.)29 b(A)18 b(p)n(olynomial-time)-75
2268 y(QTM)d(is)h(a)h(wel)r(l-forme)n(d)f(QTM)g(which)g(on)g(every)h
(input)f Fl(x)g Fr(halts)g(in)g(time)h(p)n(olynomial)e(in)h(the)h
(length)e(of)i Fl(x)p Fr(.)-4 2392 y Fs(W)l(e)e(w)o(ould)g(lik)o(e)i
(to)d(de\014ne)i(the)f(output)g(of)g(a)g(QTM)g(whic)o(h)h(halts)f(as)g
(the)g(sup)q(erp)q(osition)i(of)e(the)g(tap)q(e)g(con)o(ten)o(ts)f(of)
-75 2448 y(the)e(con\014gurations)h(in)g(the)f(mac)o(hine's)h(\014nal)g
(sup)q(erp)q(osition.)21 b(Ho)o(w)o(ev)o(er,)11 b(w)o(e)h(m)o(ust)g(b)q
(e)h(careful)g(to)f(note)g(the)g(p)q(osition)h(of)-75
2505 y(the)f(tap)q(e)g(head)g(and)h(the)f(alignmen)o(t)g(relativ)o(e)h
(to)e(the)h(start)f(cell)j(in)e(eac)o(h)g(con\014guration)h(since)g
(these)f(details)h(determine)-75 2561 y(whether)18 b(later)h(paths)f
(in)o(terfere.)29 b(Recall)20 b(that)e(the)g(output)g(string)h(of)f(a)f
(\014nal)j(con\014guration)e(of)g(a)g(TM)g(is)g(its)h(tap)q(e)-75
2618 y(con)o(ten)o(ts)14 b(from)h(the)g(leftmost)g(non-blank)h(sym)o(b)
q(ol)g(to)e(the)h(righ)o(tmost)f(non-blank)j(sym)o(b)q(ol.)j(This)c
(means)f(that)f(giving)951 2779 y(14)p eop
%%Page: 15 15
15 14 bop -75 -26 a Fs(an)17 b(output)g(string)g(lea)o(v)o(es)g(unsp)q
(eci\014ed)i(the)e(alignmen)o(t)h(of)f(this)g(string)g(on)g(the)g(tap)q
(e)g(and)g(the)g(lo)q(cation)h(of)f(the)g(tap)q(e)-75
31 y(head)g(to)e(b)q(e)i(iden)o(ti\014ed.)25 b(When)17
b(describing)h(the)e(input/output)h(b)q(eha)o(vior)g(of)e(a)h(QTM)g(w)o
(e)g(will)i(sometimes)e(describ)q(e)-75 87 y(this)h(additional)h
(information.)24 b(When)17 b(w)o(e)f(do)g(not,)g(the)h(additional)h
(information)e(will)j(b)q(e)e(clear)g(from)e(con)o(text.)24
b(F)l(or)-75 144 y(example,)15 b(w)o(e)e(will)j(often)d(build)j(mac)o
(hines)f(in)f(whic)o(h)h(all)g(\014nal)f(con\014gurations)g(ha)o(v)o(e)
g(the)g(output)f(string)h(b)q(eginning)i(in)-75 200 y(the)f(start)f
(cell)j(with)f(the)f(tap)q(e)g(head)h(scanning)g(its)f(\014rst)g(sym)o
(b)q(ol.)-75 314 y Fn(De\014nition)k(3.5.2)j Fr(A)e(QTM)f(is)g(c)n(al)r
(le)n(d)g Fs(w)o(ell-b)q(eha)o(v)o(ed)j Fr(if)e(it)g(halts)f(on)h(al)r
(l)g(input)g(strings)e(in)i(a)g(\014nal)f(sup)n(erp)n(osition)-75
371 y(wher)n(e)d(e)n(ach)g(c)n(on\014gur)n(ation)f(has)g(the)h(tap)n(e)
g(he)n(ad)g(in)g(the)g(same)f(c)n(el)r(l.)20 b(If)15
b(this)h(c)n(el)r(l)f(is)g(always)h(the)g(start)g(c)n(el)r(l,)f(we)h(c)
n(al)r(l)f(the)-75 427 y(machine)f Fs(stationary)q Fr(.)19
b(Similarly,)14 b(a)h(deterministic)f(TM)f(is)h(c)n(al)r(le)n(d)g
(stationary)h(if)f(it)g(halts)g(on)h(al)r(l)f(inputs)g(with)h(its)f
(tap)n(e)-75 484 y(he)n(ad)j(b)n(ack)e(in)h(the)h(start)f(c)n(el)r(l.)
-4 598 y Fs(T)l(o)g(simplify)i(our)d(constructions,)i(w)o(e)f(will)i
(often)e(build)i(QTMs)e(and)g(then)h(com)o(bine)g(them)f(in)h(simple)h
(w)o(a)o(ys,)d(lik)o(e)-75 654 y(running)i(one)e(after)g(the)h(other)f
(or)g(iterating)h(one)g(a)f(v)m(arying)h(n)o(um)o(b)q(er)g(of)f(times.)
21 b(T)l(o)15 b(do)h(so)f(w)o(e)g(m)o(ust)g(b)q(e)i(able)f(to)f(add)-75
711 y(new)k(transitions)g(in)o(to)g(the)h(initial)h(state)d
Fl(q)700 718 y Fj(0)739 711 y Fs(of)h(a)f(mac)o(hine.)32
b(Ho)o(w)o(ev)o(er,)19 b(since)h(there)f(ma)o(y)g(already)g(b)q(e)h
(transitions)-75 767 y(in)o(to)e Fl(q)40 774 y Fj(0)60
767 y Fs(,)h(the)f(resulting)h(mac)o(hine)g(ma)o(y)e(not)h(b)q(e)h(rev)
o(ersible.)30 b(But,)19 b(w)o(e)e(can)i(certainly)g(redirect)g(the)f
(transitions)g(out)-75 824 y(of)e(the)g(\014nal)g(state)f
Fl(q)290 831 y Fk(f)329 824 y Fs(of)h(a)f(rev)o(ersible)j(TM)d(or)g(a)h
(w)o(ell-b)q(eha)o(v)o(ed)i(QTM)e(without)f(a\013ecting)h(its)g(b)q
(eha)o(vior.)23 b(Note)16 b(that)-75 880 y(for)h(a)f(w)o(ell-formed)j
(QTM,)d(if)i Fl(q)487 887 y Fk(f)527 880 y Fs(alw)o(a)o(ys)e(leads)i
(bac)o(k)f(to)g Fl(q)976 887 y Fj(0)996 880 y Fs(,)g(then)h(there)f
(can)g(b)q(e)h(no)f(more)g(transitions)g(in)o(to)h Fl(q)1922
887 y Fj(0)1942 880 y Fs(.)25 b(In)-75 937 y(that)19
b(case,)h(redirecting)h(the)e(transitions)h(out)f(of)g
Fl(q)847 944 y Fk(f)889 937 y Fs(will)j(allo)o(w)d(us)h(to)f(add)g(new)
h(ones)g(in)o(to)f Fl(q)1636 944 y Fj(0)1676 937 y Fs(without)g
(violating)-75 993 y(rev)o(ersibilit)o(y)l(.)25 b(W)l(e)16
b(will)h(sa)o(y)f(that)f(a)h(mac)o(hine)h(with)f(this)h(prop)q(ert)o(y)
f(is)g(in)h Fr(normal)g(form)p Fs(.)23 b(Note)16 b(that)f(a)h(w)o
(ell-b)q(eha)o(v)o(ed)-75 1050 y(QTM)i(in)h(normal)f(form)f(alw)o(a)o
(ys)h(halts)g(b)q(efore)h(using)g(an)o(y)e(transition)i(out)f(of)f
Fl(q)1358 1057 y Fk(f)1399 1050 y Fs(and)i(therefore)f(also)g(b)q
(efore)g(using)-75 1106 y(an)o(y)g(transition)g(in)o(to)g
Fl(q)339 1113 y Fj(0)359 1106 y Fs(.)28 b(This)18 b(means)g(that)f
(altering)i(these)f(transitions)g(will)i(not)d(alter)h(the)g(relev)m
(an)o(t)h(part)e(of)h(the)-75 1162 y(mac)o(hine's)g(computation.)27
b(F)l(or)17 b(simplicit)o(y)l(,)j(w)o(e)d(arbitrarily)i(de\014ne)f
(normal)g(form)f(QTMs)g(to)g(step)h(righ)o(t)f(and)h(lea)o(v)o(e)-75
1219 y(the)d(tap)q(e)h(unc)o(hanged)g(as)e(they)i(go)e(from)h(state)f
Fl(q)789 1226 y Fk(f)827 1219 y Fs(to)h Fl(q)903 1226
y Fj(0)923 1219 y Fs(.)-75 1333 y Fn(De\014nition)k(3.5.3)j
Fr(A)16 b(QTM)g(or)g(deterministic)g(TM)g Fl(M)h Fs(=)c(\(\006)p
Fl(;)8 b(Q;)g(\016)r Fs(\))14 b Fr(is)i(in)g Fs(normal)f(form)g
Fr(if)677 1427 y Fm(8)p Fl(\033)g Fm(2)e Fs(\006)48 b
Fl(\016)r Fs(\()p Fl(q)927 1434 y Fk(f)950 1427 y Fl(;)8
b(\033)r Fs(\))j(=)i Fm(j)p Fl(\033)r Fm(i)o(j)p Fl(q)1167
1434 y Fj(0)1187 1427 y Fm(i)o(j)p Fl(R)p Fm(i)-4 1541
y Fs(W)l(e)f(will)i(need)f(to)f(consider)h(QTMs)f(with)g(the)h(sp)q
(ecial)h(prop)q(ert)o(y)e(that)f(an)o(y)h(particular)h(state)f(can)g(b)
q(e)h(en)o(tered)f(while)-75 1598 y(the)17 b(mac)o(hine's)g(tap)q(e)f
(head)h(steps)g(in)h(only)f(one)f(direction.)26 b(Though)17
b(not)f(all)h(QTMs)g(are)f(\\unidirectional",)j(w)o(e)d(will)-75
1654 y(sho)o(w)d(that)g(an)o(y)g(QTM)g(can)h(b)q(e)g(e\016cien)o(tly)h
(sim)o(ulated)f(b)o(y)g(one)f(that)g(is.)20 b(Unidirectionalit)o(y)c
(will)f(b)q(e)f(a)g(critical)g(concept)-75 1710 y(in)k(rev)o(ersing)g
(a)g(QTM,)f(in)h(completing)h(a)e(partially)i(describ)q(ed)g(QTM,)e
(and)h(in)h(building)h(our)d(univ)o(ersal)i(QTM.)e(W)l(e)-75
1767 y(further)e(describ)q(e)i(the)e(adv)m(an)o(tages)g(of)g
(unidirectional)j(mac)o(hines)e(after)e(Theorem)h(5.2.2)f(in)i
Fm(x)p Fs(5.2.)-75 1881 y Fn(De\014nition)j(3.5.4)j Fr(A)d(QTM)g
Fl(M)k Fs(=)18 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))17
b Fr(is)i(c)n(al)r(le)n(d)f Fs(unidirectional)23 b Fr(if)c(e)n(ach)g
(state)g(c)n(an)g(b)n(e)g(enter)n(e)n(d)f(fr)n(om)i(only)-75
1938 y(one)c(dir)n(e)n(ction:)k(In)15 b(other)i(wor)n(ds,)g(if)f
Fl(\016)r Fs(\()p Fl(p)644 1945 y Fj(1)663 1938 y Fl(;)8
b(\033)710 1945 y Fj(1)729 1938 y Fl(;)g(\034)770 1945
y Fj(1)789 1938 y Fl(;)g(q)r(;)g(d)877 1945 y Fj(1)894
1938 y Fs(\))16 b Fr(and)h Fl(\016)r Fs(\()p Fl(p)1080
1945 y Fj(2)1099 1938 y Fl(;)8 b(\033)1146 1945 y Fj(2)1165
1938 y Fl(;)g(\034)1206 1945 y Fj(2)1224 1938 y Fl(;)g(q)r(;)g(d)1312
1945 y Fj(2)1330 1938 y Fs(\))16 b Fr(ar)n(e)g(b)n(oth)h(non-zer)n(o,)e
(then)h Fl(d)1863 1945 y Fj(1)1895 1938 y Fs(=)d Fl(d)1967
1945 y Fj(2)1987 1938 y Fr(.)-4 2052 y Fs(Finally)l(,)25
b(w)o(e)e(will)h(\014nd)f(it)g(con)o(v)o(enien)o(t)g(to)f(use)h(the)g
(common)f(to)q(ol)h(of)f(thinking)i(of)e(the)h(tap)q(e)g(of)f(a)g(QTM)g
(or)-75 2108 y(deterministic)17 b(TM)e(as)g(consisting)h(of)e(sev)o
(eral)i(trac)o(ks.)-75 2223 y Fn(De\014nition)j(3.5.5)j
Fr(A)12 b Fs(m)o(ulti-trac)o(k)g Fr(TM)f(with)h Fl(k)h
Fr(tr)n(acks)f(is)f(a)h(TM)g(whose)g(alphab)n(et)g Fs(\006)f
Fr(is)h(of)g(the)g(form)g Fs(\006)1733 2230 y Fj(1)1753
2223 y Fm(\002)q Fs(\006)1822 2230 y Fj(2)1842 2223 y
Fm(\002)q(\001)c(\001)g(\001)o(\002)q Fs(\006)2001 2230
y Fk(k)-75 2279 y Fr(with)19 b(a)h(sp)n(e)n(cial)d(blank)i(symb)n(ol)f
Fs(#)h Fr(in)f(e)n(ach)h Fs(\006)740 2286 y Fk(i)773
2279 y Fr(so)g(that)h(the)f(blank)f(in)h Fs(\006)g Fr(is)f
Fs(\(#)p Fl(;)8 b(:)g(:)g(:)t(;)g Fs(#\))p Fr(.)28 b(We)20
b(sp)n(e)n(cify)e(the)h(input)g(by)-75 2335 y(sp)n(e)n(cifying)g(the)i
(string)f(on)h(e)n(ach)g(\\tr)n(ack",)h(and)f(optional)r(ly)g(by)g(sp)n
(e)n(cifying)e(the)i(alignment)f(of)h(the)g(c)n(ontents)f(of)h(the)-75
2392 y(tr)n(acks.)k(So,)18 b(a)g(TM)f(run)h(on)g(input)g
Fl(x)593 2399 y Fj(1)613 2392 y Fs(;)8 b Fl(x)660 2399
y Fj(2)679 2392 y Fs(;)g Fl(:)g(:)g(:)d Fs(;)j Fl(x)807
2399 y Fk(k)843 2392 y Fm(2)15 b Fs(\005)922 2375 y Fk(k)922
2404 y(i)p Fj(=1)982 2392 y Fs(\(\006)1033 2399 y Fk(i)1058
2392 y Fm(\000)c Fs(#\))1160 2375 y Fy(\003)1197 2392
y Fr(is)18 b(starte)n(d)g(in)f(the)h(\(sup)n(erp)n(osition)f(c)n
(onsisting)-75 2448 y(only)i(of)i(the\))e(initial)h(c)n(on\014gur)n
(ation)f(with)h(the)g(non-blank)f(p)n(ortion)h(of)g(the)h
Fl(i)1304 2432 y Fk(th)1358 2448 y Fr(c)n(o)n(or)n(dinate)f(of)g(the)g
(tap)n(e)g(c)n(ontaining)-75 2505 y(the)d(string)e Fl(x)156
2512 y Fk(i)186 2505 y Fr(starting)h(in)g(the)h(start)f(c)n(el)r(l.)k
(Mor)n(e)c(gener)n(al)r(ly,)f(on)i(input)f Fl(x)1227
2512 y Fj(1)1247 2505 y Fm(j)p Fl(y)1282 2512 y Fj(1)1301
2505 y Fs(;)8 b Fl(x)1348 2512 y Fj(2)1367 2505 y Fm(j)p
Fl(y)1402 2512 y Fj(1)1422 2505 y Fs(;)g Fl(:)g(:)g(:)d
Fs(;)j Fl(x)1550 2512 y Fk(k)1570 2505 y Fm(j)p Fl(y)1605
2512 y Fk(k)1643 2505 y Fr(with)17 b Fl(x)1768 2512 y
Fk(i)1782 2505 y Fl(;)8 b(y)1825 2512 y Fk(i)1851 2505
y Fm(2)13 b Fs(\006)1927 2488 y Fy(\003)1927 2517 y Fk(i)1963
2505 y Fr(the)-75 2561 y(non-blank)g(p)n(ortion)i(of)g(the)f
Fl(i)429 2545 y Fk(th)479 2561 y Fr(tr)n(ack)g(is)g Fl(x)663
2568 y Fk(i)677 2561 y Fl(y)699 2568 y Fk(i)728 2561
y Fr(aligne)n(d)g(so)g(that)h(the)g(\014rst)f(symb)n(ol)f(of)i(e)n(ach)
f Fl(y)1513 2568 y Fk(i)1542 2561 y Fr(is)g(in)g(the)h(start)g(c)n(el)r
(l.)k(A)o(lso,)-75 2618 y(input)d Fl(x)69 2625 y Fj(1)89
2618 y Fs(;)8 b Fl(x)136 2625 y Fj(2)155 2618 y Fs(;)g
Fl(:)g(:)g(:)d Fs(;)j Fl(x)283 2625 y Fk(k)320 2618 y
Fr(with)16 b Fl(x)444 2625 y Fk(l)p Fj(+1)502 2618 y
Fl(;)8 b(:)g(:)g(:)d(;)j(x)630 2625 y Fk(k)663 2618 y
Fs(=)13 b Fl(\017)k Fr(is)f(abbr)n(eviate)n(d)g(as)g
Fl(x)1113 2625 y Fj(1)1133 2618 y Fs(;)8 b Fl(x)1180
2625 y Fj(2)1199 2618 y Fs(;)g Fl(:)g(:)g(:)t Fs(;)g
Fl(x)1326 2625 y Fk(l)1339 2618 y Fr(.)951 2779 y Fs(15)p
eop
%%Page: 16 16
16 15 bop -75 -26 a Ft(4)69 b(Programming)23 b(a)g(QTM)-75
93 y Fs(In)f(this)g(section)g(w)o(e)f(explore)h(the)g(fundamen)o(tals)g
(of)f(building)j(up)e(a)f(QTM)g(from)g(sev)o(eral)g(simpler)i(QTMs.)39
b(Im-)-75 150 y(plemen)o(ting)22 b(basic)g(programming)f(primitiv)o
(es,)i(suc)o(h)e(as)g(lo)q(oping,)i(branc)o(hing,)g(and)e(rev)o(ersing)
h(a)e(computation)h(is)-75 206 y(straigh)o(tforw)o(ard)13
b(for)h(deterministic)j(TMs.)i(Ho)o(w)o(ev)o(er,)14 b(these)h
(constructions)g(are)f(more)h(di\016cult)h(for)e(QTMs)h(b)q(ecause)-75
263 y(one)k(m)o(ust)e(b)q(e)j(v)o(ery)e(careful)h(to)f(main)o(tain)h
(rev)o(ersibilit)o(y)l(.)31 b(In)19 b(fact,)g(the)f(same)g
(di\016culties)j(arise)e(when)g(building)i(re-)-75 319
y(v)o(ersible)16 b(deterministic)h(TMs.)i(Ho)o(w)o(ev)o(er,)14
b(building)j(rev)o(ersible)g(TMs)d(up)h(out)g(of)f(simpler)i(rev)o
(ersible)h(TMs)d(has)h(nev)o(er)-75 376 y(b)q(een)h(necessary)l(.)k
(This)15 b(is)g(b)q(ecause)g(Bennett)g([7])f(sho)o(w)o(ed)g(ho)o(w)g
(to)g(e\016cien)o(tly)i(sim)o(ulate)f(an)o(y)f(deterministic)j(TM)d
(with)-75 432 y(one)i(whic)o(h)g(is)h(rev)o(ersible.)22
b(So,)15 b(one)h(can)g(build)i(a)d(rev)o(ersible)i(TM)e(b)o(y)h
(\014rst)f(building)j(the)e(desired)h(computation)f(with)-75
489 y(a)d(non-rev)o(ersible)j(mac)o(hine,)e(and)g(then)g(using)h
(Bennett's)e(construction.)20 b(None)14 b(of)f(the)h(constructions)g
(in)g(this)g(section)-75 545 y(mak)o(e)k(an)o(y)g(sp)q(ecial)i(use)f
(of)f(the)h(quan)o(tum)f(nature)g(of)h(QTMs,)f(and)h(in)g(fact)f(all)i
(tec)o(hniques)f(used)g(are)g(the)f(same)g(as)-75 602
y(those)d(required)h(to)f(mak)o(e)f(the)i(analogous)f(construction)g
(for)g(rev)o(ersible)h(TMs.)-4 676 y(W)l(e)d(will)h(sho)o(w)f(in)h
(this)f(section)h(that)e(rev)o(ersible)j(TMs)d(are)h(a)f(sp)q(ecial)j
(case)e(of)g(QTMs.)19 b(So,)13 b(as)g(Deutsc)o(h)g([20)o(])f(noted,)-75
732 y(Bennett's)21 b(result)h(allo)o(ws)f(an)o(y)g(desired)h
(deterministic)h(computation)e(to)g(b)q(e)g(carried)h(out)f(on)g(a)g
(QTM.)f(Ho)o(w)o(ev)o(er,)-75 789 y(Bennett's)d(result)g(is)h(not)e
(su\016cien)o(t)i(to)e(allo)o(w)h(us)g(to)f(use)i(deterministic)h
(computations)d(when)i(building)h(up)f(QTMs,)-75 845
y(b)q(ecause)h(the)g(di\013eren)o(t)g(computation)f(paths)g(of)g(a)h
(QTM)f(will)i(only)f(in)o(terfere)g(prop)q(erly)g(pro)o(vided)g(that)f
(they)h(tak)o(e)-75 902 y(exactly)13 b(the)g(same)g(n)o(um)o(b)q(er)h
(of)e(steps.)19 b(W)l(e)13 b(will)i(therefore)e(carry)f(out)h(a)f(mo)q
(di\014ed)j(v)o(ersion)e(of)g(Bennett's)g(construction)-75
958 y(to)k(sho)o(w)h(that)f(an)o(y)g(deterministic)j(computation)e(can)
g(b)q(e)h(carried)f(out)g(b)o(y)g(a)f(rev)o(ersible)i(TM)f(whose)g
(running)h(time)-75 1014 y(dep)q(ends)e(only)g(on)e(the)h(length)h(of)e
(its)h(input.)22 b(Then,)16 b(di\013eren)o(t)g(computation)g(paths)g
(of)f(a)g(QTM)h(will)h(tak)o(e)e(the)h(same)-75 1071
y(n)o(um)o(b)q(er)h(of)f(steps)g(pro)o(vided)h(that)e(they)i(carry)f
(out)g(the)g(same)g(deterministic)i(computation)e(on)h(inputs)g(of)f
(the)g(same)-75 1127 y(length.)-75 1265 y Fh(4.1)56 b(Rev)n(ersible)16
b(T)-5 b(uring)19 b(Mac)n(hines)-75 1369 y Fn(De\014nition)g(4.1.1)j
Fr(A)16 b Fs(rev)o(ersible)g(T)l(uring)f(Mac)o(hine)h
Fr(is)f(a)h(deterministic)f(TM)g(for)h(which)h(e)n(ach)e(c)n(on\014gur)
n(ation)g(has)h(at)-75 1425 y(most)g(one)g(pr)n(e)n(de)n(c)n(essor.)-4
1538 y Fs(Note)d(that)g(w)o(e)g(ha)o(v)o(e)h(altered)g(the)g
(de\014nition)h(of)e(a)h(rev)o(ersible)h(TM)e(from)g(the)h(one)g(used)g
(b)o(y)g(Bennett)g([7)o(,)f(8])g(so)h(that)-75 1595 y(our)i(rev)o
(ersible)i(TMs)e(are)g(a)g(sp)q(ecial)i(case)f(of)f(our)g(QTMs.)24
b(First,)16 b(w)o(e)g(ha)o(v)o(e)g(restricted)h(our)f(rev)o(ersible)i
(TM)e(to)g(mo)o(v)o(e)-75 1651 y(its)h(head)g(only)g(left)g(and)g(righ)
o(t,)f(instead)i(of)e(also)h(allo)o(wing)g(it)g(to)f(sta)o(y)g(still.)
25 b(Second,)18 b(w)o(e)e(insist)i(that)e(the)h(transition)-75
1708 y(function)e Fl(\016)h Fs(b)q(e)f(a)f(complete)h(function)h
(rather)d(than)i(a)f(partial)g(function.)21 b(Finally)l(,)16
b(w)o(e)e(consider)h(only)g(rev)o(ersible)h(TMs)-75 1764
y(with)g(a)e(single)j(tap)q(e,)e(though)g(Bennett)g(w)o(ork)o(ed)g
(with)g(m)o(ulti-tap)q(e)i(mac)o(hines.)-75 1877 y Fn(Theorem)g(4.1.2)
22 b Fr(A)o(ny)16 b(r)n(eversible)f(TM)g(is)h(also)g(a)g(wel)r(l-forme)
n(d)h(QTM.)-75 1990 y Fn(Pro)q(of.)j Fs(The)15 b(transition)h(function)
g Fl(\016)h Fs(of)d(a)h(deterministic)i(TM)e(maps)g(the)g(curren)o(t)g
(state)g(and)g(sym)o(b)q(ol)h(to)e(an)h(up)q(date)-75
2046 y(triple.)31 b(If)19 b(w)o(e)f(think)h(of)f(it)h(as)f(instead)h
(giving)g(the)g(unit)g(sup)q(erp)q(osition)h(with)f(amplitude)h(1)e
(for)g(that)g(triple)i(and)e(0)-75 2103 y(elsewhere,)g(then)f
Fl(\016)i Fs(is)e(also)g(a)f(quan)o(tum)h(transition)g(function)g(and)g
(w)o(e)g(ha)o(v)o(e)f(a)g(QTM.)h(The)g(time)g(ev)o(olution)g(matrix)-75
2159 y(corresp)q(onding)j(to)f(this)h(QTM)f(con)o(tains)h(only)g(the)g
(en)o(tries)f(1)h(and)f(0.)33 b(Since)21 b(Corollary)e(B.0.14)f(pro)o
(v)o(en)h(b)q(elo)o(w)h(in)-75 2216 y(App)q(endix)f(B)f(tells)g(us)f
(that)g(eac)o(h)g(con\014guration)h(of)e(a)h(rev)o(ersible)i(TM)e(has)g
(exactly)g(one)h(predecessor,)g(this)f(matrix)-75 2272
y(m)o(ust)h(b)q(e)h(a)g(p)q(erm)o(utation)f(matrix.)30
b(If)19 b(the)f(TM)h(is)g(rev)o(ersible)h(then)e(there)h(m)o(ust)f(b)q
(e)h(at)f(most)g(one)h(1)f(in)i(eac)o(h)e(ro)o(w.)-75
2329 y(Therefore)e(an)o(y)h(sup)q(erp)q(osition)h(of)e
(con\014gurations)849 2296 y Fi(P)893 2340 y Fk(i)915
2329 y Fl(\013)944 2336 y Fk(i)958 2329 y Fm(j)p Fl(c)991
2336 y Fk(i)1004 2329 y Fm(i)h Fs(is)g(mapp)q(ed)g(b)o(y)f(this)h(time)
g(ev)o(olution)g(matrix)f(to)g(some)-75 2385 y(other)g(sup)q(erp)q
(osition)j(of)d(con\014gurations)675 2353 y Fi(P)719
2397 y Fk(i)741 2385 y Fl(\013)770 2392 y Fk(i)784 2385
y Fm(j)p Fl(c)817 2369 y Fy(0)817 2397 y Fk(i)830 2385
y Fm(i)p Fs(.)24 b(So,)17 b(the)f(time)h(ev)o(olution)h(preserv)o(es)e
(length,)i(and)e(the)h(QTM)f(is)-75 2442 y(w)o(ell-formed.)1821
b Fd(2)-4 2572 y Fs(Previous)18 b(w)o(ork)e(of)h(Bennett)h(sho)o(ws)f
(that)g(rev)o(ersible)i(mac)o(hines)g(can)e(e\016cien)o(tly)i(sim)o
(ulate)f(deterministic)i(TMs.)-75 2629 y(Of)15 b(course,)g(if)g(a)g
(deterministic)i(TM)d(computes)h(a)g(function)h(whic)o(h)g(is)f(not)g
(one-to-one,)g(then)g(no)g(rev)o(ersible)h(mac)o(hine)951
2779 y(16)p eop
%%Page: 17 17
17 16 bop -75 -26 a Fs(can)16 b(sim)o(ulate)h(it)g(exactly)l(.)23
b(Bennett)17 b([7)o(])f(sho)o(w)o(ed)g(that)f(a)h(generalized)i(rev)o
(ersible)g(TM)d(can)i(do)f(the)g(next)g(b)q(est)h(thing,)-75
31 y(whic)o(h)h(is)f(to)g(tak)o(e)f(an)o(y)g(input)i
Fl(x)f Fs(and)g(compute)g Fl(x)p Fs(;)8 b Fl(M)d Fs(\()p
Fl(x)p Fs(\))16 b(where)h Fl(M)5 b Fs(\()p Fl(x)p Fs(\))16
b(is)i(the)f(output)g(of)f Fl(M)22 b Fs(on)17 b(input)h
Fl(x)p Fs(.)25 b(He)17 b(also)-75 87 y(sho)o(w)o(ed)h(that)f(if)i(a)f
(deterministic)i(TM)d(computes)h(a)g(function)h(whic)o(h)g(is)g
(one-to-one,)f(then)h(there)f(is)g(a)g(generalized)-75
144 y(rev)o(ersible)h(TM)f(that)f(computes)h(the)g(same)g(function.)29
b(F)l(or)18 b(b)q(oth)g(constructions,)g(he)h(used)g(a)e(m)o(ulti-tap)q
(e)i(TM)f(and)-75 200 y(also)c(suggested)f(ho)o(w)g(the)h(sim)o
(ulation)g(could)h(b)q(e)f(carried)g(out)f(using)i(only)f(a)f
(single-tap)q(e)i(mac)o(hine.)21 b(Morita)12 b(et.al.)h([33)o(])-75
257 y(use)h(Bennett's)h(ideas,)f(and)g(some)g(further)g(tec)o(hniques,)
h(to)f(sho)o(w)f(that)h(an)o(y)g(deterministic)i(TM)d(can)h(b)q(e)h
(sim)o(ulated)g(b)o(y)-75 313 y(a)g(generalized)i(rev)o(ersible)f(TM)f
(with)h(a)e(t)o(w)o(o)g(sym)o(b)q(ol)i(alphab)q(et.)-4
387 y(W)l(e)22 b(will)j(giv)o(e)e(a)f(sligh)o(tly)i(di\013eren)o(t)f
(sim)o(ulation)h(of)e(a)h(deterministic)h(TM)e(with)i(a)e(rev)o
(ersible)i(mac)o(hine)g(that)-75 444 y(preserv)o(es)15
b(an)g(imp)q(ortan)o(t)g(timing)h(prop)q(ert)o(y)l(.)-4
518 y(First,)j(w)o(e)f(describ)q(e)j(wh)o(y)e(timing)g(is)h(of)e
(critical)j(imp)q(ortance.)31 b(In)20 b(later)f(sections,)h(w)o(e)e
(will)j(build)g(QTMs)e(with)-75 574 y(in)o(teresting)13
b(and)g(complex)g(in)o(terference)g(patterns.)19 b(Ho)o(w)o(ev)o(er,)12
b(t)o(w)o(o)f(computational)h(paths)h(can)f(only)h(in)o(terfere)g(if)g
(they)-75 631 y(reac)o(h)j(the)g(same)g(con\014guration)h(at)e(the)h
(same)g(time.)23 b(W)l(e)17 b(will)h(often)e(w)o(an)o(t)f(paths)h(to)f
(in)o(terfere)i(whic)o(h)g(run)f(m)o(uc)o(h)g(of)-75
687 y(the)e(same)f(computation,)h(but)g(with)g(di\013eren)o(t)g
(inputs.)20 b(W)l(e)14 b(can)g(only)g(b)q(e)h(sure)f(they)g(in)o
(terfere)g(if)g(w)o(e)f(kno)o(w)h(that)f(these)-75 744
y(computations)j(can)h(b)q(e)g(carried)h(out)e(in)h(exactly)g(the)g
(same)f(running)i(time.)24 b(W)l(e)17 b(therefore)f(w)o(an)o(t)f(to)h
(sho)o(w)g(that)g(an)o(y)-75 800 y(function)i(computable)g(in)g
(deterministic)i(p)q(olynomial)f(time)e(can)h(b)q(e)g(computed)g(b)o(y)
f(a)g(p)q(olynomial)i(time)f(rev)o(ersible)-75 857 y(TM)f(in)i(suc)o(h)
g(a)e(w)o(a)o(y)g(that)h(the)g(running)h(time)f(of)g(the)g(latter)g(is)
g(determined)i(en)o(tirely)f(b)o(y)f(the)g(length)h(of)e(its)h(input.)
-75 913 y(Then,)f(pro)o(vided)h(that)d(all)j(computation)f(paths)f
(carry)g(out)g(the)h(same)f(deterministic)j(algorithms)e(on)f(the)h
(inputs)g(of)-75 969 y(the)e(same)g(length,)h(they)f(will)i(all)f(tak)o
(e)e(exactly)i(the)f(same)g(n)o(um)o(b)q(er)h(of)e(steps.)-4
1044 y(W)l(e)d(pro)o(v)o(e)g(the)g(follo)o(wing)h(theorem)f(in)h(App)q
(endix)h(B)f(on)f(page)g(55)g(using)h(ideas)f(from)g(the)g
(constructions)h(of)f(Bennett)-75 1100 y(and)k(Morita)g(et.al.)-75
1224 y Fn(Theorem)i(4.1.3)g(\(Sync)o(hronization)i(Theorem\))k
Fr(If)16 b Fl(f)23 b Fr(is)17 b(a)g(function)g(mapping)h(strings)e(to)i
(strings)e(which)i(c)n(an)-75 1280 y(b)n(e)e(c)n(ompute)n(d)h(in)e
(deterministic)h(p)n(olynomial)g(time)g(and)h(such)f(that)h(the)g
(length)e(of)i Fl(f)5 b Fs(\()p Fl(x)p Fs(\))16 b Fr(dep)n(ends)f(only)
h(on)g(the)h(length)-75 1337 y(of)d Fl(x)p Fr(,)h(then)f(ther)n(e)g(is)
f(a)i(p)n(olynomial)e(time,)i(stationary,)g(normal)f(form)g(r)n
(eversible)f(TM)h(which)g(given)g(input)g Fl(x)p Fr(,)g(pr)n(o)n(duc)n
(es)-75 1393 y(output)k Fl(x)p Fs(;)8 b Fl(f)d Fs(\()p
Fl(x)p Fs(\))p Fr(,)15 b(and)h(whose)g(running)g(time)g(dep)n(ends)g
(only)f(on)h(the)h(length)e(of)i Fl(x)p Fr(.)-4 1468
y(If)c Fl(f)19 b Fr(is)13 b(a)h(function)f(fr)n(om)h(strings)e(to)i
(strings)f(that)h(such)g(that)h(b)n(oth)e Fl(f)19 b Fr(and)14
b Fl(f)1318 1451 y Fy(\000)p Fj(1)1379 1468 y Fr(c)n(an)f(b)n(e)g(c)n
(ompute)n(d)h(in)g(deterministic)-75 1524 y(p)n(olynomial)e(time,)i
(and)f(such)g(that)g(the)g(length)f(of)h Fl(f)5 b Fs(\()p
Fl(x)p Fs(\))12 b Fr(dep)n(ends)g(only)h(on)f(the)h(length)f(of)h
Fl(x)p Fr(,)h(then)e(ther)n(e)h(is)f(a)h(p)n(olynomial)-75
1580 y(time,)h(stationary,)g(normal)e(form)i(r)n(eversible)e(TM)g
(which)i(given)e(input)h Fl(x)p Fr(,)h(pr)n(o)n(duc)n(es)e(output)j
Fl(f)5 b Fs(\()p Fl(x)p Fs(\))p Fr(,)13 b(and)g(whose)g(running)-75
1637 y(time)j(dep)n(ends)g(only)g(on)g(the)g(length)g(of)g
Fl(x)p Fr(.)-75 1776 y Fh(4.2)56 b(Programming)16 b(primitiv)n(es)-75
1880 y Fs(W)l(e)g(no)o(w)f(sho)o(w)g(ho)o(w)g(to)g(carry)g(out)g(sev)o
(eral)h(programming)f(primitiv)o(es)i(rev)o(ersibly)l(.)23
b(The)16 b(Branc)o(hing,)g(Rev)o(ersal,)g(and)-75 1936
y(Lo)q(oping)g(Lemmas)f(will)i(b)q(e)f(used)g(frequen)o(tly)g(in)g
(subsequen)o(t)f(sections.)-4 2011 y(The)j(pro)q(ofs)f(of)h(the)g
(follo)o(wing)g(t)o(w)o(o)f(lemmas)h(are)f(straigh)o(tforw)o(ard)f(and)
i(are)g(omitted.)28 b(Ho)o(w)o(ev)o(er,)17 b(they)h(will)h(b)q(e)-75
2067 y(quite)f(useful)h(as)e(w)o(e)g(build)i(complicated)g(mac)o
(hines,)g(since)f(they)g(allo)o(w)f(us)h(to)f(build)i(a)e(series)h(of)f
(simpler)i(mac)o(hines)-75 2123 y(while)e(ignoring)f(the)f(con)o(ten)o
(ts)f(of)h(trac)o(ks)f(not)h(curren)o(tly)h(b)q(eing)g(used.)-75
2247 y Fn(Lemma)h(4.2.1)23 b Fr(Given)13 b(any)h(QTM)f(\(r)n(eversible)
f(TM\))h Fl(M)k Fs(=)c(\(\006)p Fl(;)8 b(Q;)g(\016)r
Fs(\))j Fr(and)j(any)g(set)g Fs(\006)1463 2231 y Fy(0)1474
2247 y Fr(,)g(ther)n(e)g(is)g(a)g(QTM)f(\(r)n(eversible)-75
2304 y(TM\))i Fl(M)82 2287 y Fy(0)106 2304 y Fs(=)e(\(\006)d
Fm(\002)g Fs(\006)293 2287 y Fy(0)305 2304 y Fl(;)e(Q;)g(\016)405
2287 y Fy(0)415 2304 y Fs(\))16 b Fr(such)g(that)h Fl(M)694
2287 y Fy(0)722 2304 y Fr(b)n(ehaves)f(exactly)g(as)g
Fl(M)21 b Fr(while)16 b(le)n(aving)f(its)h(se)n(c)n(ond)f(tr)n(ack)i
(unchange)n(d.)-75 2428 y Fn(Lemma)g(4.2.2)23 b Fr(Given)16
b(any)h(QTM)g(\(r)n(eversible)e(TM\))h Fl(M)k Fs(=)14
b(\(\006)1081 2435 y Fj(1)1111 2428 y Fm(\002)e(\001)c(\001)g(\001)g
(\002)k Fs(\006)1301 2435 y Fk(k)1322 2428 y Fl(;)c(Q;)g(\016)r
Fs(\))15 b Fr(and)i(p)n(ermutation)h Fl(\031)e Fs(:)e([1)p
Fl(;)8 b(k)q Fs(])13 b Fm(!)-75 2484 y Fs([1)p Fl(;)8
b(k)q Fs(])p Fr(,)16 b(ther)n(e)h(is)g(a)h(QTM)e(\(r)n(eversible)g
(TM\))g Fl(M)759 2468 y Fy(0)786 2484 y Fs(=)f(\(\006)887
2494 y Fk(\031)q Fj(\(1\))966 2484 y Fm(\002)c(\001)d(\001)g(\001)h
(\002)i Fs(\006)1155 2494 y Fk(\031)q Fj(\()p Fk(k)q
Fj(\))1225 2484 y Fl(;)d(Q;)g(\016)1325 2468 y Fy(0)1335
2484 y Fs(\))17 b Fr(such)h(that)g(the)f Fl(M)1694 2468
y Fy(0)1723 2484 y Fr(b)n(ehaves)g(exactly)-75 2541 y(as)f
Fl(M)21 b Fr(exc)n(ept)16 b(that)h(its)f(tr)n(acks)g(ar)n(e)g(p)n
(ermute)n(d)h(ac)n(c)n(or)n(ding)e(to)i Fl(\031)r Fr(.)951
2779 y Fs(17)p eop
%%Page: 18 18
18 17 bop -4 -26 a Fs(The)17 b(follo)o(wing)i(t)o(w)o(o)d(lemmas)i(are)
f(also)g(straigh)o(tforw)o(ard,)f(but)i(stating)f(them)g(separately)h
(mak)o(es)f(Lemma)h(4.2.5)-75 31 y(b)q(elo)o(w)j(easy)e(to)h(pro)o(v)o
(e.)34 b(The)20 b(\014rst)g(deals)g(with)h(sw)o(apping)f(transitions)g
(of)g(states)f(in)i(a)f(QTM.)f(W)l(e)h(can)g(sw)o(ap)g(the)-75
87 y(outgoing)13 b(transitions)g(of)g(states)f Fl(p)533
94 y Fj(1)565 87 y Fs(and)h Fl(p)674 94 y Fj(2)707 87
y Fs(for)f(transition)i(function)g Fl(\016)h Fs(b)o(y)e(de\014ning)h
Fl(\016)1443 71 y Fy(0)1455 87 y Fs(\()p Fl(p)1496 94
y Fj(1)1515 87 y Fl(;)8 b(\033)r Fs(\))j(=)i Fl(\016)r
Fs(\()p Fl(p)1704 94 y Fj(2)1723 87 y Fl(;)8 b(\033)r
Fs(\),)k Fl(\016)1837 71 y Fy(0)1848 87 y Fs(\()p Fl(p)1889
94 y Fj(2)1909 87 y Fl(;)c(\033)r Fs(\))j(=)-75 144 y
Fl(\016)r Fs(\()p Fl(p)-12 151 y Fj(1)7 144 y Fl(;)d(\033)r
Fs(\))15 b(and)i Fl(\016)201 127 y Fy(0)212 144 y Fs(\()p
Fl(p;)8 b(\033)r Fs(\))13 b(=)i Fl(\016)r Fs(\()p Fl(p;)8
b(\033)r Fs(\))14 b(for)i Fl(p)e Fm(6)p Fs(=)h Fl(p)708
151 y Fj(1)728 144 y Fl(;)8 b(p)772 151 y Fj(2)791 144
y Fs(.)23 b(Similarly)l(,)c(w)o(e)d(can)g(sw)o(ap)g(the)g(incoming)i
(transitions)f(of)f(states)f Fl(q)2002 151 y Fj(1)-75
200 y Fs(and)i Fl(q)35 207 y Fj(2)72 200 y Fs(b)o(y)g(de\014ning)h
Fl(\016)332 184 y Fy(0)344 200 y Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)
g(q)516 207 y Fj(1)533 200 y Fl(;)g(d)p Fs(\))14 b(=)i
Fl(\016)r Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)f(q)854
207 y Fj(2)871 200 y Fl(;)h(d)p Fs(\),)16 b Fl(\016)985
184 y Fy(0)996 200 y Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g(q)1168
207 y Fj(2)1185 200 y Fl(;)g(d)p Fs(\))14 b(=)i Fl(\016)r
Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g(q)1507 207 y
Fj(1)1524 200 y Fl(;)g(d)p Fs(\),)15 b(and)i Fl(\016)1727
184 y Fy(0)1739 200 y Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g(q)r(;)f
(d)o Fs(\))13 b(=)-75 257 y Fl(\016)r Fs(\()p Fl(p;)8
b(\033)o(;)g(\034)s(;)g(q)r(;)f(d)o Fs(\))12 b(for)j
Fl(q)f Fm(6)p Fs(=)f Fl(q)366 264 y Fj(1)386 257 y Fl(;)8
b(q)427 264 y Fj(2)447 257 y Fs(.)-75 381 y Fn(Lemma)17
b(4.2.3)23 b Fr(If)e Fl(M)27 b Fr(is)22 b(a)g(wel)r(l-forme)n(d)h(QTM)e
(\(r)n(eversible)g(TM\),)g(then)h(swapping)g(the)g(inc)n(oming)f(or)i
(outgoing)-75 437 y(tr)n(ansitions)15 b(b)n(etwe)n(en)g(a)i(p)n(air)f
(of)g(states)g(in)g Fl(M)21 b Fr(gives)16 b(another)h(wel)r(l-forme)n
(d)f(QTM)f(\(r)n(eversible)g(TM\).)-75 561 y Fn(Lemma)i(4.2.4)23
b Fr(L)n(et)12 b Fl(M)360 568 y Fj(1)392 561 y Fs(=)h(\(\006)p
Fl(;)8 b(Q)548 568 y Fj(1)567 561 y Fl(;)g(\016)608 568
y Fj(1)627 561 y Fs(\))k Fr(and)i Fl(M)787 568 y Fj(2)819
561 y Fs(=)f(\(\006)p Fl(;)8 b(Q)975 568 y Fj(2)993 561
y Fl(;)g(\016)1034 568 y Fj(2)1053 561 y Fs(\))13 b Fr(b)n(e)g(two)g
(wel)r(l-forme)n(d)h(QTMs)e(\(r)n(eversible)f(TMs\))h(with)-75
617 y(the)g(same)g(alphab)n(et)g(and)g(disjoint)f(state)h(sets.)18
b(Then)11 b(then)h(the)g(union)g(of)g(the)g(two)g(machines,)g
Fl(M)18 b Fs(=)13 b(\(\006)p Fl(;)8 b(Q)1768 624 y Fj(1)1787
617 y Fm([)p Fl(Q)1853 624 y Fj(2)1873 617 y Fl(;)g(\016)1914
624 y Fj(1)1934 617 y Fm([)p Fl(\016)1984 624 y Fj(2)2004
617 y Fs(\))-75 674 y Fr(and)16 b(with)h(arbitr)n(arily)f(chosen)g
(start)h(state)f Fl(q)713 681 y Fj(0)745 674 y Fm(2)d
Fl(Q)824 681 y Fj(1)854 674 y Fm([)e Fl(Q)931 681 y Fj(2)966
674 y Fr(is)16 b(also)g(a)h(wel)r(l-forme)n(d)f(QTM)g(\(r)n(eversible)e
(TM\).)-4 798 y Fs(Using)20 b(the)g(t)o(w)o(o)e(preceding)k(lemmas,)f
(w)o(e)e(can)h(insert)g(one)g(mac)o(hine)h(in)g(place)g(of)e(a)g(state)
g(in)i(another.)34 b(When)-75 854 y(w)o(e)16 b(p)q(erform)f(suc)o(h)i
(an)f(insertion,)g(the)g(computations)g(of)g(the)g(t)o(w)o(o)e(mac)o
(hines)j(migh)o(t)f(disturb)h(eac)o(h)f(other.)21 b(Ho)o(w)o(ev)o(er,)
-75 911 y(sometimes)13 b(this)h(can)g(easily)g(b)q(e)g(seen)g(not)f(to)
g(b)q(e)h(the)f(case.)20 b(F)l(or)13 b(example,)h(in)g(the)f(insertion)
i(used)f(b)o(y)f(the)h(Do)o(v)o(etailing)-75 967 y(Lemma)c(b)q(elo)o
(w,)i(w)o(e)e(will)i(insert)f(one)f(mac)o(hine)h(for)f(the)h(\014nal)g
(state)e(of)h(a)g(w)o(ell-b)q(eha)o(v)o(ed)i(QTM,)e(so)g(that)g(the)g
(computation)-75 1024 y(of)k(the)h(original)h(mac)o(hine)g(has)e
(completed)i(b)q(efore)f(the)g(inserted)g(mac)o(hine)h(b)q(egins.)21
b(In)15 b(the)g(rest)f(of)h(the)g(insertions)g(w)o(e)-75
1080 y(carry)h(out)f(the)i(t)o(w)o(o)e(mac)o(hines)i(will)g(op)q(erate)
f(on)h(di\013eren)o(t)f(trac)o(ks,)f(so)h(the)g(only)h(p)q(ossible)h
(disturbance)f(in)o(v)o(olv)o(es)g(the)-75 1137 y(p)q(osition)f(of)f
(the)g(tap)q(e)h(head.)-75 1261 y Fn(Lemma)h(4.2.5)23
b Fr(If)16 b Fl(M)333 1268 y Fj(1)370 1261 y Fr(and)h
Fl(M)503 1268 y Fj(2)540 1261 y Fr(ar)n(e)g(normal)g(form)h(QTMs)e(\(r)
n(eversible)f(TMs\))h(with)h(the)h(same)f(alphab)n(et,)g(and)g
Fl(q)i Fr(is)-75 1317 y(a)c(state)g(of)g Fl(M)167 1324
y Fj(1)187 1317 y Fr(,)g(then)g(ther)n(e)g(is)g(a)g(normal)g(form)g
(QTM)f Fl(M)20 b Fr(which)c(acts)f(as)f Fl(M)1284 1324
y Fj(1)1319 1317 y Fr(exc)n(ept)h(that)h(e)n(ach)f(time)g(it)g(would)g
(enter)-75 1373 y(state)h Fl(q)r Fr(,)g(it)h(inste)n(ad)e(runs)h
(machine)g Fl(M)615 1380 y Fj(2)635 1373 y Fr(.)-75 1497
y Fn(Pro)q(of.)23 b Fs(Let)16 b Fl(M)216 1504 y Fj(1)252
1497 y Fs(and)g Fl(M)385 1504 y Fj(2)421 1497 y Fs(b)q(e)h(as)f(stated)
f(with)i(initial)h(and)f(\014nal)g(states)e Fl(q)1257
1504 y Fj(1)p Fk(;)p Fj(0)1304 1497 y Fl(;)8 b(q)1345
1504 y Fj(2)p Fk(;)p Fj(0)1392 1497 y Fl(;)g(q)1433 1504
y Fj(1)p Fk(;f)1483 1497 y Fl(;)g(q)1524 1504 y Fj(2)p
Fk(;f)1573 1497 y Fs(,)16 b(and)h(with)f Fl(q)i Fs(a)e(state)f(of)-75
1554 y Fl(M)-31 1561 y Fj(1)-11 1554 y Fs(.)-4 1628 y(Then)d(w)o(e)g
(can)g(construct)g(the)g(desired)h(mac)o(hine)g Fl(M)k
Fs(as)12 b(follo)o(ws.)19 b(First,)11 b(tak)o(e)h(the)g(union)h(of)f
Fl(M)1640 1635 y Fj(1)1671 1628 y Fs(and)h Fl(M)1801
1635 y Fj(2)1832 1628 y Fs(according)-75 1685 y(to)h(Lemma)h(4.2.4)e
(on)h(page)h(18)f(and)h(mak)o(e)f(the)g(start)g(state)f
Fl(q)1000 1692 y Fj(1)p Fk(;)p Fj(0)1063 1685 y Fs(if)i
Fl(q)f Fm(6)p Fs(=)f Fl(q)1206 1692 y Fj(1)p Fk(;)p Fj(0)1268
1685 y Fs(and)i Fl(q)1376 1692 y Fj(2)p Fk(;)p Fj(0)1438
1685 y Fs(otherwise,)g(and)f(mak)o(e)g(the)h(\014nal)-75
1741 y(state)d Fl(q)54 1748 y Fj(1)p Fk(;f)117 1741 y
Fs(if)h Fl(q)h Fm(6)p Fs(=)f Fl(q)258 1748 y Fj(1)p Fk(;f)321
1741 y Fs(and)g Fl(q)427 1748 y Fj(2)p Fk(;f)490 1741
y Fs(otherwise.)19 b(Then,)14 b(sw)o(ap)e(the)h(incoming)g(transitions)
g(of)f Fl(q)j Fs(and)e Fl(q)1629 1748 y Fj(2)p Fk(;)p
Fj(0)1689 1741 y Fs(and)g(the)f(outgoing)-75 1797 y(transitions)j(of)g
Fl(q)i Fs(and)f Fl(q)348 1804 y Fj(2)p Fk(;f)413 1797
y Fs(according)g(to)e(Lemma)i(4.2.3)d(on)i(page)g(18)g(to)g(get)f(the)i
(w)o(ell-formed)g(mac)o(hine)g Fl(M)5 b Fs(.)-4 1872
y(Since)17 b Fl(M)159 1879 y Fj(1)194 1872 y Fs(is)g(in)f(normal)g
(form,)f(the)h(\014nal)h(state)e(of)g Fl(M)21 b Fs(leads)16
b(bac)o(k)g(to)f(its)h(initial)i(state)d(no)h(matter)f(whether)h
Fl(q)h Fs(is)-75 1928 y(the)e(initial)j(state)c(of)h
Fl(M)342 1935 y Fj(1)362 1928 y Fs(,)f(the)i(\014nal)g(state)e(of)h
Fl(M)776 1935 y Fj(1)796 1928 y Fs(,)f(or)h(neither.)958
b Fd(2)-4 2059 y Fs(Next,)17 b(w)o(e)g(sho)o(w)g(ho)o(w)g(to)f(tak)o(e)
h(t)o(w)o(o)f(mac)o(hines)i(and)f(form)g(a)g(third)h(b)o(y)f(\\do)o(v)o
(etailing")h(one)f(on)o(to)g(the)g(end)h(of)f(the)-75
2115 y(other.)h(Notice,)13 b(that)e(when)h(w)o(e)f(do)o(v)o(etail)h
(QTMs,)g(the)f(second)h(QTM)g(will)h(b)q(e)f(started)f(with)h(the)g
(\014nal)g(sup)q(erp)q(osition)h(of)-75 2172 y(the)i(\014rst)g(mac)o
(hine)h(as)f(its)g(input)h(sup)q(erp)q(osition.)22 b(If)15
b(the)g(second)h(mac)o(hine)g(has)f(di\013ering)h(running)h(times)e
(for)f(v)m(arious)-75 2228 y(strings)19 b(in)h(this)g(sup)q(erp)q
(osition,)i(then)e(the)f(do)o(v)o(etailed)h(mac)o(hine)h(migh)o(t)e
(not)g(halt)g(ev)o(en)h(though)f(the)h(t)o(w)o(o)e(original)-75
2285 y(mac)o(hines)i(w)o(ere)f(w)o(ell-b)q(eha)o(v)o(ed.)34
b(Therefore,)20 b(a)f(QTM)g(built)i(b)o(y)e(do)o(v)o(etailing)i(t)o(w)o
(o)d(w)o(ell-b)q(eha)o(v)o(ed)j(QTMs)e(ma)o(y)f(not)-75
2341 y(itself)e(b)q(e)g(w)o(ell-b)q(eha)o(v)o(ed.)-75
2465 y Fn(Lemma)h(4.2.6)g(\(Do)o(v)o(etailing)i(Lemma\))k
Fr(If)18 b Fl(M)837 2472 y Fj(1)876 2465 y Fr(and)g Fl(M)1010
2472 y Fj(2)1049 2465 y Fr(ar)n(e)g(wel)r(l-b)n(ehave)n(d,)h(normal)f
(form)h(QTMs)f(\(r)n(eversible)-75 2521 y(TMs\))c(with)i(the)g(same)g
(alphab)n(et,)f(then)h(ther)n(e)f(is)h(a)f(normal)h(form)g(QTM)f(\(r)n
(eversible)f(TM\))g Fl(M)21 b Fr(which)16 b(c)n(arries)f(out)i(the)-75
2578 y(c)n(omputation)g(of)f Fl(M)281 2585 y Fj(1)318
2578 y Fr(fol)r(lowe)n(d)g(by)g(the)h(c)n(omputation)g(of)f
Fl(M)983 2585 y Fj(2)1003 2578 y Fr(.)951 2779 y Fs(18)p
eop
%%Page: 19 19
19 18 bop -75 -26 a Fn(Pro)q(of.)28 b Fs(Let)18 b Fl(M)223
-19 y Fj(1)260 -26 y Fs(and)g Fl(M)395 -19 y Fj(2)433
-26 y Fs(b)q(e)g(w)o(ell-b)q(eha)o(v)o(ed,)i(normal)e(form)f(QTMs)h
(\(rev)o(ersible)h(TMs\))d(with)j(the)e(same)h(alphab)q(et)-75
31 y(and)d(with)h(start)e(states)g(and)i(\014nal)g(states)e
Fl(q)694 38 y Fj(1)p Fk(;)p Fj(0)741 31 y Fl(;)8 b(q)782
38 y Fj(2)p Fk(;)p Fj(0)829 31 y Fl(;)g(q)870 38 y Fj(1)p
Fk(;f)920 31 y Fl(;)g(q)961 38 y Fj(2)p Fk(;f)1010 31
y Fs(.)-4 105 y(T)l(o)14 b(construct)h Fl(M)5 b Fs(,)15
b(w)o(e)g(simply)i(insert)e Fl(M)722 112 y Fj(2)757 105
y Fs(for)g(the)g(\014nal)h(state)e(of)h Fl(M)1213 112
y Fj(1)1248 105 y Fs(using)h(Lemma)f(4.2.5)f(on)h(page)g(18.)-4
179 y(T)l(o)i(complete)h(the)g(pro)q(of)g(w)o(e)f(need)i(to)e(sho)o(w)g
(that)g Fl(M)22 b Fs(carries)c(out)g(the)g(computation)f(of)h
Fl(M)1658 186 y Fj(1)1695 179 y Fs(follo)o(w)o(ed)g(b)o(y)g(that)-75
236 y(of)d Fl(M)21 243 y Fj(2)41 236 y Fs(.)-4 310 y(T)l(o)e(see)i
(this,)f(\014rst)f(recall)j(that)d(since)i Fl(M)698 317
y Fj(1)732 310 y Fs(and)f Fl(M)863 317 y Fj(2)897 310
y Fs(are)f(in)i(normal)f(form,)f(the)h(only)h(transitions)f(in)o(to)g
Fl(q)1806 317 y Fj(1)p Fk(;)p Fj(0)1867 310 y Fs(and)h
Fl(q)1975 317 y Fj(2)p Fk(;)p Fj(0)-75 366 y Fs(are)i(from)g
Fl(q)133 373 y Fj(1)p Fk(;f)201 366 y Fs(and)h Fl(q)312
373 y Fj(2)p Fk(;f)380 366 y Fs(resp)q(ectiv)o(ely)l(.)29
b(This)18 b(means)g(that)f(no)g(transitions)h(in)g Fl(M)1390
373 y Fj(1)1428 366 y Fs(ha)o(v)o(e)f(b)q(een)i(c)o(hanged)e(except)i
(for)-75 423 y(those)d(in)o(to)g(or)g(out)g(of)g(state)f
Fl(q)462 430 y Fj(1)p Fk(;f)512 423 y Fs(.)23 b(Therefore,)16
b(since)i Fl(M)925 430 y Fj(1)961 423 y Fs(is)e(w)o(ell-b)q(eha)o(v)o
(ed)i(and)f(do)q(es)f(not)g(prematurely)h(en)o(ter)f(state)-75
479 y Fl(q)-55 486 y Fj(1)p Fk(;f)-5 479 y Fs(,)f(the)g(mac)o(hine)g
Fl(M)5 b Fs(,)15 b(when)g(started)f(in)i(state)e Fl(q)811
486 y Fj(1)p Fk(;)p Fj(0)858 479 y Fs(,)g(will)j(compute)e(exactly)g
(as)f Fl(M)1410 486 y Fj(1)1445 479 y Fs(un)o(til)i Fl(M)1596
486 y Fj(1)1630 479 y Fs(w)o(ould)f(halt.)20 b(A)o(t)15
b(that)-75 535 y(p)q(oin)o(t)g Fl(M)20 b Fs(will)c(instead)f(reac)o(h)g
(a)f(sup)q(erp)q(osition)j(with)e(all)g(con\014gurations)g(in)h(state)d
Fl(q)1427 542 y Fj(2)p Fk(;)p Fj(0)1475 535 y Fs(.)19
b(Then,)c(since)h(no)f(transitions)-75 592 y(in)j Fl(M)24
599 y Fj(2)60 592 y Fs(ha)o(v)o(e)f(b)q(een)h(c)o(hanged)f(except)g
(for)g(those)f(in)o(to)h(or)g(out)f(of)h Fl(q)1097 599
y Fj(2)p Fk(;f)1147 592 y Fs(,)g Fl(M)22 b Fs(will)c(pro)q(ceed)g
(exactly)f(as)g(if)g Fl(M)1803 599 y Fj(2)1840 592 y
Fs(had)g(b)q(een)-75 648 y(started)d(in)i(the)g(sup)q(erp)q(osition)h
(of)d(outputs)h(computed)h(b)o(y)f Fl(M)1027 655 y Fj(1)1047
648 y Fs(.)928 b Fd(2)-4 779 y Fs(No)o(w,)16 b(w)o(e)g(sho)o(w)g(ho)o
(w)h(to)f(build)i(a)f(conditional)h(branc)o(h)f(around)g(t)o(w)o(o)e
(existing)j(QTMs)e(or)h(rev)o(ersible)h(TMs.)24 b(The)-75
835 y(branc)o(hing)15 b(mac)o(hine)g(will)h(run)e(one)g(of)g(the)g(t)o
(w)o(o)f(mac)o(hines)i(on)f(its)g(\014rst)g(trac)o(k)f(input,)i(dep)q
(ending)h(on)e(its)g(second)h(trac)o(k)-75 892 y(input.)21
b(Since)15 b(a)f(TM)g(can)h(ha)o(v)o(e)e(only)i(one)g(\014nal)g(state,)
e(w)o(e)h(m)o(ust)g(rejoin)h(the)f(t)o(w)o(o)f(branc)o(hes)h(at)g(the)g
(end.)21 b(W)l(e)14 b(can)h(join)-75 948 y(rev)o(ersibly)k(if)g(w)o(e)f
(write)g(bac)o(k)g(out)g(the)g(bit)g(that)g(determined)h(whic)o(h)g
(mac)o(hine)g(w)o(as)e(used.)30 b(The)18 b(construction)g(will)-75
1005 y(simply)g(build)g(a)f(rev)o(ersible)h(TM)e(that)g(accomplishes)i
(the)e(desired)i(branc)o(hing)g(and)e(rejoining,)i(and)f(then)g(insert)
g(the)-75 1061 y(t)o(w)o(o)d(mac)o(hines)i(for)e(states)h(in)h(this)f
(branc)o(hing)h(mac)o(hine.)-75 1185 y Fn(Lemma)h(4.2.7)g(\(Branc)o
(hing)i(Lemma\))k Fr(If)d Fl(M)814 1192 y Fj(1)856 1185
y Fr(and)h Fl(M)993 1192 y Fj(2)1034 1185 y Fr(ar)n(e)g(wel)r(l-b)n
(ehave)n(d,)i(normal)e(form)h(QTMs)e(\(r)n(eversible)-75
1242 y(TMs\))d(with)j(the)f(same)g(alphab)n(et,)h(then)f(ther)n(e)g(is)
f(a)i(wel)r(l-b)n(ehave)n(d,)f(normal)g(form)g(QTM)g(\(r)n(eversible)e
(TM\))h Fl(M)24 b Fr(such)-75 1298 y(that)19 b(if)f(the)g(se)n(c)n(ond)
f(tr)n(ack)h(is)g(empty,)h Fl(M)k Fr(runs)17 b Fl(M)822
1305 y Fj(1)860 1298 y Fr(on)h(its)g(\014rst)f(tr)n(ack)h(and)h(le)n
(aves)d(its)i(se)n(c)n(ond)f(tr)n(ack)h(empty,)h(and)f(if)-75
1355 y(the)i(se)n(c)n(ond)f(tr)n(ack)h(has)g(a)h Fs(1)f
Fr(in)f(the)i(start)f(c)n(el)r(l)f(\(and)h(al)r(l)g(other)g(c)n(el)r
(ls)f(blank\),)h Fl(M)25 b Fr(runs)20 b Fl(M)1558 1362
y Fj(2)1598 1355 y Fr(on)g(its)f(\014rst)h(tr)n(ack)g(and)-75
1411 y(le)n(aves)d(the)i Fs(1)f Fr(wher)n(e)h(its)f(tap)n(e)h(he)n(ad)g
(ends)e(up.)29 b(In)17 b(either)i(c)n(ase,)f Fl(M)24
b Fr(takes)18 b(exactly)h(four)g(time)g(steps)e(mor)n(e)i(than)g(the)
-75 1468 y(appr)n(opriate)f Fl(M)211 1475 y Fk(i)225
1468 y Fr(.)-75 1592 y Fn(Pro)q(of.)i Fs(Let)15 b Fl(M)212
1599 y Fj(1)247 1592 y Fs(and)g Fl(M)379 1599 y Fj(2)414
1592 y Fs(b)q(e)h(w)o(ell-b)q(eha)o(v)o(ed,)h(normal)e(form)f(QTMs)h
(\(rev)o(ersible)i(TMs\))d(with)h(the)h(same)f(alphab)q(et.)-4
1666 y(Then)i(w)o(e)f(can)h(construct)g(the)g(desired)h(QTM)f(as)f
(follo)o(ws.)25 b(W)l(e)17 b(will)i(sho)o(w)d(ho)o(w)g(to)g(build)j(a)e
(stationary)l(,)f(normal)-75 1722 y(form)f(rev)o(ersible)j(TM)d
Fl(B)r(R)i Fs(whic)o(h)g(alw)o(a)o(ys)e(tak)o(es)g(four)h(time)h(steps)
f(and)g(lea)o(v)o(es)g(its)g(input)h(unc)o(hanged,)g(alw)o(a)o(ys)e
(has)h(a)-75 1779 y(sup)q(erp)q(osition)d(consisting)f(of)e(a)h(single)
h(con\014guration,)g(and)f(has)g(t)o(w)o(o)e(states)h
Fl(q)1283 1786 y Fj(1)1314 1779 y Fs(and)i Fl(q)1419
1786 y Fj(2)1450 1779 y Fs(with)f(the)g(follo)o(wing)h(prop)q(erties.)
-75 1835 y(If)18 b Fl(B)r(R)g Fs(is)g(run)g(with)g(a)g(1)f(in)i(the)e
(start)g(cell,)i(and)f(blanks)h(elsewhere,)g(then)f Fl(B)r(R)g
Fs(visits)g Fl(q)1517 1842 y Fj(1)1555 1835 y Fs(once)g(with)g(a)f
(blank)i(tap)q(e)-75 1892 y(and)c(with)g(its)g(tap)q(e)g(head)h(in)g
(the)f(start)e(cell)k(and)e(do)q(esn't)g(visit)g Fl(q)1075
1899 y Fj(2)1110 1892 y Fs(at)f(all,)i(and)f(similarly)i(if)e
Fl(B)r(R)h Fs(is)f(run)g(with)h(a)e(blank)-75 1948 y(tap)q(e)h(then)f
Fl(B)r(R)i Fs(visits)f Fl(q)353 1955 y Fj(2)387 1948
y Fs(once)g(with)g(a)f(blank)i(tap)q(e)e(and)h(with)g(its)g(tap)q(e)f
(head)h(in)g(the)g(start)e(cell)k(and)d(do)q(esn't)h(visit)g
Fl(q)2002 1955 y Fj(1)-75 2004 y Fs(at)e(all.)21 b(Then)15
b(if)f(w)o(e)g(extend)h Fl(M)475 2011 y Fj(1)509 2004
y Fs(and)f Fl(M)640 2011 y Fj(2)674 2004 y Fs(to)f(ha)o(v)o(e)h(a)g
(second)g(trac)o(k)g(with)g(the)g(alphab)q(et)h(of)f
Fl(B)r(R)p Fs(,)h(extend)f Fl(B)r(R)h Fs(to)e(ha)o(v)o(e)-75
2061 y(a)j(\014rst)f(trac)o(k)g(with)h(the)g(common)g(alphab)q(et)h(of)
e Fl(M)826 2068 y Fj(1)862 2061 y Fs(and)h Fl(M)995 2068
y Fj(2)1014 2061 y Fs(,)g(and)g(insert)g Fl(M)1303 2068
y Fj(1)1339 2061 y Fs(for)f(state)g Fl(q)1541 2068 y
Fj(1)1577 2061 y Fs(and)h Fl(M)1710 2068 y Fj(2)1746
2061 y Fs(for)f(state)g Fl(q)1948 2068 y Fj(2)1984 2061
y Fs(in)-75 2117 y Fl(B)r(R)p Fs(,)g(w)o(e)g(will)i(ha)o(v)o(e)e(the)g
(desired)i(QTM)e Fl(M)5 b Fs(.)-4 2192 y(W)l(e)15 b(complete)h(the)f
(construction)g(b)o(y)g(exhibiting)j(the)d(rev)o(ersible)i(TM)d
Fl(B)r(R)p Fs(.)21 b(The)15 b(mac)o(hine)h(en)o(ters)f(state)f
Fl(q)1893 2175 y Fy(0)1891 2203 y Fj(1)1926 2192 y Fs(or)h
Fl(q)2004 2175 y Fy(0)2002 2203 y Fj(2)-75 2248 y Fs(dep)q(ending)g(on)
f(whether)f(the)g(start)f(cell)j(con)o(tains)e(a)g(1)g(and)h(steps)f
(left,)g(and)h(en)o(ters)f(the)g(corresp)q(onding)h Fl(q)1778
2255 y Fj(1)1812 2248 y Fs(or)e Fl(q)1885 2255 y Fj(2)1918
2248 y Fs(while)-75 2304 y(stepping)k(bac)o(k)f(righ)o(t.)20
b(Then)15 b(it)h(en)o(ters)f(state)f Fl(q)769 2311 y
Fj(3)804 2304 y Fs(while)j(stepping)f(left)g(and)f(state)f
Fl(q)1404 2311 y Fk(f)1443 2304 y Fs(while)i(stepping)g(bac)o(k)f(righ)
o(t.)-4 2379 y(So,)h(w)o(e)h(let)g Fl(B)r(R)h Fs(ha)o(v)o(e)e(alphab)q
(et)i Fm(f)p Fs(#)p Fl(;)8 b Fs(1)p Fm(g)p Fs(,)15 b(state)h(set)g
Fm(f)p Fl(q)978 2386 y Fj(0)998 2379 y Fl(;)8 b(q)1039
2386 y Fj(1)1058 2379 y Fl(;)g(q)1101 2362 y Fy(0)1099
2390 y Fj(1)1119 2379 y Fl(;)g(q)1160 2386 y Fj(2)1179
2379 y Fl(;)g(q)1222 2362 y Fy(0)1220 2390 y Fj(2)1239
2379 y Fl(;)g(q)1280 2386 y Fj(3)1299 2379 y Fl(;)g(q)1340
2386 y Fk(f)1362 2379 y Fm(g)17 b Fs(and)g(transition)g(function)h
(de\014ned)-75 2435 y(b)o(y)d(the)g(follo)o(wing)h(table)951
2779 y(19)p eop
%%Page: 20 20
20 19 bop 821 35 2 57 v 901 18 a Fs(#)164 b(1)p 737 37
473 2 v 759 76 a Fl(q)779 83 y Fj(0)p 821 93 2 57 v 846
76 a Fs(#)p Fl(;)8 b(q)927 60 y Fy(0)925 88 y Fj(2)944
76 y Fl(;)g(L)44 b Fs(#)p Fl(;)8 b(q)1121 60 y Fy(0)1119
88 y Fj(1)1138 76 y Fl(;)g(L)759 132 y(q)781 116 y Fy(0)779
144 y Fj(1)p 821 149 V 844 132 a Fs(#)p Fl(;)g(q)923
139 y Fj(1)942 132 y Fl(;)g(R)759 189 y(q)781 172 y Fy(0)779
200 y Fj(2)p 821 206 V 844 189 a Fs(#)p Fl(;)g(q)923
196 y Fj(2)942 189 y Fl(;)g(R)759 245 y(q)779 252 y Fj(1)p
821 262 V 853 245 a Fs(1)p Fl(;)g(q)917 252 y Fj(3)936
245 y Fl(;)g(L)759 302 y(q)779 309 y Fj(2)p 821 319 V
846 302 a Fs(#)p Fl(;)g(q)925 309 y Fj(3)944 302 y Fl(;)g(L)759
358 y(q)779 365 y Fj(3)p 821 375 V 842 358 a Fs(#)p Fl(;)g(q)921
365 y Fk(f)943 358 y Fl(;)g(R)758 415 y(q)778 422 y Fk(f)p
821 432 V 844 415 a Fs(#)p Fl(;)g(q)923 422 y Fj(0)942
415 y Fl(;)g(R)48 b Fs(1)p Fl(;)8 b(q)1110 422 y Fj(0)1129
415 y Fl(;)g(R)-4 503 y Fs(It)13 b(can)g(b)q(e)g(v)o(eri\014ed)h(that)e
(the)h(transition)g(function)h(of)e Fl(B)r(R)i Fs(is)f(one-to-one)g
(and)g(that)g(it)g(can)g(en)o(ter)f(eac)o(h)h(state)f(while)-75
559 y(mo)o(ving)j(in)i(only)e(one)h(direction.)22 b(Therefore,)15
b(app)q(ealing)i(to)d(Theorem)i(B.0.15)e(on)h(page)g(56)g(it)h(can)f(b)
q(e)h(completed)h(to)-75 615 y(giv)o(e)e(a)g(rev)o(ersible)i(TM.)1641
b Fd(2)-4 746 y Fs(Finally)l(,)24 b(w)o(e)d(sho)o(w)f(ho)o(w)h(to)g
(tak)o(e)f(a)h(unidirectional)j(QTM)e(or)e(rev)o(ersible)j(TM)e(and)g
(build)i(its)f(rev)o(erse.)38 b(Tw)o(o)-75 803 y(computational)19
b(paths)f(of)f(a)h(QTM)g(will)i(in)o(terfere)f(only)g(if)f(they)h(reac)
o(h)f(con\014gurations)g(that)g(do)g(not)g(di\013er)g(in)h(an)o(y)-75
859 y(w)o(a)o(y)l(.)f(This)c(means)g(that)f(w)o(e)g(m)o(ust)g(b)q(e)h
(careful)g(when)g(building)i(a)d(QTM)g(to)g(erase)g(an)o(y)g
(information)h(that)e(migh)o(t)i(di\013er)-75 915 y(along)h(paths)g
(whic)o(h)h(w)o(e)f(w)o(an)o(t)f(to)h(in)o(terfere.)20
b(W)l(e)15 b(will)i(therefore)e(sometimes)g(use)h(this)g(lemma)f(when)h
(constructing)f(a)-75 972 y(QTM)g(to)g(allo)o(w)g(us)g(to)g(completely)
h(erase)f(an)h(in)o(termediate)g(computation.)-4 1046
y(Since)j(the)e(time)h(ev)o(olution)g(of)f(a)g(w)o(ell-formed)i(QTM)e
(is)h(unitary)l(,)g(w)o(e)f(could)i(rev)o(erse)e(a)g(QTM)h(b)o(y)f
(applying)i(the)-75 1103 y(unitary)f(in)o(v)o(erse)h(of)f(its)g(time)g
(ev)o(olution.)30 b(Ho)o(w)o(ev)o(er,)17 b(this)i(transformation)e(is)h
(not)g(the)g(time)h(ev)o(olution)g(of)e(a)h(QTM)-75 1159
y(since)e(it)f(acts)f(on)g(a)h(con\014guration)f(b)o(y)h(c)o(hanging)g
(tap)q(e)g(sym)o(b)q(ols)g(to)f(the)g(left)h(and)g(righ)o(t)g(of)f(the)
h(tap)q(e)f(head.)20 b(Ho)o(w)o(ev)o(er,)-75 1215 y(since)14
b(eac)o(h)f(state)f(in)i(a)e(unidirectional)k(QTM)d(can)g(b)q(e)h(en)o
(tered)f(while)h(mo)o(ving)f(in)h(only)f(one)g(direction,)h(w)o(e)f
(can)g(rev)o(erse)-75 1272 y(the)i(head)h(mo)o(v)o(emen)o(ts)e(one)i
(step)f(ahead)g(of)g(the)g(rev)o(ersal)h(of)f(the)g(tap)q(e)g(and)h
(state.)j(Then,)c(the)h(rev)o(ersal)f(will)i(ha)o(v)o(e)e(its)-75
1328 y(tap)q(e)g(head)h(in)g(the)f(prop)q(er)h(cell)g(eac)o(h)g(time)f
(a)g(sym)o(b)q(ol)h(m)o(ust)e(b)q(e)i(c)o(hanged.)-75
1430 y Fn(De\014nition)j(4.2.8)j Fr(If)15 b(QTMs)f Fl(M)532
1437 y Fj(1)568 1430 y Fr(and)h Fl(M)699 1437 y Fj(2)734
1430 y Fr(have)h(the)g(same)f(alphab)n(et,)h(then)f(we)h(say)f(that)h
Fl(M)1599 1437 y Fj(2)1634 1430 y Fs(rev)o(erses)f Fr(the)h(c)n(ompu-)
-75 1487 y(tation)f(of)g Fl(M)152 1494 y Fj(1)187 1487
y Fr(if)f(identifying)g(the)h(\014nal)f(state)h(of)g
Fl(M)832 1494 y Fj(1)866 1487 y Fr(with)h(the)f(initial)f(state)h(of)g
Fl(M)1374 1494 y Fj(2)1408 1487 y Fr(and)g(the)g(initial)f(state)h(of)g
Fl(M)1905 1494 y Fj(1)1940 1487 y Fr(with)-75 1543 y(the)j(\014nal)e
(state)h(of)g Fl(M)313 1550 y Fj(2)351 1543 y Fr(gives)f(the)i(fol)r
(lowing.)23 b(F)m(or)17 b(any)g(input)h Fl(x)f Fr(on)g(which)h
Fl(M)1330 1550 y Fj(1)1367 1543 y Fr(halts,)f(if)g Fl(c)1555
1550 y Fk(x)1594 1543 y Fr(and)h Fl(\036)1711 1550 y
Fk(x)1750 1543 y Fr(ar)n(e)f(the)h(initial)-75 1599 y(c)n(on\014gur)n
(ation)c(and)h(\014nal)e(sup)n(erp)n(osition)h(of)h Fl(M)752
1606 y Fj(1)787 1599 y Fr(on)f(input)h Fl(x)p Fr(,)g(then)g
Fl(M)1166 1606 y Fj(2)1200 1599 y Fr(halts)g(on)f(initial)g(sup)n(erp)n
(osition)g Fl(\036)1802 1606 y Fk(x)1839 1599 y Fr(with)h(\014nal)-75
1656 y(sup)n(erp)n(osition)h(c)n(onsisting)e(entir)n(ely)h(of)i(c)n
(on\014gur)n(ation)e Fl(c)919 1663 y Fk(x)941 1656 y
Fr(.)-75 1758 y Fn(Lemma)i(4.2.9)g(\(Rev)o(ersal)g(Lemma\))23
b Fr(If)18 b Fl(M)k Fr(is)c(a)g(normal)f(form,)i(r)n(eversible)d(TM)h
(or)h(unidir)n(e)n(ctional)f(QTM)g(then)-75 1814 y(ther)n(e)h(is)f(a)h
(normal)f(form,)i(r)n(eversible)d(TM)h(or)h(QTM)f Fl(M)942
1798 y Fy(0)971 1814 y Fr(that)h(r)n(everses)f(the)h(c)n(omputation)g
(of)g Fl(M)23 b Fr(while)17 b(taking)g(two)-75 1870 y(extr)n(a)f(time)h
(steps.)-75 1972 y Fn(Pro)q(of.)25 b Fs(W)l(e)17 b(will)i(pro)o(v)o(e)d
(the)i(lemma)f(for)f(normal)h(form,)g(unidirectional)j(QTMs,)c(but)i
(the)f(same)f(argumen)o(t)h(pro)o(v)o(es)-75 2029 y(the)e(lemma)h(for)e
(normal)h(form)g(rev)o(ersible)h(TMs.)-4 2103 y(Let)c
Fl(M)18 b Fs(=)13 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))i(b)q(e)j(a)f
(normal)h(form,)f(unidirectional)j(QTM)e(with)g(initial)h(and)f
(\014nal)g(states)f Fl(q)1695 2110 y Fj(0)1727 2103 y
Fs(and)h Fl(q)1833 2110 y Fk(f)1856 2103 y Fs(,)g(and)g(for)-75
2159 y(eac)o(h)i Fl(q)f Fm(2)f Fl(Q)i Fs(let)g Fl(d)244
2166 y Fk(q)277 2159 y Fs(b)q(e)h(the)e(direction)i(whic)o(h)g
Fl(M)j Fs(m)o(ust)c(mo)o(v)o(e)e(while)k(en)o(tering)e(state)f
Fl(q)r Fs(.)19 b(Then,)c(w)o(e)f(de\014ne)i(a)f(bijection)-75
2216 y Fl(\031)h Fs(on)f(the)f(set)h(of)f(con\014gurations)h(of)f
Fl(M)19 b Fs(as)c(follo)o(ws.)k(F)l(or)14 b(con\014guration)h
Fl(c)f Fs(in)i(state)d Fl(q)r Fs(,)i(let)g Fl(\031)r
Fs(\()p Fl(c)p Fs(\))e(b)q(e)i(the)g(con\014guration)-75
2272 y(deriv)o(ed)j(from)f Fl(c)g Fs(b)o(y)g(mo)o(ving)g(the)h(tap)q(e)
f(head)h(one)f(square)h(in)g(direction)1240 2260 y(\026)1232
2272 y Fl(d)1256 2279 y Fk(q)1292 2272 y Fs(\(the)f(opp)q(osite)h(of)f
(direction)i Fl(d)1843 2279 y Fk(q)1862 2272 y Fs(\).)25
b(Since)-75 2329 y(the)17 b(set)g(of)f(sup)q(erp)q(ositions)j(of)e(the)
g(form)f Fm(j)p Fl(c)p Fm(i)g Fs(giv)o(e)h(an)g(orthonormal)f(basis)i
(for)e(the)h(space)g(of)g(sup)q(erp)q(ositions)i(of)d
Fl(M)5 b Fs(,)-75 2385 y(w)o(e)16 b(can)h(extend)g Fl(\031)h
Fs(to)e(act)h(as)f(a)g(linear)i(op)q(erator)e(on)g(this)h(space)g(of)f
(sup)q(erp)q(ositions)j(b)o(y)d(de\014ning)i Fl(\031)r
Fm(j)p Fl(c)p Fm(i)c Fs(=)h Fm(j)p Fl(\031)r(c)p Fm(i)o
Fs(.)24 b(It)16 b(is)-75 2442 y(easy)f(to)g(see)g(that)g
Fl(\031)h Fs(is)g(a)f(unitary)g(transformation)f(on)h(the)h(space)f(of)
g(sup)q(erp)q(ositions)i(on)e Fl(M)5 b Fs(.)-4 2516 y(Our)16
b(new)g(mac)o(hine)h Fl(M)412 2499 y Fy(0)440 2516 y
Fs(will)h(ha)o(v)o(e)d(the)i(same)e(alphab)q(et)i(as)f
Fl(M)5 b Fs(,)16 b(and)g(state)g(set)f(giv)o(en)i(b)o(y)f
Fl(Q)g Fs(together)f(with)i(new)-75 2572 y(initial)k(and)f(\014nal)g
(states)e Fl(q)413 2556 y Fy(0)411 2584 y Fj(0)450 2572
y Fs(and)h Fl(q)564 2556 y Fy(0)562 2585 y Fk(f)585 2572
y Fs(.)32 b(The)19 b(follo)o(wing)h(three)f(statemen)o(ts)f(su\016ce)i
(to)e(pro)o(v)o(e)h(that)f Fl(M)1754 2556 y Fy(0)1785
2572 y Fs(rev)o(erses)h(the)-75 2629 y(computation)c(of)g
Fl(M)20 b Fs(while)d(taking)e(t)o(w)o(o)f(extra)g(time)i(steps.)951
2779 y(20)p eop
%%Page: 21 21
21 20 bop -19 -26 a Fs(1.)22 b(If)13 b Fl(c)g Fs(is)h(a)f(\014nal)h
(con\014guration)g(of)f Fl(M)5 b Fs(,)13 b(and)h Fl(c)800
-42 y Fy(0)824 -26 y Fs(is)g(the)g(con\014guration)f
Fl(c)g Fs(with)h(state)f Fl(q)1483 -19 y Fk(f)1519 -26
y Fs(replaced)h(b)o(y)g(state)e Fl(q)1889 -42 y Fy(0)1887
-14 y Fj(0)1907 -26 y Fs(,)i(then)39 31 y(a)h(single)h(step)f(of)g
Fl(M)400 14 y Fy(0)427 31 y Fs(tak)o(es)f(sup)q(erp)q(osition)j
Fm(j)p Fl(c)857 14 y Fy(0)868 31 y Fm(i)e Fs(to)g(sup)q(erp)q(osition)h
Fl(\031)r Fs(\()p Fm(j)p Fl(c)p Fm(i)o Fs(\).)-19 125
y(2.)22 b(If)c(a)f(single)j(step)d(of)h Fl(M)23 b Fs(tak)o(es)17
b(sup)q(erp)q(osition)i Fm(j)p Fl(\036)919 132 y Fj(1)939
125 y Fm(i)e Fs(to)h(sup)q(erp)q(osition)h Fm(j)p Fl(\036)1356
132 y Fj(2)1376 125 y Fm(i)o Fs(,)f(where)h Fm(j)p Fl(\036)1599
132 y Fj(2)1618 125 y Fm(i)e Fs(has)h(no)g(supp)q(ort)g(on)39
181 y(a)h(con\014guration)h(in)h(state)e Fl(q)555 188
y Fj(0)575 181 y Fs(,)i(then)f(a)g(single)h(step)f(of)g
Fl(M)1098 164 y Fy(0)1129 181 y Fs(tak)o(es)f(sup)q(erp)q(osition)j
Fl(\031)r Fs(\()p Fm(j)p Fl(\036)1622 188 y Fj(2)1641
181 y Fm(i)o Fs(\))e(to)f(sup)q(erp)q(osition)39 237
y Fl(\031)r Fs(\()p Fm(j)p Fl(\036)125 244 y Fj(1)143
237 y Fm(i)p Fs(\).)-19 331 y(3.)j(If)16 b Fl(c)f Fs(is)h(an)g(initial)
i(con\014guration)e(of)f Fl(M)5 b Fs(,)15 b(and)h Fl(c)876
315 y Fy(0)903 331 y Fs(is)g(the)g(con\014guration)g
Fl(c)f Fs(with)h(state)f Fl(q)1575 338 y Fj(0)1611 331
y Fs(replaced)i(b)o(y)f(state)e Fl(q)1988 315 y Fy(0)1986
344 y Fk(f)2009 331 y Fs(,)39 388 y(then)h(a)g(single)i(step)e(of)g
Fl(M)504 371 y Fy(0)530 388 y Fs(tak)o(es)g(sup)q(erp)q(osition)i
Fl(\031)r Fs(\()p Fm(j)p Fl(c)p Fm(i)n Fs(\))e(to)f(sup)q(erp)q
(osition)j Fm(j)p Fl(c)1425 371 y Fy(0)1436 388 y Fm(i)p
Fs(.)-75 499 y(T)l(o)f(see)h(this,)g(let)h Fl(x)e Fs(b)q(e)i(an)e
(input)i(on)e(whic)o(h)i Fl(M)k Fs(halts,)16 b(and)h(let)g
Fm(j)p Fl(\036)1116 506 y Fj(1)1136 499 y Fm(i)p Fl(;)8
b(:)g(:)g(:)t(;)g Fm(j)p Fl(\036)1295 506 y Fk(n)1318
499 y Fm(i)16 b Fs(b)q(e)h(the)g(sequence)h(of)e(sup)q(erp)q(ositions)
-75 556 y(of)e Fl(M)20 b Fs(on)14 b(input)i Fl(x)p Fs(,)e(so)g(that)g
Fm(j)p Fl(\036)469 563 y Fj(1)489 556 y Fm(i)e Fs(=)h
Fm(j)p Fl(c)600 563 y Fk(x)621 556 y Fm(i)i Fs(where)f
Fl(c)804 563 y Fk(x)841 556 y Fs(is)h(the)f(initial)j(sup)q(erp)q
(osition)f(of)f Fl(M)k Fs(on)c Fl(x)p Fs(,)f(and)h Fm(j)p
Fl(\036)1733 563 y Fk(n)1756 556 y Fm(i)f Fs(has)h(supp)q(ort)-75
612 y(only)k(on)f(\014nal)h(con\014gurations)f(of)g Fl(M)5
b Fs(.)29 b(Then,)19 b(since)h(the)e(time)h(ev)o(olution)g(op)q(erator)
e(of)h Fl(M)23 b Fs(is)c(linear,)h(Statemen)o(t)d(1)-75
669 y(tells)j(us)f(that)f(if)i(w)o(e)e(form)g(the)h(initial)i
(con\014guration)e Fm(j)p Fl(\036)952 652 y Fy(0)952
680 y Fk(n)976 669 y Fm(i)f Fs(of)h Fl(M)1117 652 y Fy(0)1147
669 y Fs(b)o(y)g(replacing)h(eac)o(h)f(state)f Fl(q)1653
676 y Fk(f)1695 669 y Fs(in)i(the)f Fm(j)p Fl(\036)1874
676 y Fk(n)1897 669 y Fm(i)g Fs(with)-75 725 y(state)c
Fl(q)59 709 y Fy(0)57 737 y Fj(0)77 725 y Fs(,)g(then)g
Fl(M)257 709 y Fy(0)284 725 y Fs(tak)o(es)g Fm(j)p Fl(\036)441
709 y Fy(0)441 736 y Fk(n)464 725 y Fm(i)g Fs(to)g Fl(\031)r
Fs(\()p Fm(j)p Fl(\036)639 732 y Fk(n)662 725 y Fm(i)o
Fs(\))g(in)i(a)e(single)h(step.)21 b(Since)c Fl(M)j Fs(is)c(in)g
(normal)g(form,)e(none)i(of)f Fm(j)p Fl(\036)1803 732
y Fj(2)1822 725 y Fm(i)p Fl(;)8 b(:)g(:)g(:)d(;)j Fm(j)p
Fl(\036)1982 732 y Fk(n)2004 725 y Fm(i)-75 782 y Fs(ha)o(v)o(e)14
b(supp)q(ort)g(on)g(an)o(y)f(sup)q(erp)q(osition)j(in)f(state)e
Fl(q)804 789 y Fj(0)824 782 y Fs(.)20 b(Therefore,)14
b(Statemen)o(t)f(2)h(tells)h(us)f(that)f(the)h(next)g
Fl(n)h Fs(steps)f(of)f Fl(M)2010 765 y Fy(0)-75 838 y
Fs(lead)k(to)f(sup)q(erp)q(ositions)i Fl(\031)r Fs(\()p
Fm(j)p Fl(\036)465 845 y Fk(n)p Fy(\000)p Fj(1)532 838
y Fm(i)p Fs(\))p Fl(;)8 b(:)g(:)g(:)t(;)g(\031)r Fs(\()p
Fm(j)p Fl(\036)755 845 y Fj(1)773 838 y Fm(i)p Fs(\).)23
b(Finally)l(,)18 b(Statemen)o(t)d(3)h(tells)h(us)g(that)e(a)h(single)i
(step)e(of)g Fl(M)1890 821 y Fy(0)1918 838 y Fs(maps)-75
894 y(sup)q(erp)q(osition)h Fl(\031)r Fs(\()p Fm(j)p
Fl(c)285 901 y Fk(x)305 894 y Fm(i)p Fs(\))e(to)f(sup)q(erp)q(osition)j
Fm(j)p Fl(c)725 878 y Fy(0)725 906 y Fk(x)747 894 y Fm(i)o
Fs(.)-4 969 y(W)l(e)h(de\014ne)h(the)f(transition)h(function)g
Fl(\016)706 952 y Fy(0)735 969 y Fs(to)f(giv)o(e)g(a)g(w)o(ell-formed)h
Fl(M)1228 952 y Fy(0)1258 969 y Fs(satisfying)f(these)g(three)h
(statemen)o(ts)e(with)-75 1025 y(the)e(follo)o(wing)h(transition)g
(rules.)-19 1149 y(1.)22 b Fl(\016)61 1133 y Fy(0)72
1149 y Fs(\()p Fl(q)112 1133 y Fy(0)110 1161 y Fj(0)130
1149 y Fl(;)8 b(\033)r Fs(\))j(=)i Fm(j)p Fl(\033)r Fm(i)o(j)p
Fl(q)347 1156 y Fk(f)369 1149 y Fm(ij)408 1137 y Fs(\026)400
1149 y Fl(d)424 1156 y Fk(q)440 1162 y Fb(f)461 1149
y Fm(i)-19 1243 y Fs(2.)22 b(F)l(or)14 b(eac)o(h)h Fl(q)g
Fm(2)e Fl(Q)d Fm(\000)g Fl(q)411 1250 y Fj(0)447 1243
y Fs(and)15 b(eac)o(h)g Fl(\034)j Fm(2)13 b Fs(\006)659
1345 y Fl(\016)681 1326 y Fy(0)693 1345 y Fs(\()p Fl(q)r(;)8
b(\034)d Fs(\))11 b(=)856 1305 y Fi(X)862 1392 y Fk(p;\033)924
1345 y Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)s(;)f(q)r(;)g(d)1163
1352 y Fk(q)1179 1345 y Fs(\))1197 1326 y Fy(\003)1216
1345 y Fm(j)p Fl(\033)r Fm(i)o(j)p Fl(p)p Fm(i)o(j)1348
1333 y Fs(\026)1340 1345 y Fl(d)1364 1352 y Fk(p)1384
1345 y Fm(i)-19 1506 y Fs(3.)22 b Fl(\016)61 1489 y Fy(0)72
1506 y Fs(\()p Fl(q)110 1513 y Fj(0)130 1506 y Fl(;)8
b(\033)r Fs(\))j(=)i Fm(j)p Fl(\033)r Fm(i)o(j)p Fl(q)349
1489 y Fy(0)347 1519 y Fk(f)369 1506 y Fm(ij)p Fl(d)424
1513 y Fk(q)440 1518 y Fg(0)459 1506 y Fm(i)-19 1600
y Fs(4.)22 b Fl(\016)61 1583 y Fy(0)72 1600 y Fs(\()p
Fl(q)112 1583 y Fy(0)110 1613 y Fk(f)133 1600 y Fl(;)8
b(\033)r Fs(\))j(=)i Fm(j)p Fl(\033)r Fm(i)o(j)p Fl(q)352
1583 y Fy(0)350 1611 y Fj(0)369 1600 y Fm(ij)p Fl(R)p
Fm(i)-4 1724 y Fs(The)19 b(\014rst)g(and)g(third)h(rules)f(can)h
(easily)g(b)q(e)g(seen)f(to)g(ensure)g(Statemen)o(ts)g(1)g(and)g(3.)31
b(The)19 b(second)h(rule)g(can)f(b)q(e)-75 1780 y(seen)i(to)f(ensure)i
(Statemen)o(t)e(2)g(as)g(follo)o(ws:)31 b(Since)23 b
Fl(M)i Fs(is)d(in)f(normal)g(form,)g(it)g(maps)f(a)h(sup)q(erp)q
(osition)h Fm(j)p Fl(\036)1880 1787 y Fj(1)1900 1780
y Fm(i)e Fs(to)g(a)-75 1836 y(sup)q(erp)q(osition)i Fm(j)p
Fl(\036)251 1843 y Fj(2)270 1836 y Fm(i)e Fs(with)g(no)f(supp)q(ort)h
(on)g(an)o(y)g(con\014guration)g(in)g(state)g Fl(q)1289
1843 y Fj(0)1328 1836 y Fs(if)h(and)f(only)g(if)g Fm(j)p
Fl(\036)1658 1843 y Fj(1)1678 1836 y Fm(i)f Fs(has)h(no)g(supp)q(ort)
-75 1893 y(on)f(an)o(y)f(con\014gurations)h(in)g(state)f
Fl(q)569 1900 y Fk(f)592 1893 y Fs(.)30 b(Therefore,)19
b(the)f(time)h(ev)o(olution)h(of)e Fl(M)23 b Fs(de\014nes)d(a)e
(unitary)h(transformation)-75 1949 y(from)d(the)h(space)g
Fm(S)265 1956 y Fj(1)301 1949 y Fs(of)f(sup)q(erp)q(ositions)j(of)d
(con\014gurations)h(in)h(states)e(from)g(the)h(set)f
Fl(Q)1486 1956 y Fj(1)1521 1949 y Fs(=)g Fl(Q)11 b Fm(\000)h
Fl(q)1686 1956 y Fk(f)1725 1949 y Fs(to)k(the)h(space)g(of)-75
2006 y(sup)q(erp)q(ositions)j Fm(S)255 2013 y Fj(2)292
2006 y Fs(of)e(con\014gurations)h(in)g(states)e(from)h(the)g(set)g
Fl(Q)1134 2013 y Fj(2)1172 2006 y Fs(=)g Fl(Q)12 b Fm(\000)g
Fl(q)1340 2013 y Fj(0)1360 2006 y Fs(.)30 b(This)19 b(fact)e(also)i
(tells)g(us)f(that)g(the)-75 2062 y(second)f(rule)h(ab)q(o)o(v)o(e)f
(de\014nes)h(a)e(linear)i(transformation)e(from)g(space)h
Fm(S)1187 2069 y Fj(2)1223 2062 y Fs(bac)o(k)g(to)f(space)i
Fm(S)1540 2069 y Fj(1)1559 2062 y Fs(.)25 b(Moreo)o(v)o(er,)15
b(if)j Fl(M)k Fs(tak)o(es)-75 2119 y(con\014guration)c
Fl(c)223 2126 y Fj(1)260 2119 y Fs(with)g(a)f(state)g(from)g
Fl(Q)666 2126 y Fj(1)704 2119 y Fs(leads)h(with)g(amplitude)h
Fl(\013)f Fs(to)f(con\014guration)h Fl(c)1546 2126 y
Fj(2)1583 2119 y Fs(with)g(a)g(state)f(from)g Fl(Q)1990
2126 y Fj(2)2009 2119 y Fs(,)-75 2175 y(then)d Fl(M)76
2159 y Fy(0)101 2175 y Fs(tak)o(es)f(con\014guration)g
Fl(\031)r Fs(\()p Fl(c)555 2182 y Fj(2)574 2175 y Fs(\))g(to)g
(con\014guration)h Fl(\031)r Fs(\()p Fl(c)999 2182 y
Fj(1)1017 2175 y Fs(\))f(with)h(amplitude)h Fl(\013)1392
2159 y Fy(\003)1412 2175 y Fs(.)k(Therefore,)14 b(the)f(time)h(ev)o
(olution)-75 2232 y(of)19 b Fl(M)30 2215 y Fy(0)62 2232
y Fs(on)g(space)i Fm(S)284 2239 y Fj(2)322 2232 y Fs(is)g(the)f(comp)q
(osition)g(of)g Fl(\031)h Fs(and)f(its)g(in)o(v)o(erse)g(around)g(the)g
(conjugate)f(transp)q(ose)g(of)h(the)g(time)-75 2288
y(ev)o(olution)c(of)f Fl(M)5 b Fs(.)20 b(Since)c(this)g(conjugate)f
(transp)q(ose)g(m)o(ust)f(also)i(b)q(e)g(unitary)l(,)f(the)g(second)h
(rule)g(ab)q(o)o(v)o(e)f(actually)h(giv)o(es)-75 2345
y(a)f(unitary)g(transformation)f(from)h(the)g(space)g
Fm(S)768 2352 y Fj(2)803 2345 y Fs(to)f(the)i(space)f
Fm(S)1086 2352 y Fj(1)1120 2345 y Fs(whic)o(h)i(satis\014es)e(Statemen)
o(t)f(2)h(ab)q(o)o(v)o(e.)-4 2419 y(Since)i Fl(M)164
2402 y Fy(0)191 2419 y Fs(is)g(clearly)g(in)f(normal)g(form,)f(w)o(e)h
(complete)g(the)g(pro)q(of)g(b)o(y)f(sho)o(wing)h(that)g
Fl(M)1558 2402 y Fy(0)1585 2419 y Fs(is)g(w)o(ell-formed.)23
b(T)l(o)16 b(see)-75 2475 y(this,)f(just)f(note)h(that)f(eac)o(h)g(of)h
(the)g(four)f(rules)h(de\014nes)h(a)e(unitary)h(transformation)f(to)g
(one)h(of)f(a)g(set)h(of)f(four)g(m)o(utually)-75 2532
y(orthogonal)g(subspaces)i(of)f(the)g(spaces)h(of)e(sup)q(erp)q
(ositions)j(of)e Fl(M)1081 2515 y Fy(0)1093 2532 y Fs(.)882
b Fd(2)951 2779 y Fs(21)p eop
%%Page: 22 22
22 21 bop -4 -26 a Fs(The)16 b(Sync)o(hronization)h(Theorem)f(will)h
(allo)o(w)f(us)g(to)g(tak)o(e)f(an)h(existing)g(QTM)g(and)g(put)g(it)g
(inside)i(a)e(lo)q(op)g(so)g(that)-75 31 y(the)f(mac)o(hine)h(can)g(b)q
(e)g(run)f(an)o(y)g(sp)q(eci\014ed)i(n)o(um)o(b)q(er)f(of)e(times.)-4
105 y(Building)i(a)f(rev)o(ersible)g(mac)o(hine)g(that)f(lo)q(ops)h
(inde\014nitely)i(is)e(trivial.)21 b(Ho)o(w)o(ev)o(er,)13
b(if)i(w)o(e)f(w)o(an)o(t)f(to)h(lo)q(op)h(some)f(\014nite)-75
161 y(n)o(um)o(b)q(er)19 b(of)f(times,)h(w)o(e)g(need)g(to)f(carefully)
i(construct)e(a)g(rev)o(ersible)i(en)o(trance)f(and)g(exit.)30
b(As)19 b(with)g(the)f(Branc)o(hing)-75 218 y(Lemma)g(ab)q(o)o(v)o(e,)h
(the)f(construction)h(will)g(pro)q(ceed)h(b)o(y)e(building)j(a)d(rev)o
(ersible)h(TM)f(that)g(accomplishes)h(the)g(desired)-75
274 y(lo)q(oping,)g(and)f(then)f(inserting)i(the)e(QTM)h(for)f(a)g
(particular)h(state)f(in)h(this)g(lo)q(oping)g(mac)o(hine.)28
b(Ho)o(w)o(ev)o(er,)17 b(there)g(are)-75 331 y(sev)o(eral)c
(di\016culties.)21 b(First,)13 b(in)g(this)h(construction,)f(as)f(opp)q
(osed)i(to)e(the)h(branc)o(hing)g(construction,)g(the)g(rev)o(ersible)i
(TM)-75 387 y(lea)o(v)o(es)g(an)g(in)o(termediate)g(computation)g
(written)g(on)g(its)g(tap)q(e)f(while)j(the)e(QTM)f(runs.)20
b(This)c(means)e(that)g(inserting)i(a)-75 444 y(non-stationary)c(QTM)f
(w)o(ould)i(destro)o(y)e(the)h(prop)q(er)g(functioning)i(of)d(the)i
(rev)o(ersible)g(TM.)e(Second,)i(ev)o(en)g(if)f(w)o(e)g(insert)g(a)-75
500 y(stationary)f(QTM,)h(the)g(second)h(\(and)f(an)o(y)f(subsequen)o
(t\))i(time)f(the)g(QTM)g(is)h(run,)f(it)h(ma)o(y)e(b)q(e)i(started)e
(in)i(sup)q(erp)q(osition)-75 557 y(on)g(inputs)h(of)f(di\013eren)o(t)h
(lengths,)g(and)f(hence)h(ma)o(y)f(not)g(halt.)19 b(There)14
b(is)f(therefore)g(no)g(general)h(statemen)o(t)e(w)o(e)h(are)g(able)-75
613 y(to)g(mak)o(e)h(ab)q(out)f(the)h(b)q(eha)o(vior)h(of)e(the)h(mac)o
(hine)h(once)f(the)g(insertion)h(is)g(carried)f(out.)19
b(Instead,)14 b(w)o(e)g(describ)q(e)i(here)e(the)-75
669 y(rev)o(ersible)19 b(lo)q(oping)h(TM)d(constructed)i(in)g(App)q
(endix)h(C)e(on)g(page)g(61)g(and)g(argue)g(ab)q(out)g(sp)q(eci\014c)i
(QTMs)e(resulting)-75 726 y(from)c(this)i(mac)o(hine)g(when)g(they)f
(are)g(constructed.)-75 850 y Fn(Lemma)i(4.2.10)g(\(Lo)q(oping)j
(Lemma\))j Fr(Ther)n(e)11 b(is)g(a)h(stationary,)h(normal)e(form,)j(r)n
(eversible)c(TM)h Fl(M)16 b Fr(and)c(a)g(c)n(onstant)-75
906 y Fl(c)23 b Fr(with)g(the)h(fol)r(lowing)f(pr)n(op)n(erties.)41
b(On)22 b(input)i(any)f(p)n(ositive)f(inte)n(ger)h Fl(k)h
Fr(written)f(in)g(binary,)h Fl(M)29 b Fr(runs)22 b(for)i(time)-75
963 y Fl(O)q Fs(\()p Fl(k)8 b Fs(log)70 944 y Fk(c)95
963 y Fl(k)q Fs(\))15 b Fr(and)g(halts)f(with)i(its)e(tap)n(e)i
(unchange)n(d.)k(Mor)n(e)n(over,)14 b Fl(M)20 b Fr(has)15
b(a)h(sp)n(e)n(cial)d(state)i Fl(q)1509 946 y Fy(\003)1544
963 y Fr(such)g(that)h(on)e(input)i Fl(k)q Fr(,)f Fl(M)-75
1019 y Fr(visits)g(state)i Fl(q)174 1003 y Fy(\003)209
1019 y Fr(exactly)g Fl(k)g Fr(times,)f(e)n(ach)g(time)g(with)h(its)f
(tap)n(e)h(he)n(ad)f(b)n(ack)g(in)g(the)g(start)h(c)n(el)r(l.)-75
1180 y Ft(5)69 b(Changing)23 b(the)g(basis)g(of)g(a)g(QTM's)g
(computation)-75 1299 y Fs(In)12 b(this)g(section)g(w)o(e)f(in)o(tro)q
(duce)h(a)f(fundamen)o(tally)i(quan)o(tum)e(mec)o(hanical)h(feature)g
(of)f(quan)o(tum)g(computation,)g(namely)-75 1356 y(c)o(hanging)17
b(the)g(computational)h(basis)f(during)h(the)f(ev)o(olution)h(of)e(a)h
(QTM.)f(In)i(particular,)f(w)o(e)g(will)i(\014nd)e(it)h(useful)g(to)-75
1412 y(c)o(hange)g(to)g(a)g(new)h(orthonormal)e(basis)i(for)f(the)g
(transition)h(function)g(in)g(the)g(middle)h(of)e(the)g(computation)h
({)f(eac)o(h)-75 1469 y(state)c(in)i(the)g(new)f(state)f(set)h(is)h(a)f
(linear)h(com)o(bination)g(of)f(states)f(from)h(the)g(original)h(mac)o
(hine.)-4 1543 y(This)h(will)h(allo)o(w)e(us)h(to)f(sim)o(ulate)h(a)f
(general)h(QTM)f(with)h(one)f(that)g(is)h(unidirectional.)26
b(It)17 b(will)h(also)e(allo)o(w)h(us)g(to)-75 1599 y(pro)o(v)o(e)g
(that)f(an)o(y)h(partially)i(de\014ned)f(quan)o(tum)f(transition)h
(function)g(whic)o(h)g(preserv)o(es)g(length)g(can)f(b)q(e)h(extended)h
(to)-75 1656 y(giv)o(e)c(a)g(w)o(ell-formed)h(QTM.)-4
1730 y(W)l(e)e(start)f(b)o(y)i(sho)o(wing)f(ho)o(w)g(to)g(c)o(hange)g
(the)h(basis)g(of)f(the)g(states)g(of)g(a)g(QTM.)g(Then)h(w)o(e)f(giv)o
(e)g(a)h(set)f(of)g(conditions)-75 1786 y(for)f(a)h(quan)o(tum)g
(transition)g(function)h(that)e(are)h(necessary)g(and)g(su\016cien)o(t)
h(for)e(a)h(QTM)f(to)h(b)q(e)g(w)o(ell-formed.)21 b(The)14
b(last)-75 1843 y(of)f(these)h(conditions,)h(called)h(separabilit)o(y)l
(,)f(will)g(allo)o(w)f(us)g(to)g(construct)f(a)h(basis)g(of)f(the)h
(states)f(of)g(a)h(QTM)g(whic)o(h)g(will)-75 1899 y(allo)o(w)h(us)h(to)
e(pro)o(v)o(e)h(the)g(Unidirection)j(and)d(Completion)h(Lemmas)f(b)q
(elo)o(w.)-75 2039 y Fh(5.1)56 b(The)18 b(c)n(hange)h(of)g(basis)-75
2142 y Fs(If)e(w)o(e)f(tak)o(e)g(a)g(w)o(ell-formed)h(QTM)f(and)h(c)o
(ho)q(ose)f(a)g(new)h(orthonormal)f(basis)h(for)e(the)i(space)g(of)f
(sup)q(erp)q(ositions)i(of)e(its)-75 2199 y(states,)d(then)i
(translating)f(its)h(transition)f(function)h(in)o(to)g(this)g(new)f
(basis)h(will)h(giv)o(e)e(another)g(w)o(ell-formed)i(QTM)e(that)-75
2255 y(ev)o(olv)o(es)i(just)f(as)g(the)h(\014rst)f(under)i(the)e(c)o
(hange)h(of)f(basis.)22 b(Note,)15 b(that)g(in)i(this)f(construction,)f
(the)h(new)g(QTM)f(has)h(the)-75 2312 y(same)e(time)h(ev)o(olution)g
(op)q(erator)f(as)g(the)h(original)h(mac)o(hine.)k(Ho)o(w)o(ev)o(er,)13
b(the)i(states)f(of)g(the)h(new)f(mac)o(hine)i(di\013er)f(from)-75
2368 y(those)g(of)g(the)g(old.)20 b(This)c(c)o(hange)f(of)g(basis)h
(will)h(allo)o(w)e(us)g(to)g(pro)o(v)o(e)g(Lemmas)g(5.3.2)e(and)j
(5.3.4)d(b)q(elo)o(w.)-75 2492 y Fn(Lemma)k(5.1.1)23
b Fr(Given)14 b(a)h(QTM)f Fl(M)k Fs(=)13 b(\(\006)p Fl(;)8
b(Q;)g(\016)r Fs(\))k Fr(and)j(a)g(set)g(of)g(ve)n(ctors)f
Fl(B)k Fr(fr)n(om)1391 2481 y Fs(~)1380 2492 y Fl(C)1416
2476 y Fk(Q)1461 2492 y Fr(which)d(forms)g(an)g(orthonormal)-75
2549 y(b)n(asis)g(for)h Fn(C)144 2532 y Fk(Q)174 2549
y Fr(,)g(ther)n(e)f(is)h(a)g(QTM)f Fl(M)577 2532 y Fy(0)601
2549 y Fs(=)e(\(\006)p Fl(;)8 b(B)r(;)g(\016)800 2532
y Fy(0)811 2549 y Fs(\))15 b Fr(which)i(evolves)e(exactly)g(as)h
Fl(M)21 b Fr(under)16 b(a)g(change)g(of)g(b)n(asis)f(fr)n(om)h
Fl(Q)-75 2605 y Fr(to)h Fl(B)r Fr(.)951 2779 y Fs(22)p
eop
%%Page: 23 23
23 22 bop -75 -26 a Fn(Pro)q(of.)20 b Fs(Let)15 b Fl(M)j
Fs(=)13 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))k(b)q(e)k(a)f(QTM)g(and)h
Fl(B)h Fs(an)f(orthonormal)e(basis)i(for)e Fn(C)1367
-42 y Fk(Q)1397 -26 y Fs(.)-4 48 y(Since)j Fl(B)h Fs(is)f(an)e
(orthonormal)g(basis,)h(this)h(establishes)g(a)e(unitary)h
(transformation)f(from)g(the)g(space)i(of)e(sup)q(erp)q(o-)-75
105 y(sitions)g(of)e(states)h(in)g Fl(Q)g Fs(to)g(the)g(space)g(of)g
(sup)q(erp)q(ositions)h(of)f(states)f(in)i Fl(B)r Fs(.)20
b(Sp)q(eci\014call)q(y)l(,)d(for)c(eac)o(h)h Fl(p)f Fm(2)g
Fl(Q)g Fs(w)o(e)h(ha)o(v)o(e)g(the)-75 161 y(mapping)785
218 y Fm(j)p Fl(p)p Fm(i)d(!)914 177 y Fi(X)908 269 y
Fk(v)q Fy(2)p Fk(B)986 218 y Fm(h)p Fl(p)p Fm(j)o(j)p
Fl(v)r Fm(i)j(j)p Fl(v)r Fm(i)-75 337 y Fs(Similarly)l(,)j(w)o(e)d(ha)o
(v)o(e)h(a)f(unitary)h(transformation)f(from)g(the)h(space)g(of)f(sup)q
(erp)q(ositions)i(of)f(con\014gurations)g(with)g(states)-75
394 y(in)i Fl(Q)f Fs(to)g(the)g(space)h(of)f(con\014gurations)g(with)h
(states)e(in)i Fl(B)r Fs(.)24 b(In)17 b(this)g(second)f
(transformation,)f(a)h(con\014guration)h(with)-75 450
y(state)d Fl(p)g Fs(is)h(mapp)q(ed)h(to)e(the)h(sup)q(erp)q(osition)h
(of)e(con\014gurations)h(where)g(the)f(corresp)q(onding)i
(con\014guration)f(with)g(state)-75 506 y Fl(v)i Fs(app)q(ears)e(with)h
(amplitude)g Fm(h)p Fl(p)p Fm(j)o(j)p Fl(v)r Fm(i)o Fs(.)-4
581 y(Let)10 b(us)h(see)g(what)f(the)h(time)g(ev)o(olution)g(of)f
Fl(M)16 b Fs(should)11 b(lo)q(ok)g(lik)o(e)h(under)f(this)g(c)o(hange)g
(of)f(basis.)19 b(In)11 b Fl(M)16 b Fs(a)10 b(con\014guration)-75
637 y(in)15 b(state)f Fl(p)g Fs(reading)i(a)e Fl(\033)i
Fs(ev)o(olv)o(es)f(in)g(a)f(single)i(time)f(step)f(to)g(the)h(sup)q
(erp)q(osition)h(of)e(con\014gurations)h(corresp)q(onding)h(to)-75
694 y(the)f(sup)q(erp)q(osition)i Fl(\016)r Fs(\()p Fl(p;)8
b(\033)r Fs(\).)624 750 y Fl(\016)r Fs(\()p Fl(p;)g(\033)r
Fs(\))j(=)819 710 y Fi(X)812 802 y Fk(\034)r(;q)q(;d)892
750 y Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)s(;)g(q)r(;)f(d)p
Fs(\))12 b Fm(j)p Fl(\034)5 b Fm(i)o(j)p Fl(q)r Fm(i)o(j)p
Fl(d)p Fm(i)-75 874 y Fs(With)15 b(the)h(c)o(hange)f(of)g(basis,)g(the)
g(sup)q(erp)q(osition)i(on)e(the)h(righ)o(t)f(hand)g(side)h(will)h
(instead)f(b)q(e)606 964 y Fi(X)599 1056 y Fk(\034)r(;v)q(;d)681
932 y Fi( )714 964 y(X)735 1051 y Fk(q)781 1004 y Fm(h)p
Fl(q)r Fm(j)p Fl(v)r Fm(i)e Fl(\016)r Fs(\()p Fl(p;)8
b(\033)o(;)g(\034)s(;)f(q)r(;)h(d)o Fs(\))1147 932 y
Fi(!)1184 1004 y Fm(j)p Fl(\034)d Fm(ij)p Fl(v)r Fm(i)o(j)p
Fl(d)p Fm(i)-75 1149 y Fs(No)o(w,)14 b(since)j(the)e(state)f(sym)o(b)q
(ol)i(pair)f Fm(j)p Fl(v)r Fm(i)o(j)p Fl(\033)r Fm(i)f
Fs(in)i Fl(M)820 1133 y Fy(0)847 1149 y Fs(corresp)q(onds)g(to)e(the)i
(sup)q(erp)q(osition)829 1209 y Fi(X)850 1296 y Fk(p)897
1249 y Fm(h)p Fl(v)r Fm(j)p Fl(p)p Fm(i)e(j)p Fl(p)p
Fm(i)o(j)p Fl(\033)r Fm(i)-75 1389 y Fs(in)i Fl(M)5 b
Fs(,)15 b(w)o(e)g(should)h(ha)o(v)o(e)f(in)h Fl(M)473
1373 y Fy(0)361 1532 y Fl(\016)383 1513 y Fy(0)394 1532
y Fs(\()p Fl(v)r(;)8 b(\033)r Fs(\))j(=)562 1491 y Fi(X)583
1578 y Fk(p)629 1532 y Fm(h)p Fl(v)r Fm(j)p Fl(p)p Fm(i)731
1447 y Fi(0)731 1522 y(@)780 1491 y(X)768 1584 y Fk(\034)r(;v)814
1574 y Fq(0)824 1584 y Fk(;d)860 1460 y Fi( )893 1491
y(X)914 1578 y Fk(q)960 1532 y Fm(h)p Fl(q)r Fm(j)p Fl(v)1037
1513 y Fy(0)1048 1532 y Fm(i)k Fl(\016)r Fs(\()p Fl(p;)8
b(\033)o(;)g(\034)s(;)f(q)r(;)g(d)p Fs(\))1338 1460 y
Fi(!)1368 1447 y(1)1368 1522 y(A)1412 1532 y Fm(j)p Fl(\034)e
Fm(i)o(j)p Fl(v)1504 1513 y Fy(0)1515 1532 y Fm(i)o(j)p
Fl(d)p Fm(i)-4 1695 y Fs(Therefore,)18 b Fl(M)267 1679
y Fy(0)296 1695 y Fs(will)i(b)q(eha)o(v)o(e)e(exactly)h(as)e
Fl(M)23 b Fs(under)c(the)f(c)o(hange)g(of)f(basis)i(if)f(w)o(e)g
(de\014ne)h Fl(\016)1629 1679 y Fy(0)1659 1695 y Fs(b)o(y)e(sa)o(ying)h
(that)g(for)-75 1752 y(eac)o(h)d Fl(v)r(;)8 b(\033)13
b Fm(2)g Fl(B)g Fm(\002)e Fs(\006)427 1838 y Fl(\016)449
1820 y Fy(0)460 1838 y Fs(\()p Fl(v)r(;)d(\033)r Fs(\))j(=)640
1798 y Fi(X)628 1891 y Fk(\034)r(;v)674 1881 y Fq(0)685
1891 y Fk(;d)720 1767 y Fi( )753 1798 y(X)761 1885 y
Fk(p;q)821 1838 y Fm(h)p Fl(v)r Fm(j)p Fl(p)p Fm(i)i(h)p
Fl(q)r Fm(j)p Fl(v)1007 1820 y Fy(0)1018 1838 y Fm(i)i
Fl(\016)r Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)f(q)r(;)g(d)p
Fs(\))1308 1767 y Fi(!)1345 1838 y Fm(j)p Fl(\034)e Fm(ij)p
Fl(v)1438 1820 y Fy(0)1449 1838 y Fm(i)o(j)p Fl(d)p Fm(i)-75
1973 y Fs(Since)17 b(the)e(v)o(ectors)f(in)i Fl(B)i Fs(are)d(con)o
(tained)h(in)726 1962 y(~)716 1973 y Fl(C)752 1957 y
Fk(Q)782 1973 y Fs(,)e(eac)o(h)i(amplitude)g(of)f Fl(\016)1200
1957 y Fy(0)1227 1973 y Fs(is)h(con)o(tained)f(in)1542
1962 y(~)1531 1973 y Fl(C)s Fs(.)-4 2047 y(Finally)l(,)h(note)e(that)g
(the)h(time)g(ev)o(olution)h(of)e Fl(M)835 2031 y Fy(0)861
2047 y Fs(m)o(ust)h(preserv)o(e)f(Euclidean)j(length)f(since)f(it)g(is)
h(exactly)f(the)g(time)-75 2104 y(ev)o(olution)h(of)f(the)g(w)o
(ell-formed)h Fl(M)k Fs(under)c(the)f(c)o(hange)h(of)f(basis.)908
b Fd(2)-75 2299 y Fh(5.2)56 b(Lo)r(cal)17 b(conditions)h(for)h(QTM)g(w)
n(ell-formedness)-75 2403 y Fs(In)14 b(our)f(discussion)i(of)e(rev)o
(ersible)i(TMs)e(in)h(App)q(endix)h(B)f(w)o(e)f(\014nd)h(prop)q(erties)
g(of)f(a)g(deterministic)i(transition)f(function)-75
2459 y(whic)o(h)g(are)f(necessary)g(and)h(su\016cien)o(t)f(for)g(it)g
(to)g(b)q(e)h(rev)o(ersible.)20 b(Similarly)l(,)c(our)d(next)g(theorem)
g(giv)o(es)g(three)g(prop)q(erties)-75 2516 y(of)h(a)g(quan)o(tum)h
(transition)g(function)g(whic)o(h)g(together)f(are)g(necessary)h(and)g
(su\016cien)o(t)g(for)f(it)h(to)f(b)q(e)h(w)o(ell-formed.)21
b(The)-75 2572 y(\014rst)e(prop)q(ert)o(y)g(insures)h(that)e(the)i
(time)f(ev)o(olution)h(op)q(erator)f(preserv)o(es)g(length)h(when)g
(applied)h(to)d(an)o(y)h(particular)-75 2629 y(con\014guration.)28
b(Adding)19 b(the)f(second)h(insures)g(that)e(the)h(time)g(ev)o
(olution)h(preserv)o(es)f(the)g(length)h(of)e(sup)q(erp)q(ositions)951
2779 y(23)p eop
%%Page: 24 24
24 23 bop -75 -26 a Fs(of)17 b(con\014gurations)g(with)h(their)g(tap)q
(e)f(head)h(in)g(the)f(same)g(cell.)28 b(The)17 b(third)h(prop)q(ert)o
(y)l(,)f(whic)o(h)h(concerns)g(\\restricted")-75 31 y(up)q(date)13
b(sup)q(erp)q(ositions,)g(handles)h(sup)q(erp)q(ositions)f(of)f
(con\014gurations)g(with)g(tap)q(e)g(heads)g(in)h(di\013ering)g(lo)q
(cations.)19 b(This)-75 87 y(third)d(prop)q(ert)o(y)f(will)h(b)q(e)g
(of)f(critical)i(use)e(in)h(the)g(constructions)f(of)g(Lemmas)g(5.3.2)f
(and)h(5.3.4)f(b)q(elo)o(w.)-75 211 y Fn(De\014nition)19
b(5.2.1)j Fr(We)17 b(wil)r(l)f(also)g(r)n(efer)g(to)g(the)h(sup)n(erp)n
(osition)f(of)g(states)787 273 y Fi(X)782 365 y Fk(q)q
Fy(2)p Fk(Q)858 313 y Fl(\016)r Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g
(q)r(;)f(d)p Fs(\))o Fm(j)p Fl(q)r Fm(i)-75 459 y Fr(r)n(esulting)15
b(fr)n(om)h(r)n(estricting)f Fl(\016)r Fs(\()p Fl(p;)8
b(\033)r Fs(\))14 b Fr(to)j(those)f(pie)n(c)n(es)f(writing)h(symb)n(ol)
f Fl(\034)21 b Fr(and)16 b(moving)g(in)f(dir)n(e)n(ction)h
Fl(d)f Fr(as)h(a)h Fs(direction)-75 516 y Fl(d)p Fs(-going)e
(restricted)h(sup)q(erp)q(osition)p Fr(,)i(denote)n(d)e(by)g
Fl(\016)r Fs(\()p Fl(p;)8 b(\033)r Fm(j)p Fl(\034)s(;)f(d)p
Fs(\))p Fr(.)-75 640 y Fn(Theorem)17 b(5.2.2)22 b Fr(A)16
b(QTM)g Fl(M)h Fs(=)c(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))14
b Fr(is)i(wel)r(l-forme)n(d)g(i\013)g(the)h(fol)r(lowing)f(c)n
(onditions)f(hold)-206 764 y(Unit)h(length)715 820 y
Fm(8)h Fl(p;)8 b(\033)29 b Fm(2)h Fl(Q)10 b Fm(\002)g
Fs(\006)49 b Fm(k)p Fl(\016)r Fs(\()p Fl(p;)8 b(\033)r
Fs(\))p Fm(k)i Fs(=)j(1)-253 922 y Fr(Ortho)n(gonality)481
979 y Fm(8)k Fs(\()p Fl(p)564 986 y Fj(1)583 979 y Fl(;)8
b(\033)630 986 y Fj(1)649 979 y Fs(\))k Fm(6)p Fs(=)h(\()p
Fl(p)768 986 y Fj(2)787 979 y Fl(;)8 b(\033)834 986 y
Fj(2)853 979 y Fs(\))29 b Fm(2)g Fl(Q)10 b Fm(\002)g
Fs(\006)49 b Fl(\016)r Fs(\()p Fl(p)1195 986 y Fj(1)1214
979 y Fl(;)8 b(\033)1261 986 y Fj(1)1280 979 y Fs(\))i
Fm(\001)g Fl(\016)r Fs(\()p Fl(p)1394 986 y Fj(2)1413
979 y Fl(;)e(\033)1460 986 y Fj(2)1479 979 y Fs(\))k(=)h(0)-212
1081 y Fr(Sep)n(ar)n(ability)292 1137 y Fm(8)j Fs(\()p
Fl(p)374 1144 y Fj(1)394 1137 y Fl(;)8 b(\033)441 1144
y Fj(1)460 1137 y Fl(;)g(\034)501 1144 y Fj(1)519 1137
y Fs(\))p Fl(;)g Fs(\()p Fl(p)599 1144 y Fj(2)618 1137
y Fl(;)g(\033)665 1144 y Fj(2)683 1137 y Fl(;)g(\034)724
1144 y Fj(2)743 1137 y Fs(\))29 b Fm(2)g Fl(Q)10 b Fm(\002)g
Fs(\006)g Fm(\002)h Fs(\006)48 b Fl(\016)r Fs(\()p Fl(p)1173
1144 y Fj(1)1193 1137 y Fl(;)8 b(\033)1240 1144 y Fj(1)1259
1137 y Fm(j)p Fl(\034)1292 1144 y Fj(1)1311 1137 y Fl(;)g(L)p
Fs(\))h Fm(\001)g Fl(\016)r Fs(\()p Fl(p)1475 1144 y
Fj(2)1495 1137 y Fl(;)f(\033)1542 1144 y Fj(2)1560 1137
y Fm(j)p Fl(\034)1593 1144 y Fj(2)1613 1137 y Fl(;)g(R)p
Fs(\))j(=)i(0)-75 1261 y Fn(Pro)q(of.)34 b Fs(Let)20
b Fl(U)k Fs(b)q(e)d(the)f(time)g(ev)o(olution)h(of)e(a)h(prop)q(osed)g
(QTM)f Fl(M)26 b Fs(=)20 b(\(\006)p Fl(;)8 b(Q;)g(\016)r
Fs(\).)32 b(W)l(e)20 b(kno)o(w)f Fl(M)25 b Fs(is)20 b(w)o(ell-formed)
-75 1318 y(i\013)f Fl(U)19 1301 y Fy(\003)58 1318 y Fs(exists)g(and)h
Fl(U)316 1301 y Fy(\003)335 1318 y Fl(U)k Fs(giv)o(es)c(the)f(iden)o
(tit)o(y)l(,)i(or)d(equiv)m(alen)o(tly)k(i\013)d(the)g(columns)h(of)f
Fl(U)24 b Fs(ha)o(v)o(e)18 b(unit)i(length)g(and)f(are)-75
1374 y(m)o(utually)g(orthogonal.)28 b(Clearly)l(,)19
b(the)g(\014rst)e(condition)j(sp)q(eci\014es)g(exactly)e(that)g(eac)o
(h)g(column)h(has)f(unit)h(length.)29 b(In)-75 1431 y(general,)19
b(con\014gurations)f(whose)g(tap)q(es)g(di\013er)g(in)h(a)f(cell)h(not)
f(under)h(either)f(of)g(their)h(heads,)f(or)g(whose)g(tap)q(e)g(heads)
-75 1487 y(are)e(not)g(either)i(in)f(the)g(same)f(cell)i(or)e(exactly)h
(t)o(w)o(o)e(cells)j(apart,)e(cannot)g(yield)i(the)f(same)f
(con\014guration)h(in)g(a)g(single)-75 1544 y(step.)i(Therefore)14
b(suc)o(h)h(pairs)f(of)g(columns)g(are)g(guaran)o(teed)g(to)f(b)q(e)i
(orthogonal,)e(and)h(w)o(e)g(need)h(only)f(consider)h(pairs)f(of)-75
1600 y(con\014gurations)j(for)e(whic)o(h)j(this)f(is)g(not)f(the)g
(case.)24 b(The)16 b(second)h(condition)h(sp)q(eci\014es)g(the)f
(orthogonalit)o(y)f(of)g(pairs)g(of)-75 1656 y(columns)g(for)f
(con\014gurations)h(that)e(di\013er)i(only)g(in)h(that)d(one)i(is)g(in)
g(state)f Fl(p)1252 1663 y Fj(1)1287 1656 y Fs(reading)h
Fl(\033)1475 1663 y Fj(1)1510 1656 y Fs(while)h(the)e(other)h(is)f(in)i
(state)-75 1713 y Fl(p)-52 1720 y Fj(2)-17 1713 y Fs(reading)e
Fl(\033)170 1720 y Fj(2)190 1713 y Fs(.)-4 1787 y(Finally)l(,)h(w)o(e)e
(m)o(ust)h(consider)h(pairs)f(of)f(con\014gurations)h(with)h(their)f
(tap)q(e)g(heads)g(t)o(w)o(o)f(cells)i(apart.)j(Suc)o(h)d(pairs)f(can)
-75 1844 y(only)g(in)o(terfere)g(in)g(a)f(single)i(step)f(if)f(they)h
(di\013er)g(at)f(most)f(in)j(their)e(states)g(and)h(in)g(the)g(sym)o(b)
q(ol)f(written)h(in)g(these)g(cells.)-75 1900 y(The)i(third)h
(condition)g(sp)q(eci\014es)h(the)f(orthogonalit)o(y)e(of)h(pairs)g(of)
g(columns)h(for)e(con\014gurations)h(whic)o(h)h(are)f(iden)o(tical)-75
1956 y(except)f(that)e(the)h(second)h(has)e(its)i(tap)q(e)f(head)g(t)o
(w)o(o)f(cells)j(to)d(the)h(left,)g(is)h(in)g(state)e
Fl(p)1388 1963 y Fj(2)1422 1956 y Fs(instead)i(of)f Fl(p)1654
1963 y Fj(1)1673 1956 y Fs(,)g(has)g(a)g Fl(\033)1846
1963 y Fj(2)1880 1956 y Fs(instead)-75 2013 y(of)g(a)g
Fl(\034)35 2020 y Fj(2)69 2013 y Fs(in)h(the)g(cell)h(under)e(its)h
(tap)q(e)f(head,)g(and)h(has)f(a)g Fl(\034)925 2020 y
Fj(1)959 2013 y Fs(instead)h(of)f(a)g Fl(\033)1232 2020
y Fj(1)1267 2013 y Fs(t)o(w)o(o)f(cells)i(to)f(the)g(left.)326
b Fd(2)-4 2143 y Fs(No)o(w)17 b(consider)i(again)f(unidirectional)j
(QTMs,)d(those)g(in)h(whic)o(h)g(eac)o(h)f(state)f(can)h(b)q(e)h(en)o
(tered)g(while)g(mo)o(ving)f(in)-75 2200 y(only)e(one)f(direction.)22
b(When)16 b(w)o(e)f(considered)i(this)f(prop)q(ert)o(y)f(for)f
(deterministic)k(TMs,)c(it)i(mean)o(t)f(that)f(when)i(lo)q(oking)-75
2256 y(at)h(a)g(deterministic)i(transition)f(function)g
Fl(\016)r Fs(,)f(w)o(e)g(could)i(ignore)e(the)h(direction)g(up)q(date)g
(and)g(think)g(of)f Fl(\016)i Fs(as)e(giving)h(a)-75
2313 y(bijection)c(from)e(the)h(curren)o(t)f(state)g(and)h(tap)q(e)g
(sym)o(b)q(ol)g(to)f(the)h(new)g(sym)o(b)q(ol)g(and)g(state.)18
b(Here,)13 b(if)g Fl(\016)i Fs(is)e(a)f(unidirectional)-75
2369 y(quan)o(tum)17 b(transition)h(function,)h(then)e(it)h(certainly)h
(satis\014es)f(the)f(separabilit)o(y)i(condition)g(since)f(no)g
(left-going)g(and)-75 2426 y(righ)o(t-going)e(restricted)h(sup)q(erp)q
(ositions)h(ha)o(v)o(e)e(a)g(state)g(in)h(common.)23
b(Moreo)o(v)o(er,)15 b(up)q(date)i(triples)g(will)h(alw)o(a)o(ys)e
(share)-75 2482 y(the)c(same)g(direction)i(if)e(they)g(share)h(the)f
(same)g(state.)18 b(Therefore,)12 b(a)g(unidirectional)j
Fl(\016)f Fs(is)e(w)o(ell-formed)i(i\013,)e(ignoring)h(the)-75
2539 y(direction)18 b(up)q(date,)g Fl(\016)h Fs(giv)o(es)e(a)g(unitary)
g(transformation)f(from)h(sup)q(erp)q(ositions)h(of)f(curren)o(t)g
(state)f(and)h(tap)q(e)h(sym)o(b)q(ol)-75 2595 y(to)d(sup)q(erp)q
(ositions)h(of)f(new)h(sym)o(b)q(ol)f(and)h(state.)951
2779 y(24)p eop
%%Page: 25 25
25 24 bop -75 -26 a Fh(5.3)56 b(Unidirection)17 b(and)i(Completion)e
(Lemm)o(as)-75 78 y Fs(The)c(separabilit)o(y)h(condition)g(of)f
(Theorem)g(5.2.2)e(allo)o(ws)i(us)g(to)f(sim)o(ulate)i(an)o(y)e(QTM)h
(with)g(a)g(unidirectional)i(QTM)e(b)o(y)-75 134 y(applying)j(a)e(c)o
(hange)g(of)g(basis.)20 b(The)14 b(same)g(c)o(hange)g(of)g(basis)h
(will)h(also)e(allo)o(w)h(us)f(to)g(complete)h(an)o(y)f(partially)h(sp)
q(eci\014ed)-75 191 y(quan)o(tum)g(transition)g(function)h(whic)o(h)g
(preserv)o(es)g(length.)-4 265 y(It)c(is)i(straigh)o(tforw)o(ard)c(to)i
(sim)o(ulate)i(a)e(deterministic)j(TM)d(with)h(one)g(whic)o(h)h(is)f
(unidirectional.)22 b(Simply)14 b(split)g(eac)o(h)-75
321 y(state)i Fl(q)i Fs(in)o(to)f(t)o(w)o(o)e(states)h
Fl(q)408 328 y Fk(r)444 321 y Fs(and)h Fl(q)554 328 y
Fk(l)567 321 y Fs(,)g(b)q(oth)g(of)f(whic)o(h)h(are)g(giv)o(en)g(the)g
(same)f(transitions)h(that)f Fl(q)i Fs(had,)f(and)g(then)g(edit)-75
378 y(the)f(transition)h(function)g(so)f(that)g(transitions)g(mo)o
(ving)g(righ)o(t)h(in)o(to)f Fl(q)i Fs(en)o(ter)e Fl(q)1314
385 y Fk(r)1350 378 y Fs(and)g(transitions)h(mo)o(ving)f(left)h(in)o
(to)f Fl(q)-75 434 y Fs(en)o(ter)e Fl(q)59 441 y Fk(l)72
434 y Fs(.)20 b(The)15 b(resulting)g(mac)o(hine)g(is)g(clearly)g(not)f
(rev)o(ersible)i(since)f(the)g(transition)f(function)i(op)q(erates)e
(the)g(same)g(on)-75 491 y(eac)o(h)h(pair)h(of)f(states)f
Fl(q)322 498 y Fk(r)341 491 y Fl(;)8 b(q)382 498 y Fk(l)395
491 y Fs(.)-4 565 y(T)l(o)k(simplify)i(the)f(unidirection)h
(construction,)f(w)o(e)g(\014rst)f(sho)o(w)g(ho)o(w)f(to)h(in)o(terlea)
o(v)o(e)h(a)f(series)h(of)g(quan)o(tum)f(transition)-75
621 y(functions.)-75 745 y Fn(Lemma)17 b(5.3.1)23 b Fr(Given)17
b Fl(k)j Fr(state)e(sets)f Fl(Q)657 752 y Fj(0)677 745
y Fl(;)8 b(:)g(:)g(:)t(;)g(Q)814 752 y Fk(k)q Fy(\000)p
Fj(1)880 745 y Fl(;)g(Q)937 752 y Fk(k)974 745 y Fs(=)16
b Fl(Q)1061 752 y Fj(0)1099 745 y Fr(and)i Fl(k)h Fr(tr)n(ansition)f
(functions)f(e)n(ach)h(mapping)h(fr)n(om)-75 802 y(one)d(state)g(set)g
(to)h(the)f(next)685 858 y Fl(\016)705 865 y Fk(i)732
858 y Fs(:)c Fl(Q)793 865 y Fk(i)817 858 y Fm(\002)f
Fs(\006)h Fm(!)974 847 y Fs(~)966 858 y Fn(C)1004 839
y Fj(\006)p Fy(\002)p Fk(Q)1084 844 y Fb(i)p Fg(+1)1137
839 y Fy(\002f)p Fk(L;R)p Fy(g)-75 942 y Fr(such)j(that)h(e)n(ach)f
Fl(\016)240 949 y Fk(i)270 942 y Fr(pr)n(eserves)f(length,)h(ther)n(e)g
(is)g(a)g(wel)r(l-forme)n(d)h(QTM)e Fl(M)20 b Fr(with)c(state)f(set)
1517 910 y Fi(S)1551 953 y Fk(i)1565 942 y Fs(\()p Fl(Q)1619
949 y Fk(i)1633 942 y Fl(;)8 b(i)p Fs(\))14 b Fr(which)i(alternates)-75
998 y(stepping)g(ac)n(c)n(or)n(ding)f(to)i(e)n(ach)f(of)g(the)h
Fl(k)g Fr(tr)n(ansition)f(functions.)-75 1122 y Fn(Pro)q(of.)25
b Fs(Supp)q(ose)18 b(w)o(e)e(ha)o(v)o(e)h Fl(k)h Fs(state)e(sets)g
(transition)h(functions)h(as)f(stated)f(ab)q(o)o(v)o(e.)24
b(Then)18 b(w)o(e)e(let)i Fl(M)k Fs(b)q(e)17 b(the)g(QTM)-75
1179 y(with)f(the)g(same)f(alphab)q(et,)i(with)f(state)f(set)g(giv)o
(en)i(b)o(y)e(the)h(union)h(of)e(the)h(individual)j(state)c(sets)1646
1146 y Fi(S)1681 1190 y Fk(i)1695 1179 y Fs(\()p Fl(Q)1749
1186 y Fk(i)1763 1179 y Fl(;)8 b(i)p Fs(\),)14 b(and)i(with)-75
1235 y(transition)f(function)h(according)g(to)f(the)g
Fl(\016)669 1242 y Fk(i)533 1337 y Fl(\016)r Fs(\(\()p
Fl(p;)8 b(i)p Fs(\))p Fl(;)g(\033)q Fs(\))h(=)799 1297
y Fi(X)792 1389 y Fk(\034)r(;q)q(;d)872 1337 y Fl(\016)892
1344 y Fk(i)907 1337 y Fs(\()p Fl(p;)f(\033)o(;)g(\034)s(;)f(q)r(;)g(d)
p Fs(\))p Fm(j)o Fl(\034)e Fm(i)m(j)p Fl(q)r(;)j(i)h
Fs(+)h(1)p Fm(i)o(j)p Fl(d)p Fm(i)-75 1481 y Fs(Clearly)l(,)17
b(the)f(mac)o(hine)h Fl(M)k Fs(alternates)16 b(stepping)h(according)f
(to)g Fl(\016)1092 1488 y Fj(0)1112 1481 y Fl(;)8 b(:)g(:)g(:)t(;)g
(\016)1233 1488 y Fk(k)q Fy(\000)p Fj(1)1299 1481 y Fs(.)23
b(It)16 b(is)g(also)g(easy)g(to)g(see)g(that)f(the)i(time)-75
1537 y(ev)o(olution)g(of)g Fl(M)k Fs(preserv)o(es)c(length;)g(If)g
Fm(j)p Fl(\036)p Fm(i)f Fs(is)h(a)g(sup)q(erp)q(osition)h(of)e
(con\014gurations)h(with)g(squared)f(length)i Fl(\013)1874
1544 y Fk(i)1904 1537 y Fs(in)g(the)-75 1594 y(subspace)f(with)g
(con\014gurations)g(with)f(states)g(from)g Fl(Q)896 1601
y Fk(i)910 1594 y Fs(,)g(then)h Fl(\016)h Fs(maps)e Fl(\036)h
Fs(to)f(a)g(sup)q(erp)q(osition)i(with)f(squared)f(length)-75
1650 y Fl(\013)-46 1657 y Fk(i)-17 1650 y Fs(in)g(the)g(subspace)g
(with)f(con\014gurations)g(with)h(states)e(from)h Fl(Q)1078
1657 y Fk(i)p Fj(+1)1137 1650 y Fs(.)838 b Fd(2)-75 1831
y Fn(Lemma)17 b(5.3.2)g(\(Unidirection)j(Lemma\))j Fr(A)o(ny)17
b(QTM)g Fl(M)23 b Fr(is)17 b(simulate)n(d,)h(with)h(slowdown)e(by)h(a)g
(factor)h(of)f(5,)g(by)-75 1887 y(a)e(unidir)n(e)n(ctional)g(QTM)f
Fl(M)424 1871 y Fy(0)436 1887 y Fr(.)21 b(F)m(urthermor)n(e,)16
b(if)g Fl(M)22 b Fr(is)16 b(wel)r(l-b)n(ehave)n(d)f(and)i(in)e(normal)i
(form,)f(then)g(so)h(is)e Fl(M)1844 1871 y Fy(0)1856
1887 y Fr(.)-75 2011 y Fn(Pro)q(of.)21 b Fs(The)16 b(k)o(ey)g(idea)g
(is)g(that)f(the)h(separabilit)o(y)h(condition)g(of)e(a)g(w)o
(ell-formed)i(QTM)e(allo)o(ws)h(a)g(c)o(hange)f(of)h(basis)g(to)-75
2068 y(a)f(state)f(set)h(in)h(whic)o(h)g(eac)o(h)g(state)e(can)h(b)q(e)
h(en)o(tered)g(from)e(only)i(one)f(direction.)-4 2142
y(The)g(separabilit)o(y)h(condition)h(sa)o(ys)d(that)590
2244 y Fm(8)i Fs(\()p Fl(p)672 2251 y Fj(1)691 2244 y
Fl(;)8 b(\033)738 2251 y Fj(1)757 2244 y Fl(;)g(\034)798
2251 y Fj(1)817 2244 y Fs(\))p Fl(;)g Fs(\()p Fl(p)897
2251 y Fj(2)915 2244 y Fl(;)g(\033)962 2251 y Fj(2)981
2244 y Fl(;)g(\034)1022 2251 y Fj(2)1040 2244 y Fs(\))28
b Fm(2)g Fl(Q)10 b Fm(\002)g Fs(\006)g Fm(\002)h Fs(\006)644
2346 y Fl(\016)r Fs(\()p Fl(p)707 2353 y Fj(1)727 2346
y Fl(;)d(\033)774 2353 y Fj(1)792 2346 y Fm(j)p Fl(\034)825
2353 y Fj(1)845 2346 y Fl(;)g(L)p Fs(\))h Fm(\001)g Fl(\016)r
Fs(\()p Fl(p)1009 2353 y Fj(2)1028 2346 y Fl(;)f(\033)1075
2353 y Fj(2)1094 2346 y Fm(j)p Fl(\034)1127 2353 y Fj(2)1147
2346 y Fl(;)g(R)p Fs(\))j(=)i(0)-75 2429 y(This)e(means)f(that)g(w)o(e)
g(can)g(split)i Fn(C)527 2413 y Fk(Q)567 2429 y Fs(in)o(to)e(m)o
(utually)h(orthogonal)f(subspaces)h Fn(C)1305 2436 y
Fk(L)1341 2429 y Fs(and)f Fn(C)1462 2436 y Fk(R)1501
2429 y Fs(suc)o(h)h(that)f Fl(span)p Fs(\()p Fn(C)1844
2436 y Fk(L)1870 2429 y Fl(;)e Fn(C)1929 2436 y Fk(R)1956
2429 y Fs(\))13 b(=)-75 2486 y Fn(C)-37 2469 y Fk(Q)8
2486 y Fs(and)710 2542 y Fm(8)i Fs(\()p Fl(p)791 2549
y Fj(1)810 2542 y Fl(;)8 b(\033)857 2549 y Fj(1)876 2542
y Fl(;)g(\034)917 2549 y Fj(1)936 2542 y Fs(\))k Fm(2)29
b Fl(Q)10 b Fm(\002)g Fs(\006)g Fm(\002)g Fs(\006)786
2626 y Fl(\016)r Fs(\()p Fl(p)849 2633 y Fj(1)868 2626
y Fl(;)e(\033)915 2633 y Fj(1)934 2626 y Fm(j)p Fl(\034)967
2633 y Fj(1)986 2626 y Fl(;)g(d)p Fs(\))j Fm(2)i Fn(C)1141
2633 y Fk(d)951 2779 y Fs(25)p eop
%%Page: 26 26
26 25 bop -4 -26 a Fs(No)o(w,)13 b(as)h(sho)o(wn)g(in)h(Lemma)g(5.1.1)e
(ab)q(o)o(v)o(e,)g(under)j(a)e(c)o(hange)g(of)g(basis)h(from)f(state)f
(set)h Fl(Q)h Fs(to)e(state)h(set)g Fl(B)j Fs(the)e(new)-75
31 y(transition)g(function)h(is)g(de\014ned)h(b)o(y)543
133 y Fl(\016)565 114 y Fy(0)576 133 y Fs(\()p Fl(v)r(;)8
b(\033)o(;)g(\034)s(;)g(v)752 114 y Fy(0)761 133 y Fl(;)g(d)p
Fs(\))j(=)883 92 y Fi(X)891 180 y Fk(p;q)951 133 y Fm(h)p
Fl(v)r Fm(j)p Fl(p)p Fm(i)n(h)p Fl(q)r Fm(j)p Fl(v)1122
114 y Fy(0)1133 133 y Fm(i)o Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)
s(;)g(q)r(;)f(d)p Fs(\))-75 275 y(So,)19 b(c)o(ho)q(ose)f(orthonormal)f
(bases)i Fl(B)572 282 y Fk(L)616 275 y Fs(and)g Fl(B)742
282 y Fk(R)790 275 y Fs(for)e(the)i(spaces)f Fn(C)1124
282 y Fk(L)1168 275 y Fs(and)h Fn(C)1298 282 y Fk(R)1344
275 y Fs(and)g(let)g Fl(M)1554 258 y Fy(0)1583 275 y
Fs(=)f(\(\006)p Fl(;)8 b(B)1742 282 y Fk(L)1780 275 y
Fm([)k Fl(B)1856 282 y Fk(R)1886 275 y Fl(;)c(\016)1929
258 y Fy(0)1939 275 y Fs(\))18 b(b)q(e)-75 331 y(the)c(QTM)g
(constructed)h(according)f(to)g(Lemma)g(5.1.1)f(whic)o(h)i(ev)o(olv)o
(es)f(exactly)h(as)f Fl(M)19 b Fs(under)c(a)f(c)o(hange)g(of)g(basis)h
(from)-75 388 y(state)f(set)h Fl(Q)h Fs(to)e(state)h(set)g
Fl(B)g Fs(=)e Fl(B)528 395 y Fk(L)565 388 y Fm([)d Fl(B)639
395 y Fk(R)669 388 y Fs(.)20 b(Then)c(an)o(y)f(state)f(in)i
Fl(M)1120 371 y Fy(0)1147 388 y Fs(can)f(b)q(e)h(en)o(tered)g(in)g
(only)g(one)f(direction.)22 b(T)l(o)15 b(see)-75 444
y(this,)h(\014rst)f(note)h(that)f(since)i Fl(\016)r Fs(\()p
Fl(p;)8 b(\033)r Fm(j)p Fl(\034)s(;)g(d)o Fs(\))j Fm(2)i
Fl(B)732 451 y Fk(d)769 444 y Fs(and)j Fl(v)f Fs(=)944
412 y Fi(P)988 456 y Fk(q)1014 444 y Fm(h)p Fl(v)r Fm(j)p
Fl(q)r Fm(i)o(j)p Fl(q)r Fm(i)o Fs(,)h(the)g(separabilit)o(y)h
(condition)g(implies)h(that)d(for)-75 501 y Fl(v)f Fm(2)f
Fl(B)p 38 488 21 2 v 15 x Fk(d)714 525 y Fi(X)736 612
y Fk(q)782 565 y Fl(\016)r Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g(q)q
(;)g(d)o Fs(\))p Fm(h)p Fl(v)q Fm(j)p Fl(q)r Fm(i)1130
544 y Fy(\003)1162 565 y Fs(=)13 b(0)-75 689 y(Therefore,)i(for)f(an)o
(y)h Fl(v)r(;)8 b(\033)o(;)g(\034)s(;)g(v)458 672 y Fy(0)479
689 y Fm(2)13 b Fl(B)g Fm(\002)d Fs(\006)g Fm(\002)h
Fs(\006)e Fm(\002)i Fl(B)p 825 676 V 15 x Fk(d)543 799
y Fl(\016)565 780 y Fy(0)576 799 y Fs(\()p Fl(v)r(;)d(\033)o(;)g(\034)s
(;)g(v)752 780 y Fy(0)761 799 y Fl(;)g(d)p Fs(\))j(=)883
758 y Fi(X)891 845 y Fk(p;q)951 799 y Fm(h)p Fl(v)r Fm(j)p
Fl(p)p Fm(i)n(h)p Fl(q)r Fm(j)p Fl(v)1122 780 y Fy(0)1133
799 y Fm(i)o Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)s(;)g(q)r(;)f(d)
p Fs(\))610 950 y(=)658 910 y Fi(X)679 997 y Fk(p)725
950 y Fm(h)p Fl(v)r Fm(j)p Fl(p)p Fm(i)827 910 y Fi(X)849
997 y Fk(q)895 950 y Fm(h)p Fl(q)r Fm(j)p Fl(v)972 932
y Fy(0)982 950 y Fm(i)p Fl(\016)r Fs(\()p Fl(p;)h(\033)o(;)g(\034)s(;)g
(q)r(;)f(d)o Fs(\))j(=)j(0)-75 1071 y(Therefore)i(an)o(y)g(state)f(in)i
Fl(B)i Fs(can)e(b)q(e)f(en)o(tered)h(while)h(tra)o(v)o(eling)e(in)h
(only)g(one)f(direction.)-4 1145 y(Unfortunately)l(,)k(this)g(new)g
(QTM)g Fl(M)670 1128 y Fy(0)700 1145 y Fs(migh)o(t)f(not)h(b)q(e)g
(able)g(to)f(sim)o(ulate)i Fl(M)5 b Fs(.)30 b(The)19
b(problem)g(is)g(that)f(the)h(start)-75 1201 y(state)d(and)h(\014nal)h
(state)f(of)f Fl(M)22 b Fs(migh)o(t)17 b(corresp)q(ond)h(under)f(the)g
(c)o(hange)h(of)e(basis)i(isomorphism)f(to)g(sup)q(erp)q(ositions)h(of)
-75 1258 y(states)12 b(in)j Fl(M)153 1241 y Fy(0)164
1258 y Fs(,)f(meaning)g(that)e(w)o(e)h(w)o(ould)h(b)q(e)g(unable)h(to)d
(de\014ne)j(the)e(necessary)h(start)e(and)h(\014nal)i(states)d(for)h
Fl(M)1864 1241 y Fy(0)1875 1258 y Fs(.)20 b(T)l(o)13
b(\014x)-75 1314 y(this)h(problem,)h(w)o(e)f(use)g(\014v)o(e)g(time)h
(steps)e(to)h(sim)o(ulate)g(eac)o(h)g(step)h(of)e Fl(M)19
b Fs(and)14 b(in)o(terlea)o(v)o(e)h(the)f(\014v)o(e)g(transition)g
(functions)-75 1371 y(using)i(Lemma)f(5.3.1)f(on)h(page)g(pagerefin)o
(terlea)o(ving.lemma.)-19 1495 y(1.)22 b(Step)15 b(righ)o(t)g(lea)o
(ving)h(the)f(tap)q(e)h(and)f(state)f(unc)o(hanged.)839
1626 y Fl(\016)859 1633 y Fj(0)879 1626 y Fs(\()p Fl(p;)8
b(\033)r Fs(\))i(=)j Fm(j)p Fl(\033)r Fm(i)o(j)p Fl(p)p
Fm(ij)p Fl(R)p Fm(i)-19 1728 y Fs(2.)22 b(Change)15 b(basis)g(from)g
Fl(Q)g Fs(to)f Fl(B)k Fs(while)f(stepping)f(left.)760
1860 y Fl(\016)780 1867 y Fj(1)800 1860 y Fs(\()p Fl(p;)8
b(\033)r Fs(\))j(=)970 1819 y Fi(X)967 1912 y Fk(b)p
Fy(2)p Fk(B)1041 1860 y Fm(h)p Fl(p)p Fm(j)p Fl(b)p Fm(i)o(j)p
Fl(\033)r Fm(i)n(j)p Fl(b)p Fm(i)o(j)p Fl(L)p Fm(i)-19
2003 y Fs(3.)22 b Fl(M)88 1986 y Fy(0)118 2003 y Fs(carries)c(out)g(a)g
(step)h(of)e(the)i(computation)f(of)g Fl(M)5 b Fs(.)29
b(So,)19 b Fl(\016)1140 2010 y Fj(2)1178 2003 y Fs(is)g(just)f(the)h
(quan)o(tum)f(transition)g(function)h Fl(\016)2010 1986
y Fy(0)39 2059 y Fs(from)14 b(QTM)h Fl(M)320 2043 y Fy(0)347
2059 y Fs(constructed)g(ab)q(o)o(v)o(e.)-19 2153 y(4.)22
b(Change)15 b(basis)g(bac)o(k)g(from)g Fl(B)j Fs(to)c
Fl(Q)h Fs(while)i(stepping)f(left.)759 2284 y Fl(\016)779
2291 y Fj(3)799 2284 y Fs(\()p Fl(b;)8 b(\033)r Fs(\))i(=)967
2244 y Fi(X)962 2336 y Fk(p)p Fy(2)p Fk(Q)1039 2284 y
Fm(h)p Fl(b)p Fm(j)p Fl(p)p Fm(i)n(j)p Fl(\033)r Fm(i)o(j)p
Fl(p)p Fm(i)o(j)p Fl(L)p Fm(i)-19 2428 y Fs(5.)22 b(Step)15
b(righ)o(t)g(lea)o(ving)h(the)f(tap)q(e)h(and)f(state)f(unc)o(hanged.)
839 2560 y Fl(\016)859 2567 y Fj(4)879 2560 y Fs(\()p
Fl(p;)8 b(\033)r Fs(\))i(=)j Fm(j)p Fl(\033)r Fm(i)o(j)p
Fl(p)p Fm(ij)p Fl(R)p Fm(i)951 2779 y Fs(26)p eop
%%Page: 27 27
27 26 bop -4 -26 a Fs(If)14 b(w)o(e)g(construct)f(QTM)h
Fl(M)477 -42 y Fy(0)503 -26 y Fs(with)g(state)f(set)h(\()p
Fl(Q)7 b Fm(\002)h(f)p Fs(0)p Fl(;)g Fs(1)p Fl(;)g Fs(4)p
Fm(g)d([)j Fs(\()p Fl(B)i Fm(\002)e(f)p Fs(2)p Fl(;)g
Fs(3)p Fm(g)p Fs(\))k(using)i(Lemma)g(5.3.1)f(on)h(page)f(25)h(and)-75
31 y(let)h Fl(M)39 14 y Fy(0)66 31 y Fs(ha)o(v)o(e)g(start)e(and)j
(\014nal)f(states)f(\()p Fl(q)635 38 y Fj(0)655 31 y
Fl(;)8 b Fs(0\))14 b(and)h(\()p Fl(q)857 38 y Fk(f)880
31 y Fl(;)8 b Fs(0\))13 b(then)i Fl(M)1107 14 y Fy(0)1134
31 y Fs(sim)o(ulates)h Fl(M)k Fs(with)15 b(slo)o(wdo)o(wn)g(b)o(y)f(a)h
(factor)f(of)h(5.)-4 105 y(Next,)e(w)o(e)g(m)o(ust)f(sho)o(w)h(that)g
(eac)o(h)g(of)g(the)g(\014v)o(e)g(transition)h(functions)g(ob)q(eys)g
(the)f(w)o(ell-formedness)h(conditions)h(and)-75 161
y(hence)h(according)g(to)e(Lemma)i(5.3.1)d(that)i(the)g(in)o(terlea)o
(v)o(ed)h(mac)o(hine)g(is)g(w)o(ell-formed.)-4 236 y(The)21
b(transition)h(function)g Fl(\016)513 243 y Fj(2)555
236 y Fs(=)h Fl(\016)635 219 y Fy(0)668 236 y Fs(certainly)f(ob)q(eys)g
(the)f(w)o(ell-formedness)h(conditions)h(since)f Fl(M)1801
219 y Fy(0)1834 236 y Fs(is)g(a)f(w)o(ell-)-75 292 y(formed)16
b(QTM.)f(Also,)h Fl(\016)353 299 y Fj(0)389 292 y Fs(and)g
Fl(\016)498 299 y Fj(4)533 292 y Fs(ob)q(ey)h(the)e(three)h(w)o
(ell-formedness)h(conditions)h(since)f(they)e(are)h(deterministic)i
(and)-75 348 y(rev)o(ersible.)k(Finally)l(,)c(the)d(transition)h
(functions)g Fl(\016)813 355 y Fj(1)849 348 y Fs(and)g
Fl(\016)958 355 y Fj(3)993 348 y Fs(satisfy)g(the)f(unit)i(length)f
(and)g(orthogonalit)o(y)f(conditions)-75 405 y(since)i(they)e(implemen)
o(t)i(a)e(c)o(hange)h(of)f(basis,)g(and)h(they)f(ob)q(ey)h(the)g
(separabilit)o(y)g(condition)h(since)g(they)e(only)h(mo)o(v)o(e)f(in)
-75 461 y(one)g(direction.)-4 535 y(Finally)l(,)f(w)o(e)e(m)o(ust)f
(sho)o(w)h(that)f(if)i Fl(M)k Fs(is)c(w)o(ell-b)q(eha)o(v)o(ed)h(and)e
(in)h(normal)f(form)g(then)g(w)o(e)g(can)h(mak)o(e)e
Fl(M)1744 519 y Fy(0)1768 535 y Fs(w)o(ell-b)q(eha)o(v)o(ed)-75
592 y(and)k(in)h(normal)g(form.)-4 666 y(So,)23 b(supp)q(ose)f
Fl(M)27 b Fs(is)c(w)o(ell-b)q(eha)o(v)o(ed)g(and)f(in)h(normal)f(form.)
39 b(Then)23 b(there)f(is)g(a)g Fl(T)27 b Fs(suc)o(h)22
b(that)g(at)f(time)h Fl(T)28 b Fs(the)-75 723 y(sup)q(erp)q(osition)16
b(includes)g(only)f(con\014gurations)f(in)h(state)e Fl(q)951
730 y Fk(f)988 723 y Fs(with)h(the)g(tap)q(e)g(head)h(bac)o(k)f(in)g
(the)g(start)f(cell,)j(and)e(at)f(an)o(y)-75 779 y(time)18
b(less)g(than)f Fl(T)24 b Fs(the)17 b(sup)q(erp)q(osition)i(con)o
(tains)f(no)f(con\014guration)h(in)g(state)f Fl(q)1352
786 y Fk(f)1375 779 y Fs(.)27 b(But)17 b(this)h(means)g(that)e(when)i
Fl(M)2010 763 y Fy(0)-75 835 y Fs(is)e(run)g(on)f(input)h
Fl(x)p Fs(,)f(the)h(sup)q(erp)q(osition)h(at)e(time)g(5)p
Fl(T)21 b Fs(includes)d(only)e(con\014gurations)f(in)i(state)d(\()p
Fl(q)1654 842 y Fk(f)1677 835 y Fl(;)8 b Fs(0\))14 b(with)h(the)h(tap)q
(e)-75 892 y(head)i(bac)o(k)f(in)h(the)g(start)e(cell,)j(and)f(the)f
(sup)q(erp)q(osition)j(at)c(an)o(y)i(time)f(less)h(than)g(5)p
Fl(T)23 b Fs(con)o(tains)17 b(no)h(con\014guration)f(in)-75
948 y(state)d(\()p Fl(q)74 955 y Fk(f)97 948 y Fl(;)8
b Fs(0\).)18 b(Therefore)e Fl(M)446 932 y Fy(0)472 948
y Fs(is)g(also)f(w)o(ell-b)q(eha)o(v)o(ed.)-4 1023 y(Then)f(for)f(an)o
(y)g(input)i Fl(x)p Fs(,)e(there)h(is)g(a)f Fl(T)20 b
Fs(suc)o(h)14 b(that)f Fl(M)18 b Fs(en)o(ters)c(a)f(series)i(of)e
Fl(T)g Fm(\000)7 b Fs(1)13 b(sup)q(erp)q(ositions)j(of)d
(con\014gurations)-75 1079 y(all)19 b(with)f(states)f(in)i
Fl(Q)12 b Fm(\000)h(f)p Fl(q)424 1086 y Fj(0)443 1079
y Fl(;)8 b(q)484 1086 y Fk(f)506 1079 y Fm(g)18 b Fs(and)g(then)h(en)o
(ters)e(a)h(sup)q(erp)q(osition)i(of)d(con\014gurations)i(all)g(in)f
(state)g Fl(q)1812 1086 y Fk(f)1853 1079 y Fs(with)g(the)-75
1135 y(tap)q(e)i(head)f(bac)o(k)h(in)g(the)g(start)e(cell.)34
b(Therefore,)20 b(on)g(input)g Fl(x)g(M)1131 1119 y Fy(0)1162
1135 y Fs(en)o(ters)f(a)g(series)h(of)f(5)p Fl(T)g Fm(\000)13
b Fs(1)19 b(sup)q(erp)q(ositions)i(of)-75 1192 y(con\014gurations)15
b(all)h(with)f(states)f(in)i Fl(Q)602 1175 y Fy(0)623
1192 y Fm(\000)10 b(f)p Fs(\()p Fl(q)729 1199 y Fk(f)751
1192 y Fl(;)e Fs(0\))p Fl(;)g Fs(\()p Fl(q)872 1199 y
Fj(0)889 1192 y Fl(;)g Fs(4\))p Fm(g)14 b Fs(and)h(then)g(en)o(ters)f
(a)h(sup)q(erp)q(osition)i(of)d(con\014gurations)h(all)-75
1248 y(in)e(state)f(\()p Fl(q)122 1255 y Fk(f)145 1248
y Fl(;)c Fs(0\))j(with)h(the)h(tap)q(e)f(head)h(bac)o(k)f(in)i(the)e
(start)f(cell.)21 b(Therefore,)12 b Fl(M)1297 1232 y
Fy(0)1322 1248 y Fs(is)h(w)o(ell-b)q(eha)o(v)o(ed.)20
b(Also,)13 b(sw)o(apping)g(the)-75 1305 y(outgoing)h(transitions)g(of)g
(\()p Fl(q)424 1312 y Fk(f)446 1305 y Fl(;)8 b Fs(0\))13
b(and)h(\()p Fl(q)646 1312 y Fj(0)666 1305 y Fl(;)8 b
Fs(4\),)k(whic)o(h)j(puts)f Fl(M)1031 1288 y Fy(0)1057
1305 y Fs(in)h(normal)f(form,)f(will)j(not)e(c)o(hange)g(the)g
(computation)-75 1361 y(of)h Fl(M)26 1345 y Fy(0)53 1361
y Fs(on)g(an)o(y)g(input)h Fl(x)p Fs(.)1626 b Fd(2)-4
1492 y Fs(When)16 b(w)o(e)g(construct)g(a)f(QTM,)h(w)o(e)g(will)h
(often)f(only)h(b)q(e)f(concerned)h(with)g(a)f(subset)g(of)f(its)i
(transitions.)22 b(Luc)o(kily)l(,)-75 1548 y(an)o(y)12
b(partially)i(de\014ned)g(transition)f(function)g(that)f(preserv)o(es)g
(length)i(can)e(b)q(e)i(extended)f(to)f(giv)o(e)h(a)f(w)o(ell-formed)i
(QTM.)-75 1671 y Fn(De\014nition)19 b(5.3.3)j Fr(A)14
b(QTM)g Fl(M)19 b Fr(whose)c(quantum)g(tr)n(ansition)e(function)h
Fl(\016)1253 1654 y Fy(0)1279 1671 y Fr(is)g(only)g(de\014ne)n(d)f(for)
i(a)f(subset)g Fl(S)h Fm(\022)e Fl(Q)6 b Fm(\002)g Fs(\006)-75
1727 y Fr(is)13 b(c)n(al)r(le)n(d)g(a)i Fs(partial)f
Fr(QTM.)f(If)g(the)h(de\014ne)n(d)f(entries)g(of)h Fl(\016)903
1711 y Fy(0)929 1727 y Fr(satisfy)f(the)h(thr)n(e)n(e)f(c)n(onditions)g
(of)h(The)n(or)n(em)g(5.2.2)g(on)g(p)n(age)g(24)-75 1784
y(then)i Fl(M)21 b Fr(is)16 b(c)n(al)r(le)n(d)g(a)g Fs(w)o(ell-formed)g
(partial)h Fr(QTM.)-75 1906 y Fn(Lemma)g(5.3.4)g(\(Completion)i
(Lemma\))k Fr(Supp)n(ose)18 b Fl(M)24 b Fr(is)17 b(a)i(wel)r(l-forme)n
(d)g(p)n(artial)f(QTM)g(with)g(quantum)h(tr)n(ansi-)-75
1963 y(tion)14 b(function)g Fl(\016)r Fr(.)20 b(Then)13
b(ther)n(e)h(is)g(a)h(wel)r(l-forme)n(d)f(QTM)f Fl(M)975
1946 y Fy(0)1001 1963 y Fr(with)i(the)f(same)g(state)h(set)e(and)i
(alphab)n(et)f(whose)g(quantum)-75 2019 y(tr)n(ansition)h(function)h
Fl(\016)333 2003 y Fy(0)361 2019 y Fr(agr)n(e)n(es)f(with)i
Fl(\016)h Fr(wher)n(ever)f(the)f(latter)h(is)e(de\014ne)n(d.)-75
2142 y Fn(Pro)q(of.)20 b Fs(W)l(e)c(noted)f(ab)q(o)o(v)o(e)g(that)g(a)g
(unidirectional)j(quan)o(tum)d(transition)g(function)i(is)e(w)o
(ell-formed)i(i\013,)e(ignoring)h(the)-75 2198 y(direction)i(up)q
(date,)f(it)g(giv)o(es)f(a)g(unitary)h(transformation)e(from)h(sup)q
(erp)q(ositions)i(of)e(curren)o(t)h(state)e(and)i(tap)q(e)g(sym)o(b)q
(ol)-75 2254 y(to)d(sup)q(erp)q(ositions)i(of)f(new)g(sym)o(b)q(ol)g
(and)f(state.)19 b(So)c(if)g(our)g(partial)g(QTM)f(is)h
(unidirectional,)j(then)d(w)o(e)f(can)h(easily)g(\014ll)-75
2311 y(in)j(the)f(unde\014ned)i(en)o(tries)f(of)f Fl(\016)i
Fs(b)o(y)e(extending)h(the)f(set)g(of)g(up)q(date)h(sup)q(erp)q
(ositions)h(of)d Fl(\016)k Fs(to)c(an)h(orthonormal)g(basis)-75
2367 y(for)e(the)g(space)g(of)g(sup)q(erp)q(ositions)i(of)e(new)g(sym)o
(b)q(ol)h(and)f(state.)-4 2442 y(F)l(or)d(a)g(general)h
Fl(\016)r Fs(,)g(w)o(e)f(can)h(use)g(the)g(tec)o(hnique)h(of)f(Lemma)f
(5.1.1)f(on)i(page)g(22)f(to)g(c)o(hange)h(the)g(basis)g(of)f
Fl(\016)j Fs(a)o(w)o(a)o(y)c(from)-75 2498 y Fl(Q)18
b Fs(so)f(that)h(eac)o(h)g(state)f(can)h(b)q(e)g(en)o(tered)h(while)g
(mo)o(ving)f(in)h(only)f(one)g(direction,)i(extend)e(the)g(transition)g
(function,)-75 2554 y(and)d(then)h(rotate)e(bac)o(k)h(to)g(the)g(basis)
g Fl(Q)p Fs(.)-4 2629 y(W)l(e)g(can)g(formalize)h(this)g(as)e(follo)o
(ws:)951 2779 y(27)p eop
%%Page: 28 28
28 27 bop -4 -26 a Fs(Let)15 b Fl(M)j Fs(=)c(\(\006)p
Fl(;)8 b(Q;)g(\016)r Fs(\))13 b(b)q(e)j(a)f(w)o(ell-formed)h(partial)g
(QTM)g(with)f Fl(\016)j Fs(de\014ned)f(on)e(the)h(subset)f
Fl(S)h Fm(\022)d Fl(Q)e Fm(\002)f Fs(\006.)21 b(Denote)15
b(b)o(y)p -75 -5 31 2 v -75 31 a Fl(S)j Fs(the)d(complemen)o(t)h(of)e
Fl(S)k Fs(in)e Fl(Q)10 b Fm(\002)h Fs(\006.)-4 105 y(As)j(in)h(the)f
(pro)q(of)g(of)g(the)g(Unidirection)j(Lemma)d(ab)q(o)o(v)o(e,)f(the)i
(separabilit)o(y)g(condition)h(allo)o(ws)e(us)g(to)g(partition)g
Fn(C)1992 88 y Fk(Q)-75 161 y Fs(in)o(to)h(m)o(utually)h(orthogonal)e
(subspaces)i Fn(C)682 168 y Fk(L)723 161 y Fs(and)g Fn(C)850
168 y Fk(R)893 161 y Fs(suc)o(h)g(that)e Fl(span)p Fs(\()p
Fn(C)1245 168 y Fk(L)1271 161 y Fl(;)8 b Fn(C)1330 168
y Fk(R)1358 161 y Fs(\))13 b(=)g Fn(C)1475 145 y Fk(Q)1519
161 y Fs(and)757 261 y Fm(8)i Fs(\()p Fl(p)838 268 y
Fj(1)857 261 y Fl(;)8 b(\033)904 268 y Fj(1)923 261 y
Fl(;)g(\034)964 268 y Fj(1)983 261 y Fs(\))k Fm(2)28
b Fl(S)13 b Fm(\002)d Fs(\006)786 360 y Fl(\016)r Fs(\()p
Fl(p)849 367 y Fj(1)868 360 y Fl(;)e(\033)915 367 y Fj(1)934
360 y Fm(j)p Fl(\034)967 367 y Fj(1)986 360 y Fl(;)g(d)p
Fs(\))j Fm(2)i Fn(C)1141 367 y Fk(d)-75 442 y Fs(Then,)i(w)o(e)h(c)o
(ho)q(ose)f(orthonormal)f(bases)i Fl(B)682 449 y Fk(L)723
442 y Fs(and)g Fl(B)846 449 y Fk(R)891 442 y Fs(for)e
Fn(C)998 449 y Fk(L)1039 442 y Fs(and)i Fn(C)1166 449
y Fk(R)1195 442 y Fs(,)e(and)i(consider)g(the)g(unitary)f
(transformation)-75 499 y(from)i(sup)q(erp)q(ositions)i(of)d
(con\014gurations)i(with)g(states)e(in)i Fl(Q)f Fs(to)g(the)h(space)f
(of)g(con\014gurations)g(with)h(states)f(in)h Fl(B)h
Fs(=)-75 555 y Fl(B)-41 562 y Fk(L)-7 555 y Fm([)8 b
Fl(B)65 562 y Fk(R)94 555 y Fs(,)14 b(where)g(an)o(y)g(con\014guration)
g(with)g(state)f Fl(p)h Fs(is)g(mapp)q(ed)h(to)e(the)h(sup)q(erp)q
(osition)i(of)e(con\014gurations)g(where)g(the)-75 612
y(corresp)q(onding)i(con\014guration)g(with)f(state)f
Fl(v)j Fs(app)q(ears)f(with)f(amplitude)i Fm(h)p Fl(p)p
Fm(j)p Fl(v)r Fm(i)n Fs(.)-4 686 y(If)e(w)o(e)g(call)h
Fl(\016)213 669 y Fy(0)240 686 y Fs(the)f(partial)h(function)g
Fl(\016)h Fs(follo)o(w)o(ed)e(b)o(y)h(this)f(unitary)h(c)o(hange)f(of)g
(basis,)g(then)h(w)o(e)e(ha)o(v)o(e)507 815 y Fl(\016)529
797 y Fy(0)540 815 y Fs(\()p Fl(p;)8 b(\033)r Fs(\))j(=)714
775 y Fi(X)707 867 y Fk(\034)r(;v)q(;d)788 743 y Fi( )821
775 y(X)843 862 y Fk(q)889 815 y Fm(h)p Fl(q)r Fm(j)p
Fl(v)r Fm(i)n Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)s(;)g(q)r(;)f
(d)p Fs(\))1239 743 y Fi(!)1277 815 y Fm(j)p Fl(\034)e
Fm(i)o(j)p Fl(v)r Fm(i)o(j)p Fl(d)p Fm(i)-4 978 y Fs(Since)16
b Fl(\016)h Fs(preserv)o(es)f(length)f(and)h Fl(\016)596
961 y Fy(0)623 978 y Fs(is)f Fl(\016)i Fs(follo)o(w)o(ed)f(b)o(y)f(a)g
(unitary)g(transformation,)f Fl(\016)1487 961 y Fy(0)1513
978 y Fs(also)i(preserv)o(es)f(length.)-4 1052 y(But)i(no)o(w)g
Fl(\016)207 1035 y Fy(0)236 1052 y Fs(can)h(en)o(ter)f(an)o(y)g(state)g
(in)h Fl(B)j Fs(while)e(mo)o(ving)e(in)h(only)g(one)g(direction.)28
b(T)l(o)17 b(see)h(this,)g(\014rst)f(note)h(that)-75
1108 y(since)e Fl(\016)r Fs(\()p Fl(p;)8 b(\033)r Fs(;)g
Fl(\034)s(;)g(d)o Fs(\))h Fm(2)k Fl(B)340 1115 y Fk(d)376
1108 y Fs(and)j Fl(v)e Fs(=)549 1076 y Fi(P)593 1120
y Fk(q)619 1108 y Fm(h)p Fl(v)r Fm(j)p Fl(q)r Fm(i)o(j)p
Fl(q)r Fm(i)o Fs(,)h(the)g(separabilit)o(y)i(condition)f(implies)h
(that)e(for)f Fl(v)h Fm(2)e Fl(B)p 1752 1096 21 2 v 16
x Fk(d)714 1177 y Fi(X)736 1265 y Fk(q)782 1218 y Fl(\016)r
Fs(\()p Fl(p;)8 b(\033)o(;)g(\034)s(;)g(q)q(;)g(d)o Fs(\))p
Fm(h)p Fl(v)q Fm(j)p Fl(q)r Fm(i)1130 1197 y Fy(\003)1162
1218 y Fs(=)13 b(0)-75 1354 y(Therefore,)i(for)f(an)o(y)h
Fl(p;)8 b(\033)o(;)g(\034)s(;)g(v)j Fm(2)i Fl(S)g Fm(\002)d
Fs(\006)g Fm(\002)h Fl(B)p 718 1342 V 16 x Fk(d)572 1461
y Fl(\016)594 1442 y Fy(0)606 1461 y Fs(\()p Fl(p;)d(\033)o(;)g(\034)s
(;)f(v)r(;)g(d)p Fs(\))i(=)900 1421 y Fi(X)922 1508 y
Fk(q)968 1461 y Fm(h)p Fl(q)r Fm(j)p Fl(v)r Fm(i)n Fl(\016)r
Fs(\()p Fl(p;)f(\033)o(;)g(\034)s(;)g(q)r(;)f Fs(\))i(=)k(0)-75
1597 y(Therefore)i(an)o(y)g(state)f(in)i Fl(B)i Fs(can)e(b)q(e)f(en)o
(tered)h(while)h(tra)o(v)o(eling)e(in)h(only)g(one)f(direction.)-4
1671 y(Then,)g(since)i(the)e(direction)i(is)f(implied)i(b)o(y)d(the)g
(new)h(state,)e(w)o(e)h(can)h(think)g(of)f Fl(\016)1419
1655 y Fy(0)1446 1671 y Fs(as)g(mapping)h(the)g(curren)o(t)f(state)-75
1728 y(and)g(sym)o(b)q(ol)g(to)f(a)h(sup)q(erp)q(osition)h(of)e(new)h
(sym)o(b)q(ol)g(and)g(state.)k(Since)e Fl(\016)1198 1711
y Fy(0)1224 1728 y Fs(preserv)o(es)e(length,)g(the)g(set)f
Fl(\016)1740 1711 y Fy(0)1752 1728 y Fs(\()p Fl(S)s Fs(\))f(is)i(a)g
(set)f(of)-75 1784 y(orthonormal)j(v)o(ectors,)f(and)i(w)o(e)f(can)h
(expand)g(this)g(set)f(to)f(an)i(orthonormal)e(basis)i(of)f(the)h
(space)f(of)g(sup)q(erp)q(ositions)-75 1841 y(of)d(new)h(sym)o(b)q(ol)g
(and)g(state.)k(Adding)d(the)f(appropriate)g(direction)h(up)q(dates)f
(and)g(assigning)h(these)e(new)h(v)o(ectors)f(arbi-)-75
1897 y(trarily)i(to)f Fl(\016)144 1881 y Fy(0)155 1897
y Fs(\()181 1886 y(\026)173 1897 y Fl(S)s Fs(\),)g(w)o(e)g(ha)o(v)o(e)g
(a)h(completely)h(de\014ned)g Fl(\016)869 1881 y Fy(0)896
1897 y Fs(that)e(preserv)o(es)g(length.)22 b(Therefore,)16
b(assigning)g Fl(\016)r Fs(\()1810 1886 y(\026)1803 1897
y Fl(S)r Fs(\))f(as)h Fl(\016)1945 1881 y Fy(0)1956 1897
y Fs(\()1982 1886 y(\026)1974 1897 y Fl(S)r Fs(\))-75
1954 y(follo)o(w)o(ed)g(b)o(y)f(the)g(in)o(v)o(erse)h(of)e(the)i(basis)
f(transformation)f(giv)o(es)h(a)g(completion)i(for)d
Fl(\016)j Fs(that)e(preserv)o(es)g(length.)126 b Fd(2)-75
2171 y Ft(6)69 b(An)23 b(e\016cien)n(t)e(QTM)i(implem)o(en)n(ti)o(ng)d
(an)n(y)k(giv)n(en)f(unitary)g(transformation)-75 2290
y Fs(Supp)q(ose)14 b(that)e(the)g(tap)q(e)h(head)g(of)f(a)h(QTM)f(is)h
(con\014ned)h(to)e(a)g(region)h(consisting)h(of)e Fl(k)i
Fs(con)o(tiguous)f(tap)q(e)f(cells)i(\(the)f(tap)q(e)-75
2346 y(is)k(blank)h(outside)g(this)f(region\).)25 b(Then)18
b(the)f(time)g(ev)o(olution)h(of)e(the)h(QTM)g(can)g(b)q(e)h(describ)q
(ed)h(b)o(y)e(a)f Fl(d)h Fs(dimensional)-75 2403 y(unitary)g
(transformation,)f(where)h Fl(d)e Fs(=)g Fl(k)q Fs(card\()p
Fl(Q)p Fs(\)card\(\006\))971 2382 y Fk(k)992 2403 y Fs(.)25
b(In)17 b(this)h(section)f(w)o(e)g(sho)o(w)f(con)o(v)o(ersely)h(that)f
(there)h(is)g(a)-75 2459 y(QTM)d(that)f(giv)o(en)i(an)o(y)e
Fl(d)h Fs(dimensional)i(unitary)e(transformation)f(as)h(input,)h
(carries)f(out)g(that)f(transformation)g(\(on)g(a)-75
2516 y(region)i(of)f(its)g(tap)q(e\).)20 b(T)l(o)14 b(mak)o(e)g(this)h
(claim)g(precise)h(w)o(e)e(m)o(ust)g(sa)o(y)g(ho)o(w)g(the)g
Fl(d)g Fs(dimensional)j(unitary)d(transformation)-75
2572 y(is)e(sp)q(eci\014ed.)21 b(W)l(e)12 b(assume)g(that)f(an)h(appro)
o(ximation)g(to)f(the)h(unitary)g(transformation)e(is)j(sp)q(eci\014ed)
h(b)o(y)d(a)h Fl(d)s Fm(\002)s Fl(d)g Fs(complex)-75
2629 y(matrix)j(whose)h(en)o(tries)g(are)f(appro)o(ximations)h(to)f
(the)h(en)o(tries)g(of)f(the)h(actual)g(unitary)g(matrix)f(corresp)q
(onding)i(to)e(the)951 2779 y(28)p eop
%%Page: 29 29
29 28 bop -75 -26 a Fs(desired)16 b(transformation.)j(W)l(e)c(sho)o(w)f
(in)i(Theorem)f(6.4.1)e(on)i(page)g(37)f(that)h(there)g(is)g(a)g(QTM)g
(whic)o(h)g(on)g(input)h Fl(\017)g Fs(and)-75 31 y(a)e
Fl(d)g Fs(dimensional)i(transformation)d(whic)o(h)i(is)g(within)h
(distance)1120 13 y Fk(\017)p 1054 20 147 2 v 1054 53
a Fj(2\(10)1122 25 y Fy(p)p 1150 25 19 2 v 1150 53 a
Fk(d)p Fj(\))1182 44 y Fb(d)1219 31 y Fs(of)e(a)g(unitary)h
(transformation)e(carries)h(out)g(a)-75 97 y(transformation)f(whic)o(h)
i(is)g(an)g Fl(\017)f Fs(appro)o(ximation)h(to)f(the)g(desired)i
(unitary)e(transformation.)19 b(Moreo)o(v)o(er,)12 b(the)j(running)-75
154 y(time)h(of)e(the)i(QTM)f(is)g(b)q(ounded)i(b)o(y)e(a)g(p)q
(olynomial)i(in)f Fl(d)f Fs(and)g(1)p Fl(=\017)p Fs(.)-4
228 y(In)i(a)f(single)h(step,)g(a)f(QTM)g(can)g(map)g(a)g(single)i
(con\014guration)f(in)o(to)f(a)g(sup)q(erp)q(osition)i(of)e(a)g(b)q
(ounded)i(n)o(um)o(b)q(er)e(of)-75 284 y(con\014gurations.)j
(Therefore,)13 b(in)h(order)e(to)h(carry)f(out)h(an)g(\(appro)o
(ximation)f(to)g(an\))h(arbitrary)f(unitary)h(transformation)-75
341 y(on)18 b(a)f(QTM,)g(w)o(e)h(sho)o(w)f(ho)o(w)h(to)f(appro)o
(ximate)g(it)h(b)o(y)g(a)f(pro)q(duct)i(of)e(simple)i(unitary)f
(transformations)f(-)h(eac)o(h)g(suc)o(h)-75 397 y(simple)12
b(transformation)e(acts)g(as)h(the)g(iden)o(tit)o(y)h(in)g(all)f(but)h
(t)o(w)o(o)d(dimensions.)20 b(W)l(e)11 b(then)h(sho)o(w)e(that)g(there)
h(is)h(a)e(particular)-75 454 y(simple)k(unitary)f(transformation,)f
(suc)o(h)h(that)f(an)o(y)h(giv)o(en)g(simple)i(transformation)c(can)i
(b)q(e)h(expressed)f(as)g(a)f(pro)q(duct)h(of)-75 510
y(p)q(erm)o(utation)g(matrices)g(and)g(p)q(o)o(w)o(ers)f(of)h(this)g
(\014xed)h(simple)g(matrix.)19 b(Finally)l(,)14 b(w)o(e)f(put)g(it)g
(all)h(together,)e(and)h(sho)o(w)f(ho)o(w)-75 567 y(to)j(design)j(a)d
(single)j(QTM)e(that)f(carries)h(out)g(an)g(arbitrary)g(unitary)g
(transformation)f(-)h(this)h(QTM)e(is)i(deterministic)-75
623 y(except)f(for)e(a)h(single)i(kind)f(of)f(quan)o(tum)g
(coin-\015ip.)-4 697 y(The)e(decomp)q(osition)h(of)e(an)h(arbitrary)f
(unitary)h(transformation)e(in)o(to)i(a)g(pro)q(duct)g(of)f(simple)i
(unitary)f(transforma-)-75 754 y(tions)f(is)h(similar)h(to)d(w)o(ork)h
(carried)g(out)g(b)o(y)g(Deutsc)o(h)h([21)o(].)18 b(Deutsc)o(h's)12
b(w)o(ork,)f(although)i(phrased)g(in)g(terms)e(of)h(quan)o(tum)-75
810 y(computation)j(net)o(w)o(orks,)f(can)i(b)q(e)g(view)o(ed)g(as)f
(sho)o(wing)h(that)e(a)h Fl(d)g Fs(dimensional)j(unitary)e
(transformation)e(can)h(b)q(e)h(de-)-75 867 y(comp)q(osed)h(in)o(to)h
(a)e(pro)q(duct)i(of)e(transformations)g(where)h(eac)o(h)h(applies)g(a)
f(particular)h(unitary)f(transformation)f(to)g(3)-75
923 y(dimensions)i(and)f(acts)f(as)g(the)h(iden)o(tit)o(y)g(elsewhere.)
26 b(W)l(e)16 b(m)o(ust)h(consider)g(here)g(sev)o(eral)g(issues)g(of)g
(e\016ciency)h(not)e(ad-)-75 980 y(dressed)g(b)o(y)f(Deutsc)o(h.)k
(First,)c(w)o(e)g(are)f(concerned)i(that)f(the)g(decomp)q(osition)h
(con)o(tain)g(a)e(n)o(um)o(b)q(er)i(of)e(transformations)-75
1036 y(whic)o(h)j(is)f(p)q(olynomial)i(in)e(the)g(dimension)i(of)e(the)
g(unitary)g(transformation)e(and)i(in)h(the)f(desired)h(accuracy)l(.)22
b(Second,)-75 1092 y(w)o(e)16 b(desire)h(that)e(the)h(decomp)q(osition)
i(can)e(itself)h(b)q(e)f(e\016cien)o(tly)i(computed)e(giv)o(en)h(the)f
(desired)h(unitary)f(transforma-)-75 1149 y(tion)f(as)g(input.)21
b(F)l(or)14 b(more)h(recen)o(t)g(w)o(ork)f(on)i(the)f(e\016cien)o(t)h
(sim)o(ulation)g(of)e(a)h(unitary)h(transformation)d(b)o(y)i(a)g(quan)o
(tum)-75 1205 y(computation)g(net)o(w)o(ork)f(see)i([5)o(])f(and)g(the)
h(references)f(therein.)-75 1345 y Fh(6.1)56 b(Measuring)18
b(errors)g(in)h(appro)n(ximated)e(transformations)-75
1448 y Fs(In)g(this)g(section,)h(w)o(e)e(will)i(deal)g(with)f(op)q
(erators)f(\(linear)h(transformations\))e(on)i(\014nite)g(dimensional)i
(Hilb)q(ert)f(spaces.)-75 1505 y(It)h(is)h(often)e(con)o(v)o(enien)o(t)
i(to)e(\014x)i(an)f(orthonormal)f(basis)h(for)g(the)g(Hilb)q(ert)i
(space)e(and)g(describ)q(e)i(the)e(op)q(erator)f(b)o(y)h(a)-75
1561 y(\014nite)g(matrix)f(with)h(resp)q(ect)g(to)e(the)i(c)o(hosen)f
(basis.)30 b(Let)18 b Fl(e)993 1568 y Fj(1)1013 1561
y Fl(;)8 b(:)g(:)g(:)d(;)j(e)1136 1568 y Fk(d)1174 1561
y Fs(b)q(e)19 b(an)f(orthonormal)g(basis)g(for)g(Hilb)q(ert)i(space)-75
1618 y Fm(H)d Fs(=)g Fn(C)70 1601 y Fk(d)90 1618 y Fs(.)27
b(Then)19 b(w)o(e)e(can)h(represen)o(t)f(an)h(op)q(erator)f
Fl(U)22 b Fs(on)c Fm(H)g Fs(b)o(y)g(a)f Fl(d)11 b Fm(\002)h
Fl(d)17 b Fs(complex)i(matrix)e Fl(M)5 b Fs(,)18 b(whose)f
Fl(i;)8 b(j)1867 1601 y Fk(th)1918 1618 y Fs(en)o(try)-75
1674 y Fl(m)-35 1681 y Fk(i;j)20 1674 y Fs(is)16 b(\()p
Fl(U)5 b(e)141 1681 y Fk(j)159 1674 y Fl(;)j(e)201 1681
y Fk(i)215 1674 y Fs(\).)20 b(The)15 b Fl(i)375 1658
y Fk(th)425 1674 y Fs(ro)o(w)g(of)g(the)g(matrix)g Fl(M)21
b Fs(is)16 b(giv)o(en)f(b)o(y)h Fl(e)1105 1681 y Fk(i)1119
1658 y(T)1146 1674 y Fl(M)5 b Fs(,)16 b(and)f(w)o(e)g(will)i(denote)f
(it)f(b)o(y)h Fl(M)1765 1681 y Fk(i)1779 1674 y Fs(.)k(W)l(e)c(denote)
-75 1731 y(b)o(y)h Fl(M)34 1738 y Fk(i)49 1713 y Fy(\003)86
1731 y Fs(the)g(conjugate)h(transp)q(ose)f(of)g Fl(M)679
1738 y Fk(i)693 1731 y Fs(.)27 b(The)18 b Fl(j)851 1714
y Fk(th)903 1731 y Fs(column)g(of)f Fl(M)23 b Fs(is)18
b(giv)o(en)g(b)o(y)f Fl(M)5 b(e)1489 1738 y Fk(j)1508
1731 y Fs(.)26 b Fl(U)1583 1714 y Fy(\003)1603 1731 y
Fs(,)18 b(the)f(adjoin)o(t)h(of)f Fl(U)5 b Fs(,)17 b(is)-75
1787 y(represen)o(ted)f(b)o(y)g(the)g Fl(d)10 b Fm(\002)g
Fl(d)16 b Fs(matrix)f Fl(M)626 1771 y Fy(\003)646 1787
y Fs(.)21 b Fl(M)g Fs(is)16 b(unitary)g(i\013)g Fl(M)5
b(M)1105 1771 y Fy(\003)1138 1787 y Fs(=)14 b Fl(M)1236
1771 y Fy(\003)1256 1787 y Fl(M)k Fs(=)c Fl(I)t Fs(.)21
b(It)16 b(follo)o(ws)g(that)f(if)h Fl(M)k Fs(is)d(unitary)-75
1843 y(then)f(the)f(ro)o(ws)f(\(and)h(columns\))h(of)f
Fl(M)20 b Fs(are)15 b(orthonormal.)-4 1918 y(Recall)i(that)d(for)h(a)f
(b)q(ounded)j(linear)f(op)q(erator)f Fl(U)20 b Fs(on)15
b(a)g(Hilb)q(ert)i(space)e Fm(H)p Fs(,)h(the)f(norm)g(of)g
Fl(U)20 b Fs(is)15 b(de\014ned)i(as)800 2020 y Fm(j)p
Fl(U)5 b Fm(j)27 b Fs(=)44 b(sup)952 2060 y Fy(k)p Fk(x)p
Fy(k)o Fj(=1)1060 2020 y Fm(j)o Fl(U)5 b(x)p Fm(j)-75
2154 y Fs(If)14 b(w)o(e)g(represen)o(t)h Fl(U)k Fs(b)o(y)14
b(the)g(matrix)g Fl(M)5 b Fs(,)14 b(then)h(w)o(e)f(can)g(de\014ne)h
(the)g(norm)f(of)f(the)i(matrix)f Fl(M)19 b Fs(to)13
b(b)q(e)i(same)f(as)g(the)g(norm)-75 2211 y(of)h Fl(U)5
b Fs(.)20 b(Th)o(us,)14 b(since)j(w)o(e're)d(w)o(orking)h(in)h(a)f
(\014nite)h(dimensional)h(space,)769 2313 y Fm(k)p Fl(M)5
b Fm(k)27 b Fs(=)35 b(max)954 2345 y Fy(k)p Fk(v)q Fy(k)p
Fj(=1)1060 2313 y Fm(k)p Fl(M)5 b(v)r Fm(k)-75 2415 y
Fs(.)-75 2539 y Fn(F)l(act)18 b(6.1.1)k Fr(If)16 b Fl(U)21
b Fr(is)16 b(unitary)h(then)f Fm(k)p Fl(U)5 b Fm(k)12
b Fs(=)h Fm(k)p Fl(U)781 2522 y Fy(\003)800 2539 y Fm(k)f
Fs(=)h(1)p Fr(.)951 2779 y Fs(29)p eop
%%Page: 30 30
30 29 bop -75 -26 a Fn(Pro)q(of.)36 b Fm(8)p Fl(x)21
b Fm(2)h(H)p Fs(,)g Fm(k)p Fl(U)5 b(x)p Fm(k)408 -47
y Fj(2)449 -26 y Fs(=)21 b(\()p Fl(U)5 b(x;)j(U)d(x)p
Fs(\))20 b(=)i(\()p Fl(x;)8 b(U)864 -42 y Fy(\003)883
-26 y Fl(U)d(x)p Fs(\))21 b(=)h(\()p Fl(x;)8 b(x)p Fs(\))19
b(=)j Fm(k)p Fl(x)p Fm(k)1298 -47 y Fj(2)1317 -26 y Fs(.)36
b(Therefore)20 b Fm(k)p Fl(U)5 b Fm(k)21 b Fs(=)h(1,)f(and)g(similar)
-75 31 y(reasoning)15 b(sho)o(ws)g Fm(k)p Fl(U)317 14
y Fy(\003)336 31 y Fm(k)e Fs(=)g(1.)1532 b Fd(2)-4 161
y Fs(W)l(e)15 b(will)h(\014nd)g(it)f(useful)h(to)e(k)o(eep)h(trac)o(k)f
(of)h(ho)o(w)f(far)g(our)h(appro)o(ximations)g(are)f(from)h(b)q(eing)h
(unitary)l(.)k(W)l(e)15 b(will)i(use)-75 218 y(the)e(follo)o(wing)h
(simple)h(measure)e(of)g(a)g(transformation's)e(distance)j(from)f(b)q
(eing)h(unitary)l(.)-75 338 y Fn(De\014nition)j(6.1.2)j
Fr(A)15 b(b)n(ounde)n(d)h(line)n(ar)e(op)n(er)n(ator)i
Fl(U)k Fr(is)15 b(c)n(al)r(le)n(d)g Fl(\017)p Fs(-close)g(to)f(unitary)
i Fr(if)f(ther)n(e)h(is)f(a)g(unitary)h(op)n(er)n(ator)1994
326 y Fs(~)1986 338 y Fl(U)-75 394 y Fr(such)f(that)h
Fm(k)p Fl(U)f Fm(\000)241 383 y Fs(~)233 394 y Fl(U)5
b Fm(k)13 b(\024)g Fl(\017)p Fr(.)21 b(If)14 b(we)h(r)n(epr)n(esent)f
Fl(U)21 b Fr(by)15 b(the)g(matrix)h Fl(M)5 b Fr(,)15
b(then)g(we)h(c)n(an)e(e)n(quivalently)g(say)h(that)h
Fl(M)k Fr(is)15 b Fl(\017)p Fs(-close)-75 451 y(to)g(unitary)i
Fr(if)f(ther)n(e)g(is)g(a)g(unitary)h(matrix)711 439
y Fs(~)694 451 y Fl(M)k Fr(such)c(that)g Fm(k)p Fl(M)e
Fm(\000)1100 439 y Fs(~)1083 451 y Fl(M)5 b Fm(k)13 b(\024)f
Fl(\017)p Fr(.)-4 571 y Fs(Notice)g(that,)g(app)q(ealing)i(to)e
(Statemen)o(t)f(3)h(in)i Fm(x)p Fs(2)e(if)h Fl(U)k Fs(is)c
Fl(\017)p Fs(-close)g(to)f(unitary)h(then)f(1)t Fm(\000)t
Fl(\017)i Fm(\024)f(k)p Fl(U)5 b Fm(k)12 b(\024)h Fs(1)t(+)t
Fl(\017)p Fs(.)20 b(Ho)o(w)o(ev)o(er,)-75 660 y(the)15
b(con)o(v)o(erse)h(is)f(not)g(true.)21 b(F)l(or)14 b(example)j(the)e
(linear)i(transformation)1201 588 y Fi( )1254 631 y Fs(1)42
b(0)1254 688 y(0)g(0)1362 588 y Fi(!)1410 660 y Fs(has)15
b(norm)g(1)g(but)h(is)g(1)f(a)o(w)o(a)o(y)f(from)-75
745 y(unitary)l(.)-4 819 y(Next,)j(w)o(e)f(sho)o(w)h(that)f(if)h
Fl(M)22 b Fs(is)c(close)g(to)e(unitary)l(,)h(then)h(the)f(ro)o(ws)f(of)
g Fl(M)22 b Fs(are)17 b(close)h(to)e(unit)i(length)f(and)h(will)g(b)q
(e)-75 876 y(close)e(to)e(orthogonal.)-75 996 y Fn(Lemma)j(6.1.3)23
b Fr(If)15 b(a)i Fl(d)f Fr(dimensional)f(c)n(omplex)h(matrix)h
Fl(M)k Fr(is)16 b Fl(\017)p Fr(-close)g(to)h(unitary,)g(then:)841
1094 y Fs(1)10 b Fm(\000)h Fl(\017)42 b Fm(\024)f(k)p
Fl(M)1123 1101 y Fk(i)1137 1094 y Fm(k)29 b(\024)g Fs(1)10
b(+)h Fl(\017)614 b Fs(\(4\))597 1163 y Fm(8)p Fl(i)13
b Fm(6)p Fs(=)g Fl(j)34 b Fm(k)p Fl(M)819 1170 y Fk(i)833
1163 y Fl(M)877 1170 y Fk(j)896 1145 y Fy(\003)915 1163
y Fm(k)42 b(\024)f Fs(2)p Fl(\017)11 b Fs(+)f(3)p Fl(\017)1194
1145 y Fj(2)1964 1163 y Fs(\(5\))-75 1283 y Fn(Pro)q(of.)20
b Fs(Let)185 1272 y(~)168 1283 y Fl(M)h Fs(b)q(e)16 b(the)f(unitary)g
(matrix)g(suc)o(h)h(that)f Fm(k)p Fl(M)f Fm(\000)1027
1272 y Fs(~)1010 1283 y Fl(M)5 b Fm(k)12 b(\024)h Fl(\017)p
Fs(.)21 b(Let)15 b Fl(N)j Fs(=)13 b Fl(M)i Fm(\000)1499
1272 y Fs(~)1482 1283 y Fl(M)6 b Fs(.)20 b(Then)15 b(w)o(e)g(kno)o(w)g
(that)g(for)-75 1340 y(eac)o(h)g Fl(i)p Fs(,)g Fm(k)110
1328 y Fs(~)94 1340 y Fl(M)138 1347 y Fk(i)152 1340 y
Fm(k)d Fs(=)h(1)i(and)g Fm(k)p Fl(N)421 1347 y Fk(i)435
1340 y Fm(k)d(\024)h Fl(\017)p Fs(.)-4 1414 y(So,)h(for)h(an)o(y)g
Fl(i)p Fs(,)f(w)o(e)h(ha)o(v)o(e)g Fl(M)486 1421 y Fk(i)513
1414 y Fs(=)e Fl(N)598 1421 y Fk(i)621 1414 y Fs(+)684
1402 y(~)667 1414 y Fl(M)711 1421 y Fk(i)725 1414 y Fs(.)20
b(Therefore)15 b(1)10 b Fm(\000)g Fl(\017)j Fm(\024)g(k)p
Fl(M)1188 1421 y Fk(i)1202 1414 y Fm(k)g(\024)g Fs(1)c(+)i
Fl(\017)p Fs(.)-4 1488 y(Next,)16 b(since)251 1477 y(~)234
1488 y Fl(M)22 b Fs(is)c(unitary)l(,)f(it)g(follo)o(ws)g(that)f(for)g
Fl(i)f Fm(6)p Fs(=)h Fl(j)s Fs(,)1038 1477 y(~)1021 1488
y Fl(M)1065 1495 y Fk(i)1096 1477 y Fs(~)1079 1488 y
Fl(M)1128 1472 y Fy(\003)1123 1500 y Fk(j)1164 1488 y
Fs(=)f(0.)25 b(Therefore,)17 b(\()p Fl(M)1558 1495 y
Fk(i)1583 1488 y Fm(\000)11 b Fl(N)1666 1495 y Fk(i)1680
1488 y Fs(\)\()p Fl(M)1765 1472 y Fy(\003)1760 1500 y
Fk(j)1795 1488 y Fm(\000)h Fl(N)1884 1472 y Fy(\003)1879
1500 y Fk(j)1903 1488 y Fs(\))j(=)h(0.)-75 1545 y(Expanding)g(this)g
(as)f(a)f(sum)i(of)e(four)h(terms,)g(w)o(e)f(get)649
1643 y Fl(M)693 1650 y Fk(i)707 1643 y Fl(M)756 1624
y Fy(\003)751 1654 y Fk(j)788 1643 y Fs(=)f Fl(M)880
1650 y Fk(i)895 1643 y Fl(N)937 1624 y Fy(\003)932 1654
y Fk(j)966 1643 y Fs(+)d Fl(N)1048 1650 y Fk(i)1062 1643
y Fl(M)1111 1624 y Fy(\003)1106 1654 y Fk(j)1141 1643
y Fm(\000)g Fl(N)1223 1650 y Fk(i)1237 1643 y Fl(N)1279
1624 y Fy(\003)1274 1654 y Fk(j)-75 1742 y Fs(Since)j
Fm(k)p Fl(M)5 b Fm(k)12 b(\024)h Fs(1)s(+)s Fl(\017)f
Fs(and)g Fm(k)p Fl(N)5 b Fm(k)12 b(\024)h Fl(\017)p Fs(,)f(the)g(Sc)o
(h)o(w)o(arz)f(inequalit)o(y)i(tells)g(us)e(that)g Fm(k)p
Fl(M)1328 1749 y Fk(i)1342 1742 y Fl(N)1384 1725 y Fy(\003)1379
1754 y Fk(j)1403 1742 y Fm(k)i(\024)g Fs(\(1)s(+)s Fl(\017)p
Fs(\))p Fl(\017)p Fs(,)f Fm(k)p Fl(N)1708 1749 y Fk(i)1721
1742 y Fl(M)1770 1725 y Fy(\003)1765 1754 y Fk(j)1790
1742 y Fm(k)g(\024)h Fl(\017)p Fs(\(1)s(+)s Fl(\017)p
Fs(\),)-75 1798 y(and)18 b Fm(k)p Fl(N)76 1805 y Fk(i)89
1798 y Fl(N)131 1782 y Fy(\003)126 1810 y Fk(j)150 1798
y Fm(k)f(\024)g Fl(\017)260 1782 y Fj(2)281 1798 y Fs(.)27
b(Using)18 b(the)g(triangle)h(inequalit)o(y)g(w)o(e)f(conclude)h(that)e
Fm(k)p Fl(M)1342 1805 y Fk(i)1356 1798 y Fl(M)1405 1782
y Fy(\003)1400 1810 y Fk(j)1425 1798 y Fm(k)f(\024)i
Fs(2\(1)11 b(+)h Fl(\017)p Fs(\))p Fl(\017)g Fs(+)g Fl(\017)1770
1782 y Fj(2)1791 1798 y Fs(.)27 b(Therefore)-75 1855
y Fm(k)p Fl(M)-8 1862 y Fk(i)6 1855 y Fl(M)50 1862 y
Fk(j)68 1837 y Fy(\003)88 1855 y Fm(k)12 b(\024)h Fs(2)p
Fl(\017)e Fs(+)f(3)p Fl(\017)309 1838 y Fj(2)329 1855
y Fs(.)1646 b Fd(2)-4 1985 y Fs(W)l(e)15 b(will)i(also)e(use)g(the)h
(follo)o(wing)g(standard)e(fact)h(that)g(a)f(matrix)h(with)h(small)g
(en)o(tries)f(m)o(ust)g(ha)o(v)o(e)g(small)h(norm.)-75
2105 y Fn(Lemma)h(6.1.4)23 b Fr(If)f Fl(M)28 b Fr(is)23
b(a)g Fl(d)p Fr(-dimensional)f(squar)n(e)h(c)n(omplex)g(matrix)g(such)h
(that)f Fm(j)p Fl(m)1511 2112 y Fk(i;j)1551 2105 y Fm(j)h(\024)i
Fl(\017)d Fr(for)h(al)r(l)e Fl(i;)8 b(j)s Fr(,)23 b(then)-75
2162 y Fm(k)p Fl(M)5 b Fm(k)12 b(\024)h Fl(d\017)p Fr(.)-75
2282 y Fn(Pro)q(of.)23 b Fs(If)17 b(eac)o(h)g(en)o(try)f(of)g
Fl(M)21 b Fs(has)c(magnitude)g(at)f(most)f Fl(\017)p
Fs(,)i(then)g(clearly)g(eac)o(h)g(ro)o(w)e Fl(M)1492
2289 y Fk(i)1523 2282 y Fs(of)h Fl(M)22 b Fs(m)o(ust)15
b(ha)o(v)o(e)i(norm)f(at)-75 2338 y(most)36 2300 y Fm(p)p
74 2300 24 2 v 38 x Fl(d\017)p Fs(.)k(So,)15 b(if)h Fl(v)g
Fs(is)g(a)f Fl(d)p Fs(-dimensional)i(column)f(v)o(ector)f(with)g
Fm(j)p Fl(v)r Fm(j)d Fs(=)h(1,)h(w)o(e)h(m)o(ust)g(ha)o(v)o(e)601
2437 y Fm(k)p Fl(M)5 b(v)r Fm(k)719 2416 y Fj(2)751 2437
y Fs(=)799 2396 y Fi(X)823 2488 y Fk(i)867 2437 y Fm(k)p
Fl(M)934 2444 y Fk(i)948 2437 y Fl(v)r Fm(k)994 2416
y Fj(2)1027 2437 y Fm(\024)1075 2396 y Fi(X)1099 2488
y Fk(i)1142 2437 y Fl(d\017)1184 2418 y Fj(2)1217 2437
y Fs(=)13 b Fl(d)1289 2418 y Fj(2)1308 2437 y Fl(\017)1326
2418 y Fj(2)-75 2572 y Fs(where)i(the)h(inequalit)o(y)h(follo)o(ws)e
(from)f(the)i(Scw)o(arz)e(Inequalit)o(y)l(.)22 b(Therefore)15
b Fm(k)p Fl(M)5 b Fm(k)12 b(\024)h Fl(d\017)p Fs(.)510
b Fd(2)951 2779 y Fs(30)p eop
%%Page: 31 31
31 30 bop -75 -26 a Fh(6.2)56 b(Decomp)r(osing)16 b(a)j(unitary)f
(transformation)-75 78 y Fs(W)l(e)d(no)o(w)g(describ)q(e)i(a)e(class)g
(of)g(exceedingly)j(simple)e(unitary)g(transformations)d(whic)o(h)j(w)o
(e)f(will)i(b)q(e)f(able)g(to)f(carry)f(out)-75 134 y(using)j(a)g
(single)h(QTM.)e(These)h(\\near-trivial")g(transformations)f(either)h
(apply)g(a)g(phase)g(shift)g(in)g(one)g(dimension)h(or)-75
191 y(apply)e(a)f(rotation)f(b)q(et)o(w)o(een)i(t)o(w)o(o)e
(dimensions,)i(while)h(acting)e(as)g(the)g(iden)o(tit)o(y)h(otherwise.)
-75 303 y Fn(De\014nition)j(6.2.1)j Fr(A)13 b Fl(d)t
Fm(\002)t Fl(d)g Fr(unitary)g(matrix)h Fl(M)19 b Fr(is)13
b Fs(near-trivial)h Fr(if)f(it)h(satis\014es)d(one)i(of)h(the)f(fol)r
(lowing)g(two)h(c)n(onditions)-21 405 y(1.)23 b Fl(M)g
Fr(is)17 b(the)i(identity)f(exc)n(ept)f(that)i(one)f(of)g(its)g
(diagonal)g(entries)f(is)h Fl(e)1250 389 y Fk(i\022)1299
405 y Fr(for)h(some)f Fl(\022)f Fm(2)f Fs([0)p Fl(;)8
b Fs(2)p Fl(\031)r Fs(])p Fr(.)24 b(i.e.)i Fm(9)p Fl(j)21
b(m)1929 412 y Fk(j;j)1987 405 y Fs(=)39 462 y Fl(e)60
445 y Fk(i\022)91 462 y Fl(;)8 b Fm(8)p Fl(k)14 b Fm(6)p
Fs(=)e Fl(j)19 b(m)300 469 y Fk(k)q(;k)363 462 y Fs(=)13
b(1)p Fr(,)j(and)g Fm(8)p Fl(k)e Fm(6)p Fs(=)f Fl(l)k(m)734
469 y Fk(k)q(;l)788 462 y Fs(=)c(0)p Fr(.)-21 552 y(2.)23
b Fl(M)17 b Fr(is)12 b(the)g(identity)g(exc)n(ept)g(that)h(the)f
(submatrix)h(in)f(one)f(p)n(air)i(of)f(distinct)g(dimensions)f
Fl(j)j Fr(and)e Fl(k)i Fr(is)d(the)i(r)n(otation)f(by)39
639 y(some)h(angle)g Fl(\022)h Fm(2)f Fs([0)p Fl(;)8
b Fs(2)p Fl(\031)r Fs(])p Fr(:)505 567 y Fi( )559 611
y Fs(cos)f Fl(\022)43 b Fm(\000)8 b Fs(sin)g Fl(\022)564
667 y Fs(sin)g Fl(\022)81 b Fs(cos)7 b Fl(\022)841 567
y Fi(!)874 639 y Fr(.)20 b(So,)13 b(as)h(a)f(tr)n(ansformation)h
Fl(M)k Fr(is)13 b(ne)n(ar-trivial)g(if)g(ther)n(e)h(exists)e
Fl(\022)39 728 y Fr(and)h Fl(i)g Fm(6)p Fs(=)g Fl(j)j
Fr(such)d(that)i Fl(M)5 b(e)497 735 y Fk(i)524 728 y
Fs(=)13 b(\(cos)7 b Fl(\022)q Fs(\))p Fl(e)719 735 y
Fk(i)738 728 y Fs(+)t(\(sin)i Fl(\022)q Fs(\))p Fl(e)920
735 y Fk(j)938 728 y Fr(,)15 b Fl(M)5 b(e)1037 735 y
Fk(j)1068 728 y Fs(=)13 b Fm(\000)p Fs(\(sin)8 b Fl(\022)q
Fs(\))p Fl(e)1293 735 y Fk(i)1312 728 y Fs(+)t(\(cos)g
Fl(\022)q Fs(\))p Fl(e)1499 735 y Fk(j)1518 728 y Fr(,)14
b(and)g Fm(8)p Fl(k)g Fm(6)p Fs(=)f Fl(i;)8 b(j)14 b(M)5
b(e)1883 735 y Fk(k)1918 728 y Fs(=)13 b Fl(e)1987 735
y Fk(k)2008 728 y Fr(,)-75 831 y(We)h(c)n(al)r(l)g(a)g(tr)n
(ansformation)g(which)h(satis\014es)d(the)i(former)h(a)f
Fs(near-trivial)g(phase)f(shift)p Fr(,)i(and)f(we)g(c)n(al)r(l)g(a)g
(tr)n(ansformation)-75 887 y(which)j(satis\014es)e(the)h(latter)g(a)h
Fs(near-trivial)f(rotation)p Fr(.)-4 999 y Fs(W)l(e)g(will)j(write)e(a)
f(near-trivial)i(matrix)f Fl(M)22 b Fs(in)17 b(the)g(follo)o(wing)h(w)o
(a)o(y)l(.)24 b(If)17 b Fl(M)22 b Fs(is)17 b(a)f(phase)i(shift)f(of)f
Fl(e)1719 983 y Fk(i\022)1768 999 y Fs(in)h(dimension)-75
1056 y Fl(j)j Fs(then)e(w)o(e)f(will)j(write)e(do)o(wn)f([)p
Fl(j;)8 b(j;)g(\022)q Fs(])16 b(and)i(if)g Fl(M)23 b
Fs(is)18 b(a)f(rotation)g(of)g(angle)i Fl(\022)g Fs(b)q(et)o(w)o(een)f
(dimensions)h Fl(j)h Fs(and)e Fl(k)h Fs(w)o(e)e(will)-75
1112 y(write)i(do)o(wn)f([)p Fl(j;)8 b(k)q(;)g(\022)q
Fs(].)28 b(This)19 b(con)o(v)o(en)o(tion)g(guaran)o(tees)e(that)h(the)h
(matrix)f(that)g(w)o(e)g(are)g(sp)q(ecifying)j(is)e(a)f(near-trivial)
-75 1169 y(matrix)f(and)h(therefore)f(a)g(unitary)g(matrix,)g
Fr(even)h(if)f Fs(for)g(precision)i(reasons)d(w)o(e)i(write)f(do)o(wn)g
(an)g(appro)o(ximation)h(to)-75 1225 y(the)d(matrix)g(that)g(w)o(e)g
(really)h(wish)f(to)g(sp)q(ecify)l(.)21 b(This)16 b(feature)f(will)i
(substan)o(tially)f(simplify)h(our)e(error)g(analyses.)-4
1299 y(Before)10 b(w)o(e)g(sho)o(w)g(ho)o(w)g(to)g(use)g(near-trivial)i
(transformations)d(to)h(carry)g(out)g(an)g(arbitrary)g(unitary)h
(transformation,)-75 1356 y(w)o(e)k(\014rst)g(sho)o(w)f(ho)o(w)h(to)g
(use)g(them)g(to)g(map)g(an)o(y)g(particular)h(v)o(ector)e(to)h(a)g
(desired)h(target)e(direction.)-75 1468 y Fn(Lemma)j(6.2.2)23
b Fr(Ther)n(e)c(is)g(a)g(deterministic)h(algorithm)g(which)g(on)f
(input)h(a)g(ve)n(ctor)f Fl(v)i Fm(2)e Fn(C)1586 1451
y Fk(d)1625 1468 y Fr(and)h(a)g(b)n(ound)f Fl(\017)g(>)g
Fs(0)p Fr(,)-75 1524 y(c)n(omputes)d(ne)n(ar)g(trivial)g(matric)n(es)g
Fl(U)573 1531 y Fj(1)593 1524 y Fl(;)8 b(:)g(:)g(:)d(;)j(U)726
1531 y Fj(2)p Fk(d)p Fy(\000)p Fj(1)824 1524 y Fr(such)17
b(that)684 1616 y Fm(k)p Fl(U)738 1623 y Fj(1)765 1616
y Fm(\001)8 b(\001)g(\001)e Fl(U)857 1623 y Fj(2)p Fk(d)p
Fy(\000)p Fj(1)940 1616 y Fl(v)28 b Fm(\000)e(k)p Fl(v)r
Fm(k)o Fl(e)1141 1623 y Fj(1)1161 1616 y Fm(k)13 b(\024)g
Fl(\017)-75 1708 y Fr(wher)n(e)j Fl(e)74 1715 y Fj(1)111
1708 y Fr(is)g(the)g(unit)h(ve)n(ctor)f(in)g(the)g(\014rst)g(c)n(o)n
(or)n(dinate)g(dir)n(e)n(ction.)k(The)c(running)g(time)g(of)h(the)f
(algorithm)h(is)f(b)n(ounde)n(d)-75 1764 y(by)g(a)h(p)n(olynomial)f(in)
f Fl(d)p Fr(,)h Fs(log)8 b(1)p Fl(=\017)17 b Fr(and)f(the)g(length)g
(of)g(the)h(input.)-75 1876 y Fn(Pro)q(of.)31 b Fs(First,)20
b(w)o(e)f(use)g Fl(d)g Fs(phase)g(shifts)g(to)g(map)g
Fl(v)h Fs(in)o(to)g(the)f(space)g(I)-8 b(R)1230 1858
y Fk(d)1251 1876 y Fs(.)31 b(W)l(e)19 b(therefore)g(w)o(an)o(t)f(to)h
(apply)g(to)g(eac)o(h)-75 1938 y(dimension)h Fl(i)f Fs(with)g
Fl(v)307 1945 y Fk(i)340 1938 y Fm(6)p Fs(=)g(0)f(the)h(phase)g(shift)
773 1912 y Fk(v)791 1901 y Fq(\003)790 1924 y Fb(i)p
758 1927 66 2 v 758 1954 a Fy(k)p Fk(v)793 1959 y Fb(i)806
1954 y Fy(k)829 1938 y Fs(.)30 b(So,)19 b(w)o(e)g(let)g
Fl(P)1121 1945 y Fk(i)1154 1938 y Fs(b)q(e)g(the)g(near-trivial)h
(matrix)f(whic)o(h)g(applies)i(to)-75 2013 y(dimension)h
Fl(i)d Fs(the)h(phase)g(shift)h(b)o(y)f(angle)g Fl(\036)720
2020 y Fk(i)754 2013 y Fs(where)g Fl(\036)917 2020 y
Fk(i)952 2013 y Fs(=)h(0)e(if)i Fl(v)1119 2020 y Fk(i)1153
2013 y Fs(=)g(0,)g(and)f(otherwise)g Fl(\036)1593 2020
y Fk(i)1628 2013 y Fs(=)g(2)p Fl(\031)15 b Fm(\000)e
Fs(cos)1856 1997 y Fy(\000)p Fj(1)1916 1991 y Fk(Re)p
Fj(\()p Fk(v)1990 1996 y Fb(i)2003 1991 y Fj(\))p 1916
2003 101 2 v 1934 2029 a Fy(k)p Fk(v)1969 2034 y Fb(i)1982
2029 y Fy(k)-75 2089 y Fs(or)18 b(cos)45 2072 y Fy(\000)p
Fj(1)104 2066 y Fk(Re)p Fj(\()p Fk(v)178 2071 y Fb(i)192
2066 y Fj(\))p 104 2078 V 122 2105 a Fy(k)p Fk(v)157
2110 y Fb(i)170 2105 y Fy(k)228 2089 y Fs(dep)q(ending)j(whether)d
Fl(I)t(m)p Fs(\()p Fl(v)731 2096 y Fk(i)744 2089 y Fs(\))g(is)h(p)q
(ositiv)o(e)g(or)f(negativ)o(e.)29 b(Then)19 b Fl(P)1416
2096 y Fj(1)1443 2089 y Fm(\001)8 b(\001)g(\001)e Fl(P)1533
2096 y Fk(d)1553 2089 y Fl(v)20 b Fs(is)f(the)f(v)o(ector)g(with)g
Fl(i)1987 2072 y Fk(th)-75 2151 y Fs(co)q(ordinate)e
Fm(k)p Fl(v)194 2158 y Fk(i)207 2151 y Fm(k)p Fs(.)-4
2225 y(Next,)e(w)o(e)g(use)i Fl(d)8 b Fm(\000)i Fs(1)15
b(rotations)e(to)i(mo)o(v)o(e)f(all)h(of)g(the)f(w)o(eigh)o(t)h(of)f
(the)h(v)o(ector)f(in)o(to)h(dimension)h(1.)k(So,)14
b(w)o(e)h(let)g Fl(R)1947 2232 y Fk(i)1975 2225 y Fs(b)q(e)-75
2282 y(the)g(near-trivial)i(matrix)e(whic)o(h)h(applies)g(to)f
(dimensions)i Fl(i)e Fs(and)g Fl(i)10 b Fs(+)g(1)15 b(the)g(rotation)g
(b)o(y)g(angle)g Fl(\022)1641 2289 y Fk(i)1671 2282 y
Fs(where)737 2395 y Fl(\022)758 2402 y Fk(i)785 2395
y Fs(=)e Fl(cos)896 2376 y Fy(\000)p Fj(1)1036 2364 y
Fm(k)p Fl(v)1081 2371 y Fk(i)1095 2364 y Fm(k)p 949 2384
257 2 v 949 2393 a Fi(q)p 990 2393 215 2 v 990 2410 a(P)1034
2424 y Fk(d)1034 2454 y(j)r Fj(=)p Fk(i)1099 2443 y Fm(k)p
Fl(v)1144 2450 y Fk(j)1162 2443 y Fm(k)1185 2422 y Fj(2)-75
2537 y Fs(if)j(the)f(sum)g(in)h(the)f(denominator)h(is)f(not)g(0)g(and)
h Fl(\022)812 2544 y Fk(i)839 2537 y Fs(=)d(0)h(otherwise.)21
b(Then)682 2629 y Fl(R)717 2636 y Fj(1)744 2629 y Fm(\001)8
b(\001)g(\001)d Fl(R)839 2636 y Fk(d)p Fy(\000)p Fj(1)904
2629 y Fl(P)933 2636 y Fj(1)961 2629 y Fm(\001)j(\001)g(\001)d
Fl(P)1050 2636 y Fk(d)1071 2629 y Fl(v)14 b Fs(=)f Fm(k)p
Fl(v)r Fm(k)o Fl(e)1245 2636 y Fj(1)951 2779 y Fs(31)p
eop
%%Page: 32 32
32 31 bop -4 -26 a Fs(No)o(w,)14 b(instead)i(of)f(pro)q(ducing)i(these)
f(v)m(alues)h Fl(\036)815 -19 y Fk(i)829 -26 y Fl(;)8
b(\022)871 -19 y Fk(i)900 -26 y Fs(exactly)l(,)16 b(w)o(e)f(can)h(in)g
(time)g(p)q(olynomial)h(in)g Fl(d)e Fs(and)g(log)9 b(1)p
Fl(=\017)p Fs(,)15 b(and)-75 31 y(the)f(length)h(of)e(the)h(input)h
(compute)f(v)m(alues)h Fl(\036)731 14 y Fy(0)731 43 y
Fk(i)759 31 y Fs(and)g Fl(\022)869 14 y Fy(0)868 43 y
Fk(i)896 31 y Fs(whic)o(h)g(are)e(within)i Fl(\016)g
Fs(=)1401 13 y Fk(\017)p 1327 20 162 2 v 1327 47 a Fj(\(2)p
Fk(d)p Fy(\000)p Fj(1\))p Fy(k)p Fk(v)q Fy(k)1508 31
y Fs(of)e(the)h(desired)i(v)m(alues.)k(Call)-75 94 y
Fl(P)-40 78 y Fy(0)-46 106 y Fk(i)-10 94 y Fs(and)f Fl(R)117
78 y Fy(0)117 106 y Fk(i)149 94 y Fs(the)f(near-trivial)i(matrices)e
(corresp)q(onding)i(to)d Fl(P)1038 101 y Fk(i)1071 94
y Fs(and)h Fl(R)1197 101 y Fk(i)1229 94 y Fs(but)h(using)g(these)g
(appro)o(ximations.)29 b(Then,)-75 151 y(since)16 b(the)g(distance)g(b)
q(et)o(w)o(een)f(p)q(oin)o(ts)h(at)e(angle)i Fl(\022)h
Fs(and)e Fl(\022)926 134 y Fy(0)954 151 y Fs(on)g(the)g(unit)h(circle)h
(in)f(the)f(real)h(plane)g(is)f(at)g(most)f Fm(j)p Fl(\022)e
Fm(\000)e Fl(\022)1976 134 y Fy(0)1988 151 y Fm(j)p Fs(,)828
253 y Fm(k)p Fl(R)886 260 y Fk(i)910 253 y Fm(\000)g
Fl(R)990 234 y Fy(0)990 264 y Fk(i)1004 253 y Fm(k)i(\024)h
Fl(\016)o(:)-75 355 y Fs(Thinking)k(of)d(the)i(same)f(inequalit)o(y)i
(on)e(the)g(unit)h(circle)h(in)f(the)f(complex)h(plane,)g(w)o(e)f(ha)o
(v)o(e)831 457 y Fm(k)p Fl(P)883 464 y Fk(i)908 457 y
Fm(\000)10 b Fl(P)988 438 y Fy(0)982 468 y Fk(i)1000
457 y Fm(k)j(\024)g Fl(\016)o(:)-75 559 y Fs(Finally)l(,)k(since)f(eac)
o(h)f(matrix)g Fl(P)479 566 y Fk(i)493 559 y Fl(;)8 b(P)549
543 y Fy(0)543 571 y Fk(i)561 559 y Fl(;)g(R)617 566
y Fk(i)629 559 y Fl(;)g(R)685 543 y Fy(0)685 571 y Fk(i)713
559 y Fs(is)16 b(unitary)l(,)f(F)l(act)g(2.0.1)f(on)h(page)g(6)g(giv)o
(es)g(us)398 661 y Fm(k)p Fl(R)456 642 y Fy(0)456 672
y Fj(1)482 661 y Fm(\001)8 b(\001)g(\001)e Fl(R)578 642
y Fy(0)578 672 y Fk(d)p Fy(\000)p Fj(1)643 661 y Fl(P)678
642 y Fy(0)672 672 y Fj(1)699 661 y Fm(\001)i(\001)g(\001)e
Fl(P)795 642 y Fy(0)789 672 y Fk(d)835 661 y Fm(\000)25
b Fl(R)930 668 y Fj(1)957 661 y Fm(\001)8 b(\001)g(\001)e
Fl(R)1053 668 y Fk(d)p Fy(\000)p Fj(1)1117 661 y Fl(P)1146
668 y Fj(1)1174 661 y Fm(\001)i(\001)g(\001)d Fl(P)1263
668 y Fk(d)1284 661 y Fm(k)12 b(\024)h Fs(\(2)p Fl(d)c
Fm(\000)i Fs(1\))p Fl(\016)-75 763 y Fs(and)k(therefore)451
820 y Fm(k)p Fl(R)509 801 y Fy(0)509 831 y Fj(1)536 820
y Fm(\001)8 b(\001)g(\001)d Fl(R)631 801 y Fy(0)631 831
y Fk(d)p Fy(\000)p Fj(1)696 820 y Fl(P)731 801 y Fy(0)725
831 y Fj(1)753 820 y Fm(\001)j(\001)g(\001)d Fl(P)848
801 y Fy(0)842 831 y Fk(d)863 820 y Fl(v)27 b Fm(\000)e(k)p
Fl(v)r Fm(k)o Fl(e)1062 827 y Fj(1)1082 820 y Fm(k)13
b(\024)g Fs(\(2)p Fl(d)c Fm(\000)h Fs(1\))p Fl(\016)r
Fm(k)p Fl(v)r Fm(k)h Fs(=)i Fl(\017)1988 903 y Fd(2)-4
1034 y Fs(W)l(e)19 b(no)o(w)g(sho)o(w)h(ho)o(w)f(the)g(abilit)o(y)i(to)
e(map)h(a)f(particular)h(v)o(ector)f(to)g(a)h(desired)h(target)d
(direction)j(allo)o(ws)f(us)g(to)-75 1090 y(appro)o(ximate)15
b(an)g(arbitrary)f(unitary)i(transformation.)-75 1214
y Fn(Theorem)h(6.2.3)22 b Fr(Ther)n(e)17 b(is)f(a)h(deterministic)g
(algorithm)g(running)f(in)h(time)g(p)n(olynomial)f(in)h
Fl(d)g Fr(and)g Fs(log)8 b(1)p Fl(=\017)17 b Fr(and)g(the)-75
1271 y(length)f(of)h(the)h(input)f(which)g(when)g(given)g(as)f(input)i
Fl(U;)8 b(\017)16 b Fr(wher)n(e)h Fl(\017)e(>)f Fs(0)j
Fr(and)g Fl(U)22 b Fr(is)16 b(a)i Fl(d)10 b Fm(\002)h
Fl(d)16 b Fr(c)n(omplex)h(matrix)h(which)f(is)-4 1309
y Fk(\017)p -70 1316 147 2 v -70 1350 a Fj(2\(10)-2 1321
y Fy(p)p 26 1321 19 2 v 26 1350 a Fk(d)p Fj(\))58 1340
y Fb(d)81 1327 y Fr(-close)e(to)g(unitary,)h(c)n(omputes)f
Fl(d)p Fr(-dimensional)f(ne)n(ar-trivial)h(matric)n(es)g
Fl(U)1371 1334 y Fj(1)1391 1327 y Fl(;)8 b(:)g(:)g(:)d(;)j(U)1524
1334 y Fk(n)1546 1327 y Fr(,)16 b(with)f Fl(n)h Fr(p)n(olynomial)f(in)f
Fl(d)-75 1396 y Fr(such)i(that)h Fm(k)p Fl(U)31 b Fm(\000)c
Fl(U)299 1403 y Fk(n)330 1396 y Fm(\001)8 b(\001)g(\001)e
Fl(U)422 1403 y Fj(1)442 1396 y Fm(k)12 b(\024)h Fl(\017)p
Fr(.)-75 1520 y Fn(Pro)q(of.)19 b Fs(First)c(w)o(e)f(in)o(tro)q(duce)i
(notation)e(to)g(simplify)i(the)f(pro)q(of.)k(Let)c Fl(U)20
b Fs(b)q(e)15 b(a)f Fl(d)9 b Fm(\002)g Fl(d)14 b Fs(complex)i(matrix.)j
(Then)c(w)o(e)g(sa)o(y)-75 1577 y Fl(U)22 b Fs(is)17
b Fl(k)q Fs(-)p Fr(simple)j Fs(if)d(its)g(\014rst)g Fl(k)h
Fs(ro)o(ws)e(and)h(columns)g(are)g(the)g(same)f(as)h(those)g(of)f(the)h
Fl(d)p Fs(-dimensional)i(iden)o(tit)o(y)l(.)25 b(Notice)-75
1633 y(that)14 b(the)i(pro)q(duct)f(of)g(t)o(w)o(o)f
Fl(d)c Fm(\002)g Fl(d)15 b(k)q Fs(-simple)i(matrices)e(is)h(also)f
Fl(k)q Fs(-simple.)-4 1707 y(If)i Fl(U)23 b Fs(w)o(ere)17
b Fl(d)p Fs(-simple,)i(w)o(e)e(w)o(ould)g(ha)o(v)o(e)g
Fl(U)22 b Fs(=)16 b Fl(I)21 b Fs(and)d(the)f(desired)i(computation)e(w)
o(ould)h(b)q(e)g(trivial.)28 b(In)18 b(general,)-75 1764
y(the)g Fl(U)k Fs(whic)o(h)c(our)g(algorithm)f(m)o(ust)g(appro)o
(ximate)g(will)i(not)e(ev)o(en)h(b)q(e)g(1-simple.)29
b(So,)17 b(our)g(algorithm)h(will)h(pro)q(ceed)-75 1820
y(through)f Fl(d)g Fs(phases,)h(suc)o(h)f(that)g(during)h(the)f
Fl(i)754 1804 y Fk(th)807 1820 y Fs(phase)h(the)f(remaining)h(problem)g
(is)g(reduced)g(to)f(appro)o(ximating)g(a)-75 1877 y(matrix)d(whic)o(h)
h(is)g Fl(i)9 b Fs(+)i(1)k(simple.)-4 1951 y(Supp)q(ose)i(w)o(e)e
(start)g(to)g(appro)o(ximate)h(a)f Fl(k)q Fs(-simple)j
Fl(U)j Fs(with)16 b(a)g(series)h(of)e(near-trivial)i(matrices)f(with)h
(the)f(pro)q(duct)-75 2007 y Fl(V)10 b Fs(.)19 b(Then)c(to)e(appro)o
(ximate)h Fl(U)5 b Fs(,)14 b(w)o(e)g(w)o(ould)h(still)g(need)h(to)d
(pro)q(duce)i(a)f(series)h(of)f(near-trivial)h(matrices)f(whose)h(pro)q
(duct)-75 2064 y Fl(W)25 b Fs(satis\014es)20 b Fl(W)25
b Fm(\031)20 b Fl(U)5 b(V)360 2047 y Fy(\003)380 2064
y Fs(.)31 b(T)l(o)19 b(reduce)h(the)f(problem)h(w)o(e)f(m)o(ust)g
(therefore)f(compute)i(near-trivial)g(matrices)f(whose)-75
2120 y(pro)q(duct)14 b Fl(V)24 b Fs(is)15 b(suc)o(h)f(that)f
Fl(U)5 b(V)461 2104 y Fy(\003)494 2120 y Fs(is)15 b(close)g(to)e(b)q
(eing)i Fl(k)9 b Fs(+)f(1-simple.)21 b(W)l(e)14 b(can)g(accomplish)i
(this)e(b)o(y)g(using)h(the)f(algorithm)-75 2177 y(of)h(Lemma)g(6.2.2)f
(ab)q(o)o(v)o(e.)-4 2251 y(So,)f(let)g Fl(U)19 b Fs(b)q(e)14
b(giv)o(en)f(whic)o(h)h(is)g Fl(k)q Fs(-simple)h(and)f(is)f
Fl(\016)r Fs(-close)h(to)f(unitary)l(,)h(and)f(let)h
Fl(Z)i Fs(b)q(e)e(the)g(lo)o(w)o(er)f(righ)o(t)g Fl(d)c
Fm(\000)i Fl(k)c Fm(\002)f Fl(d)k Fm(\000)h Fl(k)-75
2307 y Fs(submatrix)16 b(of)f Fl(Z)s Fs(.)21 b(W)l(e)16
b(in)o(v)o(ok)o(e)g(the)g(pro)q(cedure)g(of)f(Lemma)h(6.2.2)e(on)i
(inputs)g Fl(Z)1333 2291 y Fk(T)1330 2319 y Fj(1)1377
2307 y Fs(\(the)f(v)o(ector)g(corresp)q(onding)i(to)e(the)-75
2364 y(\014rst)f(ro)o(w)f(of)g Fl(Z)s Fs(\))h(and)h Fl(\016)r
Fs(.)k(The)14 b(output)g(is)h(a)f(sequence)h(of)f Fl(d)7
b Fm(\000)h Fl(k)q Fs(-dimensional)17 b(near)d(trivial)h(matrices)f
Fl(V)1728 2371 y Fj(1)1747 2364 y Fl(;)8 b(:)g(:)g(:)d(;)j(V)1876
2371 y Fj(2)p Fk(d)p Fy(\000)p Fj(2)p Fk(k)q Fy(\000)p
Fj(1)-75 2420 y Fs(suc)o(h)16 b(that)e(their)i(pro)q(duct)f
Fl(V)23 b Fs(=)13 b Fl(V)530 2427 y Fj(1)559 2420 y Fm(\002)d
Fl(:)e(:)g(:)g Fm(\002)j Fl(V)740 2427 y Fj(2)p Fk(d)p
Fy(\000)p Fj(2)p Fk(k)q Fy(\000)p Fj(1)902 2420 y Fs(has)k(the)g(prop)q
(ert)o(y)g(that)g Fm(k)p Fl(V)9 b(Z)1439 2404 y Fk(T)1436
2432 y Fj(1)1477 2420 y Fm(\000)h(k)p Fl(Z)1576 2427
y Fj(1)1596 2420 y Fm(k)o Fl(e)1639 2427 y Fj(1)1659
2420 y Fm(k)j(\024)g Fl(\016)r Fs(.)-4 2494 y(No)o(w)21
b(supp)q(ose)i(that)e(w)o(e)h(extend)g Fl(V)32 b Fs(and)22
b(the)g Fl(V)883 2501 y Fk(i)918 2494 y Fs(bac)o(k)g(to)g
Fl(d)f Fs(dimensional,)26 b Fl(k)q Fs(-simple)d(matrices,)h(and)e(w)o
(e)f(let)-75 2551 y Fl(W)i Fs(=)18 b Fl(U)5 b(V)116 2534
y Fy(\003)136 2551 y Fs(.)28 b(Then)18 b(clearly)h Fl(V)28
b Fs(is)18 b(unitary)g(and)g Fl(V)27 b Fs(and)19 b Fl(W)24
b Fs(are)17 b Fl(k)q Fs(-simple.)30 b(In)18 b(fact,)g(since)h
Fl(V)27 b Fs(is)18 b(unitary)h(and)f Fl(U)k Fs(is)-75
2607 y Fl(\016)r Fs(-close)15 b(to)f(unitary)l(,)h Fl(W)21
b Fs(is)15 b(also)g Fl(\016)r Fs(-close)g(to)f(unitary)l(.)20
b(Moreo)o(v)o(er,)13 b Fl(W)21 b Fs(is)15 b(close)g(to)f(b)q(eing)i
Fl(k)10 b Fs(+)g(1-simple)16 b(as)e(desired.)21 b(W)l(e)951
2779 y(32)p eop
%%Page: 33 33
33 32 bop -75 -26 a Fs(will)15 b(sho)o(w)f(b)q(elo)o(w)g(that)f(the)h
Fl(k)9 b Fs(+)e(1)520 -42 y Fk(st)565 -26 y Fs(ro)o(w)13
b(of)g Fl(W)20 b Fs(satis\014es)14 b Fm(k)p Fl(W)996
-19 y Fk(k)q Fj(+1)1073 -26 y Fm(\000)c Fl(e)1139 -42
y Fk(T)1139 -13 y(k)q Fj(+1)1206 -26 y Fm(k)i(\024)h
Fs(2)p Fl(\016)r Fs(,)g(and)h(that)f(the)h(en)o(tries)h(of)e(the)h
Fl(k)8 b Fs(+)f(1)1990 -42 y Fk(st)-75 31 y Fs(column)16
b(of)f Fl(W)21 b Fs(satisfy)15 b Fm(k)p Fl(w)398 38 y
Fk(j;k)q Fj(+1)488 31 y Fm(k)d(\024)h Fs(6)p Fl(\016)k
Fs(for)e Fl(j)g Fm(6)p Fs(=)e Fl(k)e Fs(+)f(1.)-4 105
y(So,)k(let)i Fl(X)i Fs(b)q(e)e(the)g Fl(d)9 b Fm(\002)i
Fl(d)p Fs(,)j Fl(k)d Fs(+)g(1-simple)16 b(matrix)f(suc)o(h)h(that)256
207 y Fl(x)282 214 y Fj(1)p Fk(;)p Fj(1)342 207 y Fs(=)d(1;)22
b Fl(x)474 214 y Fk(j;)p Fj(1)531 207 y Fs(=)13 b(0)i(for)f
Fl(j)h Fm(6)p Fs(=)e(1;)22 b Fl(x)852 214 y Fj(1)p Fk(;j)910
207 y Fs(=)13 b(0)i(for)g Fl(j)g Fm(6)p Fs(=)e(1;)22
b Fl(x)1232 214 y Fk(j;l)1281 207 y Fs(=)13 b Fl(w)1362
214 y Fk(j;l)1414 207 y Fs(for)i Fl(j;)8 b(l)k(>)h(l)d
Fs(+)h(1)-75 309 y(It)k(follo)o(ws)h(from)f(our)g(b)q(ounds)h(on)f(the)
h(norm)f(of)g(the)g(\014rst)h(ro)o(w)e(of)h Fl(W)22 b
Fs(and)15 b(on)h(the)f(en)o(tries)h(of)f(the)g(\014rst)g(column)i(of)e
Fl(W)-75 366 y Fs(that)d Fm(k)p Fl(W)k Fm(\000)11 b Fl(X)t
Fm(k)g(\024)i Fs(2)p Fl(\016)7 b Fs(+)f(6)387 327 y Fm(p)p
425 327 24 2 v 39 x Fl(d\016)r Fs(.)19 b(Since)c Fl(W)k
Fs(is)13 b Fl(\016)r Fs(-close)h(to)e(unitary)l(,)i(w)o(e)f(can)g(then)
g(conclude)i(that)d Fl(X)k Fs(is)e(3)p Fl(\016)7 b Fs(+)f(6)1830
327 y Fm(p)p 1868 327 V 39 x Fl(d)o(\016)r Fs(-close)-75
422 y(to)15 b(unitary)l(.)-4 496 y(Unfortunately)l(,)e(w)o(e)f(cannot)g
(compute)h(the)g(en)o(tries)g(of)f Fl(W)19 b Fs(=)13
b Fl(U)5 b(V)1140 480 y Fy(\003)1172 496 y Fs(exactly)l(.)19
b(Instead,)14 b(app)q(ealing)g(to)e(Lemma)h(6.1.4)-75
553 y(on)18 b(page)g(30,)g(w)o(e)g(compute)g(them)g(to)f(within)j
Fl(\016)r(=d)d Fs(to)h(obtain)g(a)g(matrix)1250 541 y(^)1236
553 y Fl(W)25 b Fs(suc)o(h)18 b(that)g Fm(k)1546 541
y Fs(^)1534 553 y Fl(W)e Fm(\000)10 b Fl(W)c Fm(k)17
b(\024)h Fl(\016)r Fs(.)29 b(Let's)18 b(use)-75 609 y(the)j(en)o(tries)
h(of)232 598 y(^)219 609 y Fl(W)27 b Fs(to)21 b(de\014ne)h(matrix)655
598 y(^)642 609 y Fl(X)j Fs(analogous)c(to)f Fl(X)t Fs(.)37
b(Using)22 b(the)g(triangle)f(inequalit)o(y)l(,)k(it)c(is)h(easy)f(to)g
(see)-75 666 y(that)c Fm(k)p Fl(W)f Fm(\000)166 654 y
Fs(^)153 666 y Fl(X)t Fm(k)g(\024)h Fs(3)p Fl(\016)c
Fs(+)f(6)412 627 y Fm(p)p 450 627 V 39 x Fl(d)o(\016)20
b Fs(and)617 654 y(^)603 666 y Fl(X)h Fs(is)d(4)p Fl(\016)c
Fs(+)e(6)837 627 y Fm(p)p 874 627 V 874 666 a Fl(d\016)r
Fs(-close)18 b(to)f(unitary)l(.)27 b(If)18 b(w)o(e)f(are)h(willing)i
(to)c(incur)j(an)f(error)e(of)-75 722 y Fm(k)p Fl(W)g
Fm(\000)66 711 y Fs(^)53 722 y Fl(X)s Fm(k)c(\024)h Fs(3)p
Fl(\016)5 b Fs(+)s(6)286 683 y Fm(p)p 324 683 V 39 x
Fl(d\016)r Fs(,)11 b(then)h(w)o(e)g(are)f(left)h(with)g(the)g(problem)g
(of)g(appro)o(ximating)f(the)h Fl(k)5 b Fs(+)s(1-simple)1733
711 y(^)1720 722 y Fl(X)15 b Fs(b)o(y)c(a)h(pro)q(duct)-75
778 y(of)18 b(near-trivial)h(matrices.)29 b(Therefore,)19
b(w)o(e)f(ha)o(v)o(e)f(reduced)j(the)e(problem)h(of)f(appro)o(ximating)
g(the)g Fl(k)q Fs(-simple)i(matrix)-75 835 y Fl(U)25
b Fs(b)o(y)20 b(near-trivial)h(matrices)e(to)h(the)g(problem)g(of)g
(appro)o(ximating)f(the)h Fl(k)15 b Fs(+)e(1-simple)21
b(matrix)1685 823 y(^)1672 835 y Fl(X)i Fs(b)o(y)d(near-trivial)-75
891 y(matrices)15 b(while)i(incurring)g(t)o(w)o(o)c(sources)j(of)e
(error:)-19 1003 y(1.)22 b(An)15 b(error)g(of)f Fm(k)p
Fl(W)i Fm(\000)417 991 y Fs(^)404 1003 y Fl(X)s Fm(k)c(\024)h
Fs(3)p Fl(\016)f Fs(+)f(6)652 964 y Fm(p)p 689 964 V
689 1003 a Fl(d\016)r Fs(,)k(since)h(w)o(e)f(are)g(appro)o(ximating)
1333 991 y(^)1320 1003 y Fl(X)j Fs(instead)e(of)f Fl(W)6
b Fs(.)-19 1097 y(2.)22 b(The)15 b(new)h(matrix)386 1085
y(^)373 1097 y Fl(X)j Fs(is)c(only)h(4)p Fl(\016)c Fs(+)e(6)698
1058 y Fm(p)p 736 1058 V 39 x Fl(d\016)r Fs(-close)16
b(to)e(unitary)l(.)-4 1208 y(Let)k Fl(\016)102 1192 y
Fy(0)132 1208 y Fs(=)g(10)231 1170 y Fm(p)p 269 1170
V 38 x Fl(d)o(\016)r Fs(.)30 b(Clearly)19 b Fl(\016)540
1192 y Fy(0)570 1208 y Fs(is)g(an)f(upp)q(er-b)q(ound)j(on)d(b)q(oth)h
(the)g(sources)f(of)g(error)g(cited)h(ab)q(o)o(v)o(e.)29
b(Therefore,)-75 1265 y(the)15 b(total)g(error)g(in)h(the)f(appro)o
(ximation)h(is)f(just)794 1233 y Fi(P)838 1246 y Fk(d)838
1276 y(j)r Fj(=1)902 1265 y Fs(\(10)966 1226 y Fm(p)p
1003 1226 V 1003 1265 a Fl(d)o Fs(\))1044 1248 y Fk(j)1062
1265 y Fl(\016)g Fm(\024)e Fs(2\(10)1232 1226 y Fm(p)p
1269 1226 V 1269 1265 a Fl(d)p Fs(\))1311 1248 y Fk(d)1330
1265 y Fl(\016)r Fs(.)21 b(The)15 b(last)g(inequalit)o(y)i(follo)o(ws)f
(since)-75 1329 y(10)-29 1290 y Fm(p)p 8 1290 V 8 1329
a Fl(d)f Fm(\025)f Fs(2)i(and)h(therefore)f(the)g(sum)h(can)f(b)q(e)h
(b)q(ounded)h(b)o(y)e(a)g(geometric)h(series.)24 b(Therefore,)16
b(the)g(total)g(error)g(in)h(the)-75 1386 y(appro)o(ximation)e(is)h(b)q
(ounded)g(b)o(y)g Fl(\017)p Fs(,)f(since)h(b)o(y)f(assumption)h
Fl(U)k Fs(is)c Fl(\016)r Fs(-close)f(to)g(unitary)h(for)e
Fl(\016)h Fs(=)1665 1368 y Fk(\017)p 1600 1375 147 2
v 1600 1408 a Fj(2\(10)1668 1380 y Fy(p)p 1696 1380 19
2 v 1696 1408 a Fk(d)p Fj(\))1728 1399 y Fb(d)1751 1386
y Fs(.)-4 1472 y(It)e(is)h(easy)f(to)g(see)h(that)e(this)i(algorithm)g
(runs)f(in)h(time)g(p)q(olynomial)h(in)g Fl(d)e Fs(and)g(log)8
b(1)p Fl(=\017)p Fs(.)20 b(Our)13 b(algorithm)h(consists)f(of)-75
1529 y Fl(d)h Fs(iterations)g(of)g(\014rst)f(calling)j(the)e(algorithm)
g(from)g(Lemma)g(6.2.2)e(on)i(page)g(31)g(to)f(compute)h
Fl(V)24 b Fs(and)14 b(then)g(computing)-75 1595 y(the)f(matrix)160
1584 y(^)147 1595 y Fl(X)s Fs(.)19 b(Since)14 b(the)f(eac)o(h)g
(iteration)h(tak)o(es)e(time)h(p)q(olynomial)i(in)f Fl(d)e
Fs(and)h(log)1388 1573 y Fj(\(10)1438 1545 y Fy(p)p 1466
1545 V 1466 1573 a Fk(d)p Fj(\))1498 1561 y Fb(d)p 1388
1585 129 2 v 1445 1611 a Fk(\017)1521 1595 y Fs(,)g(these)g
Fl(d)g Fs(calls)h(tak)o(e)e(a)h(total)-75 1652 y(time)j(p)q(olynomial)g
(in)g Fl(d)f Fs(and)h(log)8 b(1)p Fl(=\017)p Fs(.)-4
1726 y(Finally)l(,)20 b(w)o(e)f(sho)o(w)f(as)g(required)i(that)e(the)h
Fl(k)14 b Fs(+)e(1)883 1709 y Fk(st)933 1726 y Fs(ro)o(w)18
b(of)g Fl(W)25 b Fs(satis\014es)19 b Fm(k)p Fl(W)1384
1733 y Fk(k)q Fj(+1)1460 1726 y Fm(\000)10 b Fl(e)1526
1709 y Fk(T)1526 1739 y(k)q Fj(+1)1593 1726 y Fm(k)18
b(\024)h Fs(2)p Fl(\016)r Fs(,)g(and)g(that)f(the)-75
1782 y(en)o(tries)j(of)f(the)h Fl(k)15 b Fs(+)f(1)328
1766 y Fk(st)379 1782 y Fs(column)22 b(of)e Fl(W)26 b
Fs(satisfy)21 b Fm(k)p Fl(w)874 1789 y Fk(j;k)q Fj(+1)963
1782 y Fm(k)h(\024)g Fs(6)p Fl(\016)17 b Fs(for)d Fl(j)24
b Fm(6)p Fs(=)e Fl(k)15 b Fs(+)f(1.)36 b(T)l(o)20 b(see)h(this,)h
(\014rst)e(recall)i(that)-75 1839 y(the)c(lo)o(w)o(er)g(dimension)i
Fl(V)28 b Fs(satis\014es)19 b Fm(k)p Fl(V)9 b(Z)665 1822
y Fk(T)662 1850 y Fj(1)703 1839 y Fm(\000)i(k)p Fl(Z)803
1846 y Fj(1)822 1839 y Fm(k)p Fl(e)866 1846 y Fj(1)886
1839 y Fm(k)17 b(\024)h Fl(\016)j Fs(where)d Fl(Z)1185
1846 y Fj(1)1223 1839 y Fs(is)h(the)f(\014rst)g(ro)o(w)g(of)g(the)g(lo)
o(w)o(er)g(righ)o(t)g Fl(k)13 b Fm(\002)g Fl(k)-75 1895
y Fs(submatrix)20 b(of)f Fl(U)5 b Fs(.)33 b(Therefore,)20
b(the)f(higher)i(dimension)g Fl(V)29 b Fs(satis\014es)20
b Fm(k)p Fl(V)9 b(U)1276 1879 y Fk(T)1271 1909 y(k)q
Fj(+1)1348 1895 y Fm(\000)h(k)p Fl(U)1447 1902 y Fk(k)q
Fj(+1)1513 1895 y Fm(k)p Fl(e)1557 1902 y Fk(k)q Fj(+1)1624
1895 y Fm(k)19 b(\024)h Fl(\016)r Fs(.)33 b(Then,)21
b(since)-75 1952 y(1)11 b Fm(\000)h Fl(\016)17 b Fm(\024)f(k)p
Fl(U)148 1959 y Fk(k)q Fj(+1)214 1952 y Fm(k)g(\024)f
Fs(1)c(+)h Fl(\016)r Fs(,)17 b(it)g(follo)o(ws)g(that)f
Fm(k)p Fl(V)10 b(U)830 1935 y Fk(T)825 1965 y(k)q Fj(+1)901
1952 y Fm(\000)h Fl(e)968 1959 y Fk(k)q Fj(+1)1034 1952
y Fm(k)16 b(\024)g Fs(2)p Fl(\016)r Fs(.)24 b(Therefore,)17
b(the)g Fl(k)c Fs(+)e(1)1613 1935 y Fk(st)1661 1952 y
Fs(ro)o(w)16 b(of)h Fl(W)23 b Fs(satis\014es)-75 2008
y Fm(k)p Fl(W)-9 2015 y Fk(k)q Fj(+1)67 2008 y Fm(\000)11
b Fl(e)134 1992 y Fk(T)134 2021 y(k)q Fj(+1)200 2008
y Fm(k)i(\024)g Fs(2)p Fl(\016)r Fs(.)-4 2082 y(Next,)18
b(w)o(e)g(will)i(sho)o(w)d(that)h(this)g(implies)j(that)c(the)h(en)o
(tries)h(of)f(the)g Fl(k)13 b Fs(+)g(1)1323 2066 y Fk(st)1372
2082 y Fs(column)19 b(of)e Fl(W)25 b Fs(satisfy)18 b
Fm(k)p Fl(w)1857 2089 y Fk(j;k)q Fj(+1)1946 2082 y Fm(k)g(\024)-75
2139 y Fs(6)p Fl(\016)f Fs(for)d Fl(j)h Fm(6)p Fs(=)e
Fl(k)e Fs(+)f(1.)19 b(T)l(o)c(see)g(this,)g(\014rst)g(notice)g(that)g
(since)h Fl(V)24 b Fs(is)16 b(unitary)f(and)g Fl(U)20
b Fs(is)15 b(delta)h(close)f(to)f(unitary)l(,)h Fl(W)22
b Fs(is)15 b(also)-75 2201 y Fl(\016)r Fs(-close)e(to)e(unitary)l(.)20
b(This)12 b(means)g(that,)g(b)o(y)g(Statemen)o(t)f(5)h(of)g(Lemma)g
(6.1.3)f(on)h(page)g(30)1483 2152 y Fi(\014)1483 2177
y(\014)1483 2202 y(\014)1497 2201 y Fl(W)1540 2208 y
Fk(k)q Fj(+1)1606 2201 y Fl(W)1655 2184 y Fy(\003)1649
2213 y Fk(j)1675 2152 y Fi(\014)1675 2177 y(\014)1675
2202 y(\014)1702 2201 y Fm(\024)h Fs(2)p Fl(\016)6 b
Fs(+)t(3)p Fl(\016)1883 2184 y Fj(2)1902 2201 y Fs(.)19
b(No)o(w)-75 2270 y(let)14 b(us)g(use)g(the)g(condition)h
Fm(k)p Fl(W)464 2277 y Fk(k)q Fj(+1)540 2270 y Fm(\000)c
Fl(e)607 2253 y Fk(T)607 2283 y(k)q Fj(+1)673 2270 y
Fm(k)i(\024)g Fs(2)p Fl(\016)r Fs(.)18 b(This)d(implies)h(that)d
Fm(j)o Fl(w)1231 2277 y Fk(k)q Fj(+1)p Fk(;k)q Fj(+1)1371
2270 y Fm(j)g(\025)g Fs(1)7 b Fm(\000)g Fs(2)p Fl(\016)r
Fs(.)19 b(Also,)14 b(let)g(us)g(denote)g(b)o(y)-56 2322
y(^)-75 2334 y Fl(W)-32 2341 y Fk(j)-1 2334 y Fs(the)e
Fl(d)t Fm(\000)t Fs(1)h(dimensional)h(ro)o(w)e(v)o(ector)f(arriv)o(ed)i
(at)f(b)o(y)g(dropping)h Fl(w)1129 2341 y Fk(j;k)q Fj(+1)1231
2334 y Fs(from)f Fl(W)1379 2341 y Fk(j)1397 2334 y Fs(.)19
b(Then)13 b(the)f(condition)i(that)e Fl(W)1956 2341 y
Fk(k)q Fj(+1)-75 2395 y Fs(is)18 b(close)g(to)f Fl(e)163
2378 y Fk(T)163 2408 y(k)q Fj(+1)247 2395 y Fs(also)h(implies)i(that)c
Fm(k)664 2383 y Fs(^)621 2395 y Fl(W)664 2402 y Fk(k)q
Fj(+1)731 2395 y Fm(k)g(\024)h Fs(2)p Fl(\016)r Fs(.)26
b(Also,)19 b(the)e(fact)g(that)g Fl(W)24 b Fs(is)18 b
Fl(\016)r Fs(-close)g(to)f(unitary)h(implies)i(that)-75
2464 y Fm(k)-33 2453 y Fs(^)-52 2464 y Fl(W)-9 2471 y
Fk(j)9 2464 y Fm(k)13 b(\024)g Fs(1)d(+)g Fl(\016)r Fs(.)21
b(Putting)15 b(all)i(this)e(together,)g(w)o(e)g(ha)o(v)o(e)g(2)p
Fl(\016)d Fs(+)e(3)p Fl(\016)1056 2448 y Fj(2)1089 2464
y Fm(\025)1137 2416 y Fi(\014)1137 2441 y(\014)1137 2465
y(\014)1151 2464 y Fl(W)1194 2471 y Fk(k)q Fj(+1)1260
2464 y Fl(W)1309 2448 y Fy(\003)1303 2476 y Fk(j)1329
2416 y Fi(\014)1329 2441 y(\014)1329 2465 y(\014)1356
2464 y Fs(=)1404 2416 y Fi(\014)1404 2441 y(\014)1404
2465 y(\014)1418 2464 y Fl(w)1451 2471 y Fk(k)q Fj(+1)p
Fk(;k)q Fj(+1)1591 2464 y Fl(w)1625 2448 y Fy(\003)1624
2478 y Fk(j;k)q Fj(+1)1724 2464 y Fs(+)1813 2453 y(^)1770
2464 y Fl(W)1813 2471 y Fk(k)q Fj(+1)1898 2453 y Fs(^)1879
2464 y Fl(W)1922 2471 y Fk(j)1940 2434 y Fy(\003)1960
2416 y Fi(\014)1960 2441 y(\014)1960 2465 y(\014)1987
2464 y Fm(\025)-75 2495 y Fi(\014)-75 2519 y(\014)-75
2544 y(\014)-61 2543 y Fl(w)-28 2550 y Fk(k)q Fj(+1)p
Fk(;k)q Fj(+1)112 2543 y Fl(w)146 2527 y Fy(\003)145
2556 y Fk(j;k)q Fj(+1)235 2495 y Fi(\014)235 2519 y(\014)235
2544 y(\014)253 2543 y Fm(\000)293 2495 y Fi(\014)293
2519 y(\014)293 2544 y(\014)350 2532 y Fs(^)307 2543
y Fl(W)350 2550 y Fk(k)q Fj(+1)436 2532 y Fs(^)416 2543
y Fl(W)459 2550 y Fk(j)478 2513 y Fy(\003)497 2495 y
Fi(\014)497 2519 y(\014)497 2544 y(\014)511 2543 y Fs(.)19
b(Therefore)746 2495 y Fi(\014)746 2519 y(\014)746 2544
y(\014)760 2543 y Fl(w)793 2550 y Fk(k)q Fj(+1)p Fk(;k)q
Fj(+1)933 2543 y Fl(w)967 2527 y Fy(\003)966 2556 y Fk(j;k)q
Fj(+1)1056 2495 y Fi(\014)1056 2519 y(\014)1056 2544
y(\014)1083 2543 y Fm(\024)13 b Fs(2)p Fl(\016)6 b Fs(+)f(3)p
Fl(\016)1265 2527 y Fj(2)1289 2543 y Fs(+)1329 2495 y
Fi(\014)1329 2519 y(\014)1329 2544 y(\014)1386 2532 y
Fs(^)1342 2543 y Fl(W)1385 2550 y Fk(k)q Fj(+1)1471 2532
y Fs(^)1452 2543 y Fl(W)1495 2550 y Fk(j)1513 2513 y
Fy(\003)1533 2495 y Fi(\014)1533 2519 y(\014)1533 2544
y(\014)1559 2543 y Fm(\024)13 b Fs(2)p Fl(\016)6 b Fs(+)f(3)p
Fl(\016)1741 2527 y Fj(2)1765 2543 y Fs(+)g(2)p Fl(\016)r
Fs(\(1)g(+)g Fl(\016)r Fs(\))11 b Fm(\024)-75 2619 y
Fs(4)p Fl(\016)g Fs(+)e(5)p Fl(\016)68 2603 y Fj(2)88
2619 y Fs(.)19 b(Therefore)c Fm(j)p Fl(w)372 2626 y Fk(j;k)q
Fj(+1)462 2619 y Fm(j)d(\024)540 2601 y Fj(4)p Fk(\016)q
Fj(+5)p Fk(\016)637 2589 y Fg(2)p 540 2608 114 2 v 557
2635 a Fj(1)p Fy(\000)p Fj(2)p Fk(\016)658 2619 y Fs(.)20
b(Finally)l(,)c(since)g(w)o(e)f(ma)o(y)f(assume)g(that)g
Fl(\016)h Fm(\024)e Fs(1)p Fl(=)p Fs(10,)g(w)o(e)i(ha)o(v)o(e)f
Fm(j)p Fl(w)1802 2626 y Fk(j;k)q Fj(+1)1891 2619 y Fm(j)f(\024)g
Fs(6)p Fl(\016)r Fs(.)951 2779 y(33)p eop
%%Page: 34 34
34 33 bop -75 -26 a Fd(2)-75 170 y Fh(6.3)56 b(Carrying)18
b(out)h(near-trivial)d(transformations)-75 274 y Fs(In)i(this)f
(section,)h(w)o(e)f(sho)o(w)f(ho)o(w)h(to)f(construct)h(a)f(single)j
(QTM)e(that)f(can)h(carry)g(out,)f(at)h(least)g(appro)o(ximately)l(,)g
(an)o(y)-75 330 y(sp)q(eci\014ed)h(near-trivial)f(transformation.)k
(Since)d(a)d(near-trivial)i(transformation)e(can)h(apply)h(an)f
(arbitrary)f(rotation,)-75 387 y(either)22 b(b)q(et)o(w)o(een)f(t)o(w)o
(o)e(dimensions)k(or)d(in)i(the)f(phase)g(of)f(a)h(single)h(dimension,)
i(w)o(e)c(m)o(ust)h(\014rst)f(sho)o(w)g(ho)o(w)h(a)f(\014xed)-75
443 y(rotation)14 b(can)g(b)q(e)h(used)g(to)f(e\016cien)o(tly)i(appro)o
(ximate)e(an)h(arbitrary)e(rotation.)19 b(Note)14 b(that)g(a)g(single)i
(cop)o(y)e(of)g(this)h(\014xed)-75 499 y(rotation)f(giv)o(es)i(the)f
(only)h("non-classical")g(amplitudes)h(\(those)e(other)g(than)g(0)p
Fl(;)8 b Fs(1\))13 b(in)j(the)g(transition)f(function)h(of)f(the)-75
556 y(univ)o(ersal)g(QTM)f(constructed)g(b)q(elo)o(w.)20
b(See)14 b(Adleman,)h(et.)e(al.)h([1])f(and)h(Solo)o(v)m(a)o(y)g(and)g
(Y)l(ao)g([40)o(])f(for)h(the)g(constructions)-75 612
y(of)h(univ)o(ersal)h(QTMs)f(whose)g(amplitudes)i(are)e(restricted)g
(to)g(a)g(small)g(set)g(of)g(rationals.)-75 736 y Fn(Lemma)i(6.3.1)23
b Fr(L)n(et)15 b Fm(R)d Fs(=)h(2)p Fl(\031)476 704 y
Fi(P)520 717 y Fy(1)520 748 y Fk(i)p Fj(=1)587 736 y
Fs(2)610 720 y Fy(\000)p Fj(2)655 708 y Fb(i)-4 811 y
Fr(Then)k(ther)n(e)h(is)g(a)g(deterministic)f(algorithm)i(taking)f
(time)g(p)n(olynomial)g(in)f Fs(log)8 b(1)p Fl(=\017)18
b Fr(and)h(the)f(length)f(of)h(the)h(input)-75 867 y(which)f(on)g
(input)g Fl(\022)q(;)8 b(\017)18 b Fr(with)h Fl(\022)e
Fm(2)f Fs([0)p Fl(;)8 b Fs(2)p Fl(\031)r Fs(])15 b Fr(and)j
Fl(\017)e(>)g Fs(0)p Fr(,)i(pr)n(o)n(duc)n(es)f(inte)n(ger)g(output)j
Fl(k)f Fr(b)n(ounde)n(d)e(by)h(a)g(p)n(olynomial)g(in)f
Fs(1)p Fl(=\017)-75 923 y Fr(such)f(that)752 980 y Fm(j)p
Fl(k)q Fm(R)9 b(\000)i Fl(\022)q Fm(j)16 b Fr(mo)n(d)h
Fs(2)p Fl(\031)30 b Fm(\024)f Fl(\017)-75 1104 y Fn(Pro)q(of.)20
b Fs(First,)14 b(w)o(e)h(describ)q(e)i(a)e(pro)q(cedure)h(for)f
(computing)g(suc)o(h)h(a)f Fl(k)q Fs(.)-4 1178 y(Start)j(b)o(y)h
(calculating)h Fl(n)p Fs(,)g(a)f(p)q(o)o(w)o(er)f(of)h(2,)g(suc)o(h)g
(that)g Fl(\017)g(>)1090 1160 y Fj(2)p Fk(\031)p 1070
1167 79 2 v 1070 1195 a Fj(2)1088 1185 y Fb(n)p Fq(\000)p
Fg(1)1153 1178 y Fs(.)31 b(Next,)20 b(appro)o(ximate)1608
1160 y Fk(\022)p 1597 1167 40 2 v 1597 1194 a Fj(2)p
Fk(\031)1661 1178 y Fs(as)e(a)h(fraction)g(with)-75 1235
y(denominator)c(2)213 1218 y Fk(n)236 1235 y Fs(.)20
b(In)c(other)f(w)o(ords,)f(\014nd)i(an)f(in)o(teger)g
Fl(m)e Fm(2)g Fs([1)p Fl(;)8 b Fs(2)1068 1218 y Fk(n)1090
1235 y Fs(])14 b(suc)o(h)i(that)815 1297 y Fi(\014)815
1322 y(\014)815 1347 y(\014)815 1372 y(\014)848 1327
y Fl(\022)p 834 1347 51 2 v 834 1389 a Fs(2)p Fl(\031)899
1358 y Fm(\000)953 1327 y Fl(m)p 950 1347 47 2 v 950
1389 a Fs(2)973 1376 y Fk(n)1001 1297 y Fi(\014)1001
1322 y(\014)1001 1347 y(\014)1001 1372 y(\014)1028 1358
y Fm(\024)1092 1327 y Fs(1)p 1081 1347 V 1081 1389 a(2)1104
1376 y Fk(n)-75 1478 y Fs(Then)g(w)o(e)f(can)g(let)h
Fl(k)d Fs(=)g Fl(m)p Fs(2)408 1461 y Fk(n)447 1478 y
Fs(b)q(ecause)398 1601 y Fl(m)p Fs(2)461 1583 y Fk(n)484
1601 y Fm(R)p Fs(mo)q(d)i(2)p Fl(\031)43 b Fs(=)793 1529
y Fi( )826 1601 y Fs(2)p Fl(\031)r(m)936 1548 y Fy(1)924
1561 y Fi(X)925 1652 y Fk(i)p Fj(=1)992 1601 y Fs(2)1015
1583 y Fk(n)p Fy(\000)p Fj(2)1081 1571 y Fb(i)1096 1529
y Fi(!)1137 1601 y Fs(mo)q(d)15 b(2)p Fl(\031)717 1759
y Fs(=)793 1674 y Fi(0)793 1749 y(@)830 1759 y Fs(2)p
Fl(\031)r(m)989 1706 y Fy(1)976 1718 y Fi(X)928 1811
y Fk(i)p Fj(=log)5 b Fk(n)p Fj(+1)1093 1759 y Fs(2)1116
1740 y Fk(n)p Fy(\000)p Fj(2)1182 1728 y Fb(i)1197 1674
y Fi(1)1197 1749 y(A)1241 1759 y Fs(mo)q(d)15 b(2)p Fl(\031)717
1925 y Fs(=)793 1840 y Fi(0)793 1915 y(@)835 1894 y Fs(2)p
Fl(\031)r(m)p 835 1914 91 2 v 857 1956 a Fs(2)880 1943
y Fk(n)940 1925 y Fs(+)10 b(2)p Fl(\031)r(m)1144 1872
y Fy(1)1132 1884 y Fi(X)1083 1977 y Fk(i)p Fj(=log)c
Fk(n)p Fj(+2)1248 1925 y Fs(2)1271 1906 y Fk(n)p Fy(\000)p
Fj(2)1337 1894 y Fb(i)1353 1840 y Fi(1)1353 1915 y(A)1397
1925 y Fs(mo)q(d)15 b(2)p Fl(\031)-75 2107 y Fs(and)g(since)657
2228 y Fl(m)766 2175 y Fy(1)753 2188 y Fi(X)704 2280
y Fk(i)p Fj(=log)6 b Fk(n)p Fj(+2)869 2228 y Fs(2)892
2209 y Fk(n)p Fy(\000)p Fj(2)958 2198 y Fb(i)1015 2228
y Fm(\024)42 b Fl(m)p Fs(2)1155 2209 y Fk(n)p Fy(\000)p
Fj(4)p Fk(n)p Fj(+1)1015 2347 y Fm(\024)g Fs(2)1115 2329
y Fk(n)p Fy(\000)p Fj(3)p Fk(n)p Fj(+1)1015 2416 y Fm(\024)g
Fs(2)1115 2397 y Fy(\000)p Fj(2)p Fk(n)p Fj(+1)951 2779
y Fs(34)p eop
%%Page: 35 35
35 34 bop -75 -26 a Fs(w)o(e)15 b(ha)o(v)o(e)329 85 y
Fm(j)p Fl(m)p Fs(2)405 66 y Fk(n)428 85 y Fm(R)9 b(\000)i
Fl(\022)q Fm(j)23 b Fs(mo)q(d)15 b(2)p Fl(\031)43 b Fm(\024)851
24 y Fi(\014)851 49 y(\014)851 74 y(\014)851 99 y(\014)864
85 y Fl(m)p Fs(2)927 66 y Fk(n)951 85 y Fm(R)9 b(\000)1050
54 y Fs(2)p Fl(\031)r(m)p 1050 75 91 2 v 1072 116 a Fs(2)1095
103 y Fk(n)1145 24 y Fi(\014)1145 49 y(\014)1145 74 y(\014)1145
99 y(\014)1166 85 y Fs(mo)q(d)15 b(2)p Fl(\031)27 b Fs(+)1405
24 y Fi(\014)1405 49 y(\014)1405 74 y(\014)1405 99 y(\014)1423
54 y Fs(2)p Fl(\031)r(m)p 1423 75 V 1445 116 a Fs(2)1468
103 y Fk(n)1529 85 y Fm(\000)10 b Fl(\022)1596 24 y Fi(\014)1596
49 y(\014)1596 74 y(\014)1596 99 y(\014)774 200 y Fm(\024)885
170 y Fs(2)p Fl(\031)p 856 190 109 2 v 856 232 a Fs(2)879
218 y Fj(2)p Fk(n)p Fy(\000)p Fj(1)980 200 y Fs(+)1030
170 y(2)p Fl(\031)p 1030 190 51 2 v 1032 232 a Fs(2)1055
218 y Fk(n)774 308 y Fl(<)876 277 y Fs(2)p Fl(\031)p
856 298 92 2 v 856 339 a Fs(2)879 326 y Fk(n)p Fy(\000)p
Fj(1)774 377 y Fl(<)42 b(\017)1988 479 y Fd(2)-4 610
y Fs(A)o(t)17 b(this)h(p)q(oin)o(t)g(it)g(should)h(b)q(e)f(clear)g
(that)f(a)g(single)i(QTM)f(can)g(carry)f(out)g(an)o(y)h(sequence)g(of)g
(near-trivial)g(trans-)-75 666 y(formations)f(to)g(an)o(y)g(desired)i
(accuracy)e Fl(\017)p Fs(.)27 b(W)l(e)18 b(formalize)g(this)g(notion)g
(b)q(elo)o(w,)g(b)o(y)g(sho)o(wing)f(that)g(there)h(is)g(a)f(QTM)-75
723 y(that)d(accepts)h(as)f(input)i(the)f(descriptions)h(of)e(a)h
(sequence)g(of)g(near-trivial)h(transformations,)d(and)i(an)f(error)g
(b)q(ound)i Fl(\017)p Fs(,)-75 779 y(and)g(applies)i(an)e
Fl(\017)h Fs(appro)o(ximation)f(of)f(the)i(pro)q(duct)f(of)g(these)g
(transformations)f(on)h(an)o(y)g(giv)o(en)g(sup)q(erp)q(osition.)25
b(The)-75 836 y(formalization)16 b(is)f(quite)h(tedious,)g(and)f(the)g
(reader)g(is)h(encouraged)g(to)e(skip)i(the)f(rest)g(of)g(the)g
(subsection)h(if)g(the)f(ab)q(o)o(v)o(e)-75 892 y(statemen)o(t)f(is)i
(con)o(vincing.)-4 966 y(Belo)o(w,)f(w)o(e)g(giv)o(e)g(a)g(formal)g
(de\014nition)i(of)d(what)h(it)h(means)f(for)f(a)h(QTM)g(to)g(carry)f
(out)h(a)g(transformation.)-75 1090 y Fn(De\014nition)k(6.3.2)j
Fr(L)n(et)c Fs(\006)12 b Fm([)h Fs(#)18 b Fr(b)n(e)h(the)g(alphab)n(et)
g(of)g(the)g(\014rst)f(tr)n(ack)h(of)g(QTM)f Fl(M)5 b
Fr(.)29 b(L)n(et)18 b Fm(V)23 b Fr(b)n(e)18 b(the)h(c)n(omplex)g(ve)n
(ctor)-75 1147 y(sp)n(ac)n(e)h(of)g(sup)n(erp)n(ositions)g(of)g
Fl(k)i Fr(length)e(strings)f(over)h Fs(\006)p Fr(.)34
b(L)n(et)19 b Fl(U)26 b Fr(b)n(e)19 b(a)i(line)n(ar)f(tr)n
(ansformation)g(on)g Fm(V)t Fr(,)h(and)g(let)f Fl(x)1993
1154 y Fk(U)-75 1203 y Fr(b)n(e)g(a)g(string)g(that)g(enc)n(o)n(des)f
Fl(U)25 b Fr(\(p)n(erhaps)c(appr)n(oximately\).)33 b(We)20
b(say)g(that)h Fl(x)1305 1210 y Fk(U)1355 1203 y Fs(causes)f
Fl(M)25 b Fr(to)c(c)n(arry)f(out)h(the)g Fl(k)g Fr(c)n(el)r(l)-75
1260 y(tr)n(ansformation)15 b Fl(U)20 b Fr(with)15 b(ac)n(cur)n(acy)g
Fl(\017)h Fr(in)e(time)h Fl(T)21 b Fr(if)15 b(for)g(every)g
Fm(j)p Fl(\036)p Fm(i)d(2)h(V)t Fr(,)i(on)g(input)g Fm(j)p
Fl(\036)p Fm(i)o(j)p Fl(x)1489 1267 y Fk(U)1518 1260
y Fm(ij)p Fl(\017)p Fm(i)p Fr(,)g Fl(M)20 b Fr(halts)15
b(in)f(exactly)h Fl(T)-75 1316 y Fr(steps)g(with)h(its)f(tap)n(e)h(he)n
(ad)g(b)n(ack)f(in)g(the)g(start)h(c)n(el)r(l)f(and)g(with)h(\014nal)f
(sup)n(erp)n(osition)g Fs(\()p Fl(U)1429 1300 y Fy(0)1440
1316 y Fm(j)p Fl(\036)p Fm(i)o Fs(\))p Fm(j)p Fl(x)p
Fm(i)o Fr(,)h(wher)n(e)g Fl(U)1765 1300 y Fy(0)1792 1316
y Fr(is)f(a)h(unitary)-75 1373 y(tr)n(ansformation)f(on)f
Fm(V)19 b Fr(such)c(that)g Fm(k)p Fl(U)g Fm(\000)c Fl(U)688
1356 y Fy(0)699 1373 y Fm(k)i(\024)g Fl(\017)p Fr(.)20
b(Mor)n(e)n(over,)15 b(for)g(a)g(family)g Fl(A)g Fr(of)g(tr)n
(ansformations,)g(we)g(say)f(that)i Fl(M)-75 1429 y Fr(c)n(arries)f
(out)g(these)g(tr)n(ansformations)f(in)h(p)n(olynomial)f(time)h(if)g
Fl(T)21 b Fr(is)15 b(b)n(ounde)n(d)f(by)h(a)h(p)n(olynomial)e(in)h
Fs(1)p Fl(=\017)f Fr(and)h(the)h(length)-75 1485 y(of)g(the)h(input.)-4
1560 y(In)e(the)i(c)n(ase)e(that)i Fl(A)g Fr(c)n(ontains)e(tr)n
(ansformations)h(that)h(ar)n(e)f(not)h(unitary,)f(we)h(say)f(that)h
Fl(M)22 b Fs(carries)15 b(out)h Fr(the)h(set)f(of)-75
1616 y(tr)n(ansformations)j Fl(A)g Fr(with)g Fs(closeness)g(factor)g
Fl(c)f Fr(if)h(for)h(any)f Fl(\017)f(>)g Fs(0)g Fr(and)i(any)e
Fl(U)23 b Fm(2)18 b Fl(A)h Fr(which)h(is)f Fl(c\017)p
Fr(-close)f(to)i(unitary,)-75 1673 y(ther)n(e)i(is)g(a)h(unitary)f(tr)n
(ansformation)h Fl(U)663 1656 y Fy(0)697 1673 y Fr(with)f
Fm(k)p Fl(U)860 1656 y Fy(0)882 1673 y Fm(\000)10 b Fl(U)5
b Fm(k)24 b(\024)g Fl(\017)e Fr(such)h(that)g Fm(j)p
Fl(x)1357 1680 y Fk(U)1386 1673 y Fm(ij)p Fl(\017)p Fm(i)f
Fr(c)n(auses)f Fl(M)28 b Fr(to)22 b(c)n(arry)h(out)g(the)-75
1729 y(tr)n(ansformation)16 b Fl(U)271 1712 y Fy(0)299
1729 y Fr(in)g(time)g(which)h(is)f(p)n(olynomial)g(in)f
Fs(1)p Fl(=\017)i Fr(and)f(the)g(length)g(of)g(its)g(input.)-4
1853 y Fs(Recall)k(that)e(a)g(near-trivial)i(transformation)d(written)h
(as)g Fl(x;)8 b(y)r(;)g(\022)19 b Fs(calls)g(for)f(a)g(rotation)g(b)q
(et)o(w)o(een)h(dimensions)h Fl(x)-75 1909 y Fs(and)g
Fl(y)j Fs(of)c(angle)i Fl(\022)h Fs(if)f Fl(x)g Fm(6)p
Fs(=)g Fl(y)h Fs(and)f(a)e(phase)i(shift)g(of)e Fl(e)933
1893 y Fk(i\022)985 1909 y Fs(to)h(dimension)i Fl(x)e
Fs(otherwise.)35 b(So,)21 b(w)o(e)f(w)o(an)o(t)f(to)h(build)i(a)-75
1966 y(stationary)l(,)e(normal)f(form)g(QTM)h(that)f(tak)o(es)g(as)g
(input)i Fl(w)q Fs(;)8 b Fl(x;)g(y)r(;)g(\022)q Fs(;)g
Fl(\017)17 b Fs(and)j(transforms)e Fl(w)j Fs(according)f(to)f(the)h
(near-)-75 2022 y(trivial)h(transformation)e(describ)q(ed)j(b)o(y)e
Fl(x;)8 b(y)r(;)g(\022)20 b Fs(with)g(accuracy)h Fl(\017)p
Fs(.)35 b(W)l(e)20 b(also)g(need)h(this)f(QTM's)g(running)h(time)g(to)
-75 2079 y(dep)q(end)c(only)f(on)f(the)g(length)h(of)f
Fl(w)h Fs(but)f(not)g(its)g(v)m(alue.)21 b(If)16 b(this)f(is)h(the)f
(case)h(then)f(the)g(mac)o(hine)h(will)h(also)e(halt)h(on)f(an)-75
2135 y(initial)i(sup)q(erp)q(osition)g(of)e(the)g(form)g
Fm(j)p Fl(\036)p Fm(i)o(j)p Fl(x;)8 b(y)r(;)g(\022)q
Fm(i)n(j)p Fl(\017)p Fm(i)15 b Fs(where)h Fm(j)p Fl(\036)p
Fm(i)e Fs(is)i(a)f(sup)q(erp)q(osition)i(of)e(equal-length)h(strings)f
Fl(w)q Fs(.)-75 2259 y Fn(Lemma)i(6.3.3)23 b Fr(Ther)n(e)14
b(is)h(a)g(stationary,)g(normal)g(form)h(QTM)e Fl(M)20
b Fr(with)c(\014rst)e(tr)n(ack)h(alphab)n(et)g Fm(f)p
Fs(#)p Fl(;)8 b Fs(0)p Fl(;)g Fs(1)p Fm(g)13 b Fr(that)i(c)n(arries)-75
2316 y(out)i(the)f(set)g(of)h(ne)n(ar-trivial)f(tr)n(ansformations)f
(on)i(its)e(\014rst)h(tr)n(ack)g(in)g(p)n(olynomial)g(time.)-75
2440 y Fn(Pro)q(of.)27 b Fs(Using)18 b(the)f(enco)q(ding)i
Fl(x;)8 b(y)r(;)g(\022)18 b Fs(for)f(near-trivial)h(transformations)e
(describ)q(ed)k(ab)q(o)o(v)o(e)d(in)h Fm(x)p Fs(6.2,)f(w)o(e)g(will)j
(sho)o(w)-75 2496 y(ho)o(w)14 b(to)f(construct)h(QTMs)g
Fl(M)458 2503 y Fj(1)492 2496 y Fs(and)g Fl(M)623 2503
y Fj(2)657 2496 y Fs(with)h(\014rst)e(trac)o(k)h(alphab)q(et)h
Fm(f)p Fs(#)p Fl(;)8 b Fs(0)p Fl(;)g Fs(1)p Fm(g)j Fs(suc)o(h)k(that)e
Fl(M)1581 2503 y Fj(1)1615 2496 y Fs(carries)h(out)g(the)g(set)g(of)-75
2553 y(near-trivial)i(rotations)d(on)h(its)h(\014rst)f(trac)o(k)f(in)j
(p)q(olynomial)g(time,)e(and)h Fl(M)1219 2560 y Fj(2)1253
2553 y Fs(carries)g(out)f(the)g(set)g(of)g(near-trivial)i(phase)-75
2609 y(shifts)i(on)g(its)g(\014rst)f(trac)o(k)g(in)h(p)q(olynomial)i
(time.)28 b(Using)18 b(the)g(Branc)o(hing)g(Lemma)g(\(page)f
(pagerefbranc)o(hing.lemma)951 2779 y(35)p eop
%%Page: 36 36
36 35 bop -75 -26 a Fs(on)16 b(these)h(t)o(w)o(o)e(mac)o(hines,)j(w)o
(e)e(can)h(construct)f(a)g(QTM)g(that)g(b)q(eha)o(v)o(es)h(correctly)g
(pro)o(vided)g(there)f(is)i(an)e(extra)g(trac)o(k)-75
31 y(con)o(taining)h(a)e(1)h(when)g Fl(x)e Fs(=)g Fl(y)k
Fs(and)e(w)o(e)g(ha)o(v)o(e)f(a)h(phase)g(shift)g(to)g(p)q(erform,)f
(and)h(con)o(taining)h(a)e(0)h(when)g Fl(x)e Fm(6)p Fs(=)g
Fl(y)k Fs(and)e(w)o(e)-75 87 y(ha)o(v)o(e)h(a)g(rotation)f(to)g(p)q
(erform.)26 b(W)l(e)17 b(can)g(then)h(construct)e(the)i(desired)g(QTM)f
Fl(M)22 b Fs(b)o(y)17 b(do)o(v)o(etailing)h(b)q(efore)f(and)h(after)-75
144 y(with)d(mac)o(hines)h(that)e(compute)i(and)f(erase)g(this)g(extra)
f(bit)i(based)f(on)g Fl(x;)8 b(y)r Fs(.)19 b(The)c(Sync)o(hronization)i
(Theorem)d(lets)i(us)-75 200 y(construct)g(t)o(w)o(o)f(suc)o(h)i
(stationary)l(,)f(normal)g(form)g(QTMs)g(whose)h(running)g(times)g(dep)
q(end)h(only)f(on)f(the)h(lengths)g(of)f Fl(x)-75 257
y Fs(and)f Fl(y)r Fs(.)20 b(Therefore,)15 b(this)g(additional)i
(computation)e(will)i(not)e(disturb)h(the)f(sync)o(hronization)h(of)f
(the)g(computation.)-4 331 y(Next,)f(w)o(e)h(sho)o(w)g(ho)o(w)g(to)f
(construct)h(the)g(QTM)g Fl(M)896 338 y Fj(1)931 331
y Fs(to)g(carry)f(out)h(near-trivial)i(rotations.)-4
405 y(It)12 b(is)i(easy)e(to)h(construct)f(a)h(QTM)f(whic)o(h)i(on)f
(input)h Fl(b)p Fs(,)e(applies)i(a)f(rotation)f(b)o(y)h(angle)g
Fl(\022)i Fs(b)q(et)o(w)o(een)e Fm(j)p Fs(0)p Fm(i)f
Fs(and)h Fm(j)p Fs(1)p Fm(i)o Fs(,)f(while)-75 461 y(lea)o(ving)18
b Fl(b)f Fs(alone)h(if)g Fl(b)e Fs(=)h(#.)26 b(But)18
b(Lemma)f(6.3.1)f(ab)q(o)o(v)o(e)h(tells)h(us)g(that)f(w)o(e)g(can)g
(ac)o(hiev)o(e)h(an)o(y)g(rotation)e(b)o(y)i(applying)-75
518 y(the)c(single)i(rotation)d Fm(R)h Fs(at)f(most)h(a)f(p)q
(olynomial)j(n)o(um)o(b)q(er)f(of)e(times.)20 b(Therefore)14
b(the)h(follo)o(wing)f(\014v)o(e)h(step)f(pro)q(cess)g(will)-75
574 y(allo)o(w)k(us)g(to)f(apply)h(a)g(near-trivial)g(rotation.)27
b(W)l(e)18 b(m)o(ust)f(b)q(e)h(careful)h(that)e(when)h(w)o(e)f(apply)i
(the)e(rotation,)h(the)f(t)o(w)o(o)-75 631 y(computational)f(paths)e
(with)i Fl(b)c Fm(2)h(f)p Fs(0)p Fl(;)8 b Fs(1)p Fm(g)13
b Fs(di\013er)j(only)g(in)g Fl(b)e Fs(since)j(otherwise)e(they)g(will)i
(not)e(in)o(terfere.)-19 747 y(1.)22 b(Calculate)16 b
Fl(k)g Fs(suc)o(h)f(that)g Fl(k)h Fm(R)p Fs(mo)q(d)f(2)p
Fl(\031)f Fm(2)f Fs([)p Fl(\022)e Fm(\000)g Fl(\017;)d(\022)j
Fs(+)f Fl(\017)p Fs(].)-19 839 y(2.)22 b(T)l(ransform)12
b Fl(w)q(;)c(x;)g(y)13 b Fs(in)o(to)h Fl(b;)8 b(x;)g(y)r(;)g(z)k
Fs(where)i Fl(b)e Fs(=)h(0)g(if)h Fl(w)f Fs(=)g Fl(x)p
Fs(,)g Fl(b)g Fs(=)g(1)g(if)g Fl(w)h Fs(=)f Fl(y)i Fs(and)f
Fl(w)f Fm(6)p Fs(=)g Fl(x)p Fs(,)g(and)h Fl(b)e Fs(=)h(#)g(otherwise,)
39 895 y(and)i(where)g Fl(z)g Fs(=)e Fl(w)j Fs(if)g Fl(b)c
Fs(=)h(#)i(and)g Fl(z)j Fs(is)d(the)h(empt)o(y)e(string)i(otherwise.)
-19 987 y(3.)22 b(Run)16 b(the)f(rotation)f(applying)j(mac)o(hine)f
Fl(k)g Fs(times)g(on)f(the)g(\014rst)g(bit)h(of)e Fl(z)r
Fs(.)-19 1079 y(4.)22 b(Rev)o(erse)13 b(Step)h(2)e(transforming)h(#)p
Fl(;)8 b(x;)g(y)r(;)g(w)j Fs(with)i Fl(w)h Fm(6)p Fs(=)f
Fl(x;)8 b(y)14 b Fs(in)o(to)f Fl(w)q(;)8 b(x;)g(y)r Fs(,)j
(transforming)h(0)p Fl(;)c(x;)g(y)13 b Fs(in)o(to)g Fl(x;)8
b(x;)g(y)r Fs(,)k(and)39 1135 y(transforming)i(1)p Fl(;)8
b(x;)g(y)15 b Fs(with)h Fl(x)c Fm(6)p Fs(=)h Fl(y)k Fs(in)o(to)f
Fl(y)r(;)8 b(x;)g(y)r Fs(.)-19 1227 y(5.)22 b(Rev)o(erse)15
b(Step)h(1)f(erasing)g Fl(k)q Fs(.)-4 1343 y(W)l(e)f(build)i(the)e
(desired)h(QTM)f Fl(M)19 b Fs(b)o(y)14 b(constructing)g(a)g(QTM)f(for)h
(eac)o(h)g(of)f(these)i(\014v)o(e)f(steps)g(and)g(then)g(do)o(v)o
(etailing)-75 1400 y(them)h(together.)-4 1474 y(First,)e(notice)i(that)
f(the)g(length)h(of)f(the)h(desired)g(output)f(of)g(Steps)h(1,2,4,)d
(and)j(5)f(can)g(b)q(e)i(computed)e(just)g(from)g(the)-75
1530 y(length)i(of)f(the)h(input.)21 b(Therefore,)15
b(using)h(Lemmas)g(6.3.1)e(from)g(page)i(34)f(and)g(the)h(Sync)o
(hronization)g(Theorem)g(from)-75 1587 y(page)e(17,)f(w)o(e)h(can)g
(build)i(p)q(olynomial)g(time,)e(stationary)l(,)g(normal)g(form)f(QTMs)
h(for)f(Steps)i(1,2,4,)d(and)i(5)g(whic)o(h)h(run)f(in)-75
1643 y(time)i(whic)o(h)g(dep)q(ends)g(on)f(the)h(lengths)g(of)e
Fl(w)q(;)8 b(x;)g(y)r Fs(,)13 b(but)j(not)e(their)i(particular)g(v)m
(alues.)-4 1717 y(T)l(o)i(complete)h(the)g(construction)f(w)o(e)h(m)o
(ust)f(build)i(a)e(mac)o(hine)i(for)e(the)g(rotation)g(with)h(these)f
(same)h(prop)q(erties.)-75 1774 y(The)c(stationary)l(,)e(normal)h(form)
g(QTM)g Fl(R)g Fs(with)h(alphab)q(et)g Fm(f)p Fs(#)p
Fl(;)8 b Fs(0)p Fl(;)g Fs(1)p Fm(g)p Fs(,)j(state)j(set)g
Fm(f)p Fl(q)1385 1781 y Fj(0)1405 1774 y Fl(;)8 b(q)1446
1781 y Fj(1)1465 1774 y Fl(;)g(q)1506 1781 y Fk(f)1528
1774 y Fm(g)14 b Fs(and)h(transition)f(function)-75 1830
y(de\014ned)j(b)o(y)p 517 1965 2 57 v 623 1948 a(#)279
b(0)351 b(1)p 434 1967 1080 2 v 456 2006 a Fl(q)476 2013
y Fj(0)p 517 2023 2 57 v 542 2006 a Fm(j)p Fs(#)p Fm(ij)p
Fl(q)644 2013 y Fj(1)663 2006 y Fm(ij)p Fl(L)p Fm(i)63
b Fs(cos)7 b Fm(Rj)p Fs(0)p Fm(i)o(j)p Fl(q)999 2013
y Fj(1)1019 2006 y Fm(i)o(j)p Fl(L)p Fm(i)63 b(\000)8
b Fs(sin)g Fm(Rj)p Fs(0)p Fm(i)n(j)p Fl(q)1391 2013 y
Fj(1)1411 2006 y Fm(ij)p Fl(L)p Fm(i)p 517 2080 V 787
2063 a Fs(+)g(sin)g Fm(Rj)p Fs(1)p Fm(i)o(j)p Fl(q)1018
2070 y Fj(1)1038 2063 y Fm(i)o(j)p Fl(L)p Fm(i)41 b Fs(+)8
b(cos)f Fm(Rj)p Fs(1)p Fm(i)o(j)p Fl(q)1394 2070 y Fj(1)1414
2063 y Fm(i)o(j)p Fl(L)p Fm(i)456 2119 y Fl(q)476 2126
y Fj(1)p 517 2136 V 539 2119 a Fm(j)p Fs(#)p Fm(i)o(j)p
Fl(q)640 2126 y Fk(f)663 2119 y Fm(i)o(j)p Fl(R)p Fm(i)454
2176 y Fl(q)474 2183 y Fk(f)p 517 2192 V 540 2176 a Fm(j)p
Fs(#)p Fm(ij)p Fl(q)642 2183 y Fj(0)661 2176 y Fm(ij)p
Fl(R)p Fm(i)113 b(j)p Fs(0)p Fm(i)o(j)p Fl(q)944 2183
y Fj(0)963 2176 y Fm(ij)p Fl(R)p Fm(i)184 b(j)p Fs(1)p
Fm(i)o(j)p Fl(q)1317 2183 y Fj(0)1337 2176 y Fm(i)o(j)p
Fl(R)p Fm(i)-4 2272 y Fs(runs)12 b(for)g(constan)o(t)g(time)h(and)f
(applies)i(rotation)e Fm(R)g Fs(b)q(et)o(w)o(een)h(start)e(cell)j(con)o
(ten)o(ts)e Fm(j)p Fs(0)p Fm(i)g Fs(and)g Fm(j)p Fs(1)p
Fm(i)g Fs(while)i(lea)o(ving)f(other)-75 2329 y(inputs)19
b(unc)o(hanged.)30 b(Inserting)19 b Fl(R)f Fs(for)f(the)h(sp)q(ecial)i
(state)e(in)h(the)f(rev)o(ersible)h(TM)f(from)f(the)i(Lo)q(oping)g
(Lemma,)f(w)o(e)-75 2385 y(can)13 b(construct)g(a)g(normal)g(form)f
(QTM)h(whic)o(h)h(applies)h(rotation)d Fl(k)q Fm(R)h
Fs(b)q(et)o(w)o(een)g(inputs)h Fm(j)p Fs(0)p Fl(;)8 b(k)q
Fm(i)k Fs(and)h Fm(j)p Fs(1)p Fl(;)8 b(k)q Fm(i)k Fs(while)i(lea)o
(ving)-75 2442 y(input)j Fm(j)p Fs(#)p Fl(w)q(;)8 b(k)q
Fm(i)14 b Fs(unc)o(hanged.)24 b(Since)18 b(the)e(mac)o(hine)h(w)o(e)f
(lo)q(op)g(on)g(is)h(stationary)e(and)i(tak)o(es)e(constan)o(t)g(time)i
(regardless)-75 2498 y(of)e(its)g(input,)h(the)f(resulting)i(lo)q
(oping)f(mac)o(hine)g(is)g(stationary)e(and)h(tak)o(es)g(time)g(dep)q
(ending)j(only)d(on)h Fl(k)q Fs(.)-4 2572 y(Finally)l(,)h(with)g
(appropriate)f(use)g(of)g(Lemmas)g(4.2.1)e(on)j(page)e(17)h(and)g
(4.2.2)f(on)h(page)g(17)f(w)o(e)h(can)g(do)o(v)o(etail)h(these)-75
2629 y(\014v)o(e)i(stationary)l(,)f(normal)h(form)f(QTMs)g(to)g(ac)o
(hiev)o(e)i(a)e(stationary)l(,)g(normal)h(form)f(QTM)g
Fl(M)24 b Fs(that)18 b(implemen)o(ts)i(the)951 2779 y(36)p
eop
%%Page: 37 37
37 36 bop -75 -26 a Fs(desired)16 b(computation.)k(Since,)c(the)f
(phase)h(application)g(mac)o(hine)g(run)f(in)h(time)f(whic)o(h)h(is)g
(indep)q(enden)o(t)h(of)e Fl(w)q Fs(,)f Fl(x)p Fs(,)h(and)-75
31 y Fl(y)r Fs(,)f(and)g(the)h(other)f(four)g(run)g(in)h(time)g(whic)o
(h)g(dep)q(ends)h(only)f(on)f(the)g(length)h(of)f Fl(w)q
Fs(,)g Fl(x)p Fs(,)g(and)h Fl(y)r Fs(,)f(the)g(running)h(time)g(of)f
Fl(M)-75 87 y Fs(dep)q(ends)h(on)f(the)g(length)g(of)g
Fl(w)q Fs(,)f Fl(x)p Fs(,)h(and)f Fl(y)j Fs(but)e(not)f(on)h(their)g
(particular)h(v)m(alues.)20 b(Therefore)14 b(it)g(halts)g(with)g(the)g
(prop)q(er)-75 144 y(output)h(not)h(only)g(if)g(run)g(on)g(an)f(input)i
(with)f(a)f(single)i(string)f Fl(w)q Fs(,)f(but)h(also)f(if)h(run)g(on)
g(an)f(initial)j(sup)q(erp)q(osition)g(with)-75 200 y(di\013eren)o(t)d
(strings)h Fl(w)f Fs(but)h(with)f(the)h(same)e(near-trivial)j
(transformation)d(and)h Fl(\017)p Fs(.)-4 274 y(The)20
b(QTM)g Fl(M)268 281 y Fj(2)309 274 y Fs(to)f(carry)h(out)g
(near-trivial)i(phase)e(shifts)h(is)g(the)g(same)f(as)g
Fl(M)1436 281 y Fj(1)1476 274 y Fs(except)h(that)e(w)o(e)i(replace)g
(the)-75 331 y(transition)15 b(function)h(of)e(the)h(simple)h(QTM)f
(whic)o(h)h(applies)g(a)f(phase)g(shift)g(rotation)f(b)o(y)h(angle)g
Fm(R)f Fs(as)h(follo)o(ws)g(giving)g(a)-75 387 y(stationary)f(QTM)h
(whic)o(h)h(applies)h(phase)f(shift)f Fl(e)798 371 y
Fk(i)p Fy(R)858 387 y Fs(if)g Fl(b)g Fs(is)h(a)f(0)f(and)i(phase)f
(shift)h(1)f(otherwise.)p 600 522 2 57 v 706 505 a(#)239
b(0)268 b(1)p 516 524 915 2 v 538 563 a Fl(q)558 570
y Fj(0)p 600 580 2 57 v 625 563 a Fm(j)p Fs(#)p Fm(i)o(j)p
Fl(q)726 570 y Fj(1)746 563 y Fm(i)o(j)p Fl(L)p Fm(i)45
b Fl(e)891 547 y Fk(i)p Fy(R)935 563 y Fm(j)p Fs(0)p
Fm(i)o(j)p Fl(q)1021 570 y Fj(1)1041 563 y Fm(i)o(j)p
Fl(L)p Fm(i)73 b(j)p Fs(1)p Fm(i)o(j)p Fl(q)1279 570
y Fj(1)1299 563 y Fm(ij)p Fl(L)p Fm(i)538 620 y Fl(q)558
627 y Fj(1)p 600 637 V 621 620 a Fm(j)p Fs(#)p Fm(ij)p
Fl(q)723 627 y Fk(f)745 620 y Fm(ij)p Fl(R)p Fm(i)537
676 y Fl(q)557 683 y Fk(f)p 600 693 V 623 676 a Fm(j)p
Fs(#)p Fm(i)o(j)p Fl(q)724 683 y Fj(0)744 676 y Fm(i)o(j)p
Fl(R)p Fm(i)g(j)p Fs(0)p Fm(i)o(j)p Fl(q)986 683 y Fj(0)1006
676 y Fm(ij)p Fl(R)p Fm(i)132 b(j)p Fs(1)p Fm(i)o(j)p
Fl(q)1308 683 y Fj(0)1327 676 y Fm(ij)p Fl(R)p Fm(i)-4
773 y Fs(The)15 b(pro)q(of)g(that)f(this)i(giv)o(es)f(the)h(desired)g
Fl(M)783 780 y Fj(2)818 773 y Fs(is)g(iden)o(tical)h(to)d(the)i(pro)q
(of)e(for)h Fl(M)1413 780 y Fj(1)1448 773 y Fs(and)g(is)h(omitted.)239
b Fd(2)-75 969 y Fh(6.4)56 b(Carrying)18 b(out)h(a)g(unitary)f
(transformation)f(on)i(a)g(QTM)-75 1073 y Fs(No)o(w)c(that)f(w)o(e)h
(can)g(appro)o(ximate)g(a)g(unitary)h(transformation)d(b)o(y)j(a)f(pro)
q(duct)g(of)g(near-trivial)h(transformations,)e(and)-75
1129 y(w)o(e)f(ha)o(v)o(e)g(a)g(QTM)h(to)e(carry)h(out)g(the)h(latter,)
f(w)o(e)g(can)h(build)h(a)e(QTM)h(to)e(apply)j(an)e(appro)o(ximation)h
(of)f(a)g(giv)o(en)h(unitary)-75 1186 y(transformation.)-75
1310 y Fn(Theorem)j(6.4.1)g(\(Unitary)h(T)l(ransformation)g(Theorem\))k
Fr(Ther)n(e)e(is)g(a)h(stationary,)g(normal)g(form)f(QTM)g
Fl(M)-75 1366 y Fr(with)e(\014rst)f(tr)n(ack)h(alphab)n(et)g
Fm(f)p Fs(#)p Fl(;)8 b Fs(0)p Fl(;)g Fs(1)p Fm(g)15 b
Fr(that)k(c)n(arries)e(out)h(the)h(set)e(of)h(al)r(l)f(tr)n
(ansformations)h(on)f(its)h(\014rst)f(tr)n(ack)h(in)f(p)n(oly-)-75
1423 y(nomial)f(time)g(with)h(r)n(e)n(quir)n(e)n(d)f(closeness)e
(factor)844 1405 y Fj(1)p 780 1412 147 2 v 780 1445 a(2\(10)848
1417 y Fy(p)p 876 1417 19 2 v 876 1445 a Fk(d)p Fj(\))908
1436 y Fb(d)947 1423 y Fr(for)j(tr)n(ansformations)e(of)i(dimension)e
Fl(d)p Fr(.)-75 1565 y Fn(Pro)q(of.)20 b Fs(Giv)o(en)15
b(an)f Fl(\017)g(>)f Fs(0)h(and)h(a)f(transformation)g
Fl(U)20 b Fs(of)14 b(dimension)j Fl(d)12 b Fs(=)h(2)1256
1548 y Fk(k)1292 1565 y Fs(whic)o(h)i(is)1537 1547 y
Fk(\017)p 1472 1554 147 2 v 1472 1587 a Fj(2\(10)1540
1559 y Fy(p)p 1568 1559 19 2 v 1568 1587 a Fk(d)p Fj(\))1600
1578 y Fb(d)1623 1565 y Fs(-close)g(to)f(unitary)l(,)h(w)o(e)-75
1631 y(can)g(carry)g(out)g Fl(U)20 b Fs(to)15 b(within)h
Fl(\017)g Fs(on)f(the)g(\014rst)g Fl(k)h Fs(cells)h(of)e(the)g(\014rst)
g(trac)o(k)f(using)i(the)f(follo)o(wing)h(steps.)-19
1755 y(1.)22 b(Calculate)11 b(and)f(write)g(on)g(clean)h(trac)o(ks)746
1737 y Fk(\017)p 734 1744 40 2 v 734 1771 a Fj(2)p Fk(n)778
1755 y Fs(,)f(and)h(a)e(list)i(of)f(near-trivial)h Fl(U)1297
1762 y Fj(1)1317 1755 y Fl(;)d(:)g(:)g(:)d(;)j(U)1450
1762 y Fk(n)1483 1755 y Fs(suc)o(h)i(that)g Fm(k)p Fl(U)15
b Fm(\000)10 b Fl(U)1819 1762 y Fk(n)1850 1755 y Fm(\001)e(\001)g(\001)
e Fl(U)1942 1762 y Fj(1)1961 1755 y Fm(k)13 b(\024)39
1812 y Fl(\017=)p Fs(2,)h(and)i(suc)o(h)f(that)g Fl(n)g
Fs(is)h(p)q(olynomial)h(in)f(2)819 1795 y Fk(k)840 1812
y Fs(.)-19 1905 y(2.)22 b(Apply)16 b(the)f(list)h(of)f(transformations)
f Fl(U)740 1912 y Fj(1)760 1905 y Fl(;)8 b(:)g(:)g(:)t(;)g(U)892
1912 y Fk(n)915 1905 y Fs(,)15 b(eac)o(h)g(to)g(within)1260
1888 y Fk(\017)p 1247 1895 V 1247 1921 a Fj(2)p Fk(n)1291
1905 y Fs(.)-19 1999 y(3.)22 b(Erase)14 b Fl(U)194 2006
y Fj(1)214 1999 y Fl(;)8 b(:)g(:)g(:)d(;)j(U)347 2006
y Fk(n)370 1999 y Fs(,)14 b(and)503 1981 y Fk(\017)p
491 1988 V 491 2015 a Fj(2)p Fk(n)535 1999 y Fs(.)-4
2123 y(W)l(e)j(can)g(construct)f(a)h(QTM)f(to)h(accomplish)h(these)f
(steps)g(as)f(follo)o(ws.)25 b(First,)17 b(using)h(Lemma)f(6.2.3)e(on)i
(page)g(32)-75 2180 y(and)j(the)h(Sync)o(hronization)g(Theorem)f(on)g
(page)g(17,)h(w)o(e)f(can)g(build)i(p)q(olynomial)g(time,)f(stationary)
l(,)g(normal)f(form)-75 2236 y(QTMs)g(for)g(Steps)g(1)g(and)g(3)g(whic)
o(h)h(run)g(in)g(time)f(whic)o(h)h(dep)q(ends)h(only)f(on)f
Fl(U)25 b Fs(and)c Fl(\017)p Fs(.)35 b(Finally)l(,)23
b(w)o(e)d(can)g(build)i(a)-75 2293 y(stationary)l(,)15
b(normal)g(form)g(QTM)g(to)g(accomplish)i(Step)f(2)f(in)i(time)e(whic)o
(h)i(is)f(p)q(olynomial)h(in)f(2)1614 2276 y Fk(k)1651
2293 y Fs(and)g(1)p Fl(=\017)f Fs(as)g(follo)o(ws.)-75
2349 y(W)l(e)i(ha)o(v)o(e)g(a)f(stationary)l(,)h(normal)g(form)f(QTM)h
(constructed)g(in)h(Lemma)f(6.3.3)e(on)i(page)g(35)f(to)g(apply)i(an)o
(y)f(sp)q(eci\014ed)-75 2406 y(near-trivial)e(transformation)e(to)h
(within)i(a)e(giv)o(en)g(b)q(ound)i Fl(\017)p Fs(.)k(W)l(e)14
b(do)o(v)o(etail)h(this)f(with)h(a)f(mac)o(hine,)h(constructed)f(using)
-75 2462 y(the)g(Sync)o(hronization)h(Theorem)f(on)g(page)f(17,)g(that)
h(rotates)e Fl(U)1042 2469 y Fj(1)1076 2462 y Fs(around)i(to)f(the)h
(end)g(of)g(the)g(list)g(of)g(transformations.)-75 2518
y(Since)j(the)e(resulting)i(QTM)e(is)h(stationary)l(,)f(and)g(tak)o(es)
g(time)h(whic)o(h)g(dep)q(ends)h(only)f(on)f Fl(\017)h
Fs(and)g(the)g Fl(U)1718 2525 y Fk(i)1732 2518 y Fs(,)f(w)o(e)g(can)h
(insert)-75 2575 y(it)f(for)g(the)g(sp)q(ecial)i(state)e(in)h(the)f
(mac)o(hine)h(of)f(the)g(Lo)q(oping)h(Lemma)f(to)g(giv)o(e)g(the)h
(desired)g(QTM)f(for)g(Step)g(2.)951 2779 y(37)p eop
%%Page: 38 38
38 37 bop -4 -26 a Fs(With)19 b(appropriate)g(use)h(of)e(Lemmas)i
(4.2.1)d(on)i(page)g(17)g(and)g(4.2.2)f(on)h(page)g(17,)g(do)o(v)o
(etailing)h(the)g(QTMs)f(for)-75 31 y(these)c(three)f(steps)h(giv)o(es)
f(the)h(desired)g Fl(M)660 14 y Fy(0)672 31 y Fs(.)20
b(Since)c(the)e(running)i(times)f(of)f(the)g(three)h(QTMs)f(are)g
(indep)q(enden)o(t)j(of)d(the)-75 87 y(con)o(ten)o(ts)g(of)h(the)g
(\014rst)f(trac)o(k,)g(so)g(is)i(the)f(running)h(time)f(of)f
Fl(M)1007 71 y Fy(0)1019 87 y Fs(.)20 b(Finally)l(,)c(notice)g(that)e
(when)h(w)o(e)g(run)g Fl(M)1764 71 y Fy(0)1790 87 y Fs(w)o(e)g(apply)h
(to)-75 144 y(the)f(\014rst)g Fl(k)h Fs(cells)h(of)e(the)g(\014rst)g
(trac)o(k,)f(w)o(e)h(apply)h(a)f(unitary)g(transformation)f
Fl(U)1325 127 y Fy(0)1352 144 y Fs(with)304 235 y Fm(k)p
Fl(U)363 217 y Fy(0)384 235 y Fm(\000)d Fl(U)5 b Fm(k)27
b(\024)h(k)p Fl(U)638 217 y Fy(0)660 235 y Fm(\000)10
b Fl(U)736 242 y Fk(n)767 235 y Fm(\001)e(\001)g(\001)e
Fl(U)859 242 y Fj(1)879 235 y Fm(k)k Fs(+)g Fm(k)p Fl(U)1011
242 y Fk(n)1042 235 y Fm(\001)e(\001)g(\001)d Fl(U)1133
242 y Fj(1)1163 235 y Fm(\000)11 b Fl(U)5 b Fm(k)27 b(\024)h
Fl(n)1406 205 y(\017)p 1390 225 51 2 v 1390 267 a Fs(2)p
Fl(n)1456 235 y Fs(+)1508 205 y Fl(\017)p 1506 225 23
2 v 1506 267 a Fs(2)1562 235 y Fm(\024)g Fl(\017)-75
331 y Fs(as)15 b(desired.)1856 b Fd(2)-75 546 y Ft(7)69
b(Constructing)23 b(a)g(univ)n(ersal)f(QTM)-75 665 y
Fs(A)14 b(univ)o(ersal)i(QTM)e(m)o(ust)g(inevitably)i(decomp)q(ose)f
(one)f(step)h(of)f(the)g(sim)o(ulated)h(mac)o(hine)h(using)f(man)o(y)f
(simple)h(steps.)-75 721 y(A)h(step)g(of)f(the)h(sim)o(ulated)g(QTM)g
(is)g(a)g(mapping)g(from)f(the)h(computational)g(basis)g(to)f(a)h(new)g
(orthonormal)f(basis.)22 b(A)-75 778 y(single)c(step)f(of)g(the)g(univ)
o(ersal)h(QTM)e(can)h(only)h(map)e(some)h(of)f(the)h(computational)h
(basis)f(v)o(ectors)f(to)g(their)i(desired)-75 834 y(destinations.)i
(In)13 b(general)g(this)g(partial)f(transformation)f(will)j(not)e(b)q
(e)h(unitary)l(,)h(b)q(ecause)f(the)f(destination)i(v)o(ectors)d(will)
-75 891 y(not)j(b)q(e)h(orthogonal)e(to)h(the)g(computational)g(bases)h
(whic)o(h)g(ha)o(v)o(e)f(not)f(y)o(et)h(b)q(een)h(op)q(erated)g(on.)k
(The)c(k)o(ey)f(construction)-75 947 y(that)h(enables)i(us)f(to)f(ac)o
(hiev)o(e)h(a)f(unitary)h(decomp)q(osition)h(is)f(the)g(Unidirection)i
(Lemma.)j(Applying)c(this)g(lemma,)e(w)o(e)-75 1004 y(get)d(a)h(QTM)f
(whose)h(mapping)g(of)g(the)f(computational)h(basis)h(has)e(the)h
(follo)o(wing)g(prop)q(ert)o(y;)g(there)g(is)g(a)g(decomp)q(osition)-75
1060 y(of)i(the)g(space)h(in)o(to)f(subspaces)h(of)e(constan)o(t)h
(dimension,)h(suc)o(h)g(that)e(eac)o(h)h(subspace)h(gets)f(mapp)q(ed)h
(on)o(to)e(another.)-4 1134 y(More)i(sp)q(eci\014cally)l(,)21
b(w)o(e)c(sa)o(w)f(in)i(the)g(previous)g(section)g(that)e(w)o(e)h(can)h
(construct)f(a)g(QTM)g(that)f(carries)i(out)f(to)f(a)-75
1191 y(close)j(appro)o(ximation)g(an)o(y)f(sp)q(eci\014ed)j(unitary)e
(transformation.)29 b(On)19 b(the)g(other)f(hand,)i(w)o(e)e(ha)o(v)o(e)
g(also)h(noted)g(that)-75 1247 y(the)d(transition)f(function)i(of)e(a)g
(unidirectional)j(QTM)d(sp)q(eci\014es)j(a)d(unitary)g(transformation)g
(from)f(sup)q(erp)q(ositions)j(of)-75 1304 y(curren)o(t)h(state)g(and)h
(tap)q(e)f(sym)o(b)q(ol)h(to)f(sup)q(erp)q(ositions)i(of)e(new)g(sym)o
(b)q(ol)h(and)g(state.)29 b(This)19 b(means)f(a)g(unidirectional)-75
1360 y(QTM)e(can)g(b)q(e)g(sim)o(ulated)h(b)o(y)e(rep)q(eatedly)i
(applying)g(this)g(\014xed-dimensional)h(unitary)e(transformation)f
(follo)o(w)o(ed)h(b)o(y)-75 1416 y(the)d(rev)o(ersible)h(deterministic)
g(transformation)d(that)h(mo)o(v)o(es)g(the)h(sim)o(ulated)g(tap)q(e)g
(head)g(according)g(to)f(the)g(new)h(state.)-75 1473
y(So,)g(our)g(univ)o(ersal)h(mac)o(hine)g(will)h(\014rst)e(con)o(v)o
(ert)f(its)i(input)g(to)f(a)f(unidirectional)k(QTM)d(using)h(the)g
(construction)f(of)g(the)-75 1529 y(Unidirection)i(Lemma,)e(and)f(then)
h(sim)o(ulate)g(this)g(new)g(QTM)f(b)o(y)h(rep)q(eatedly)h(applying)g
(this)e(unitary)h(transformation)-75 1586 y(and)i(rev)o(ersible)i
(deterministic)g(transformation.)-4 1660 y(Since)h(w)o(e)f(wish)h(to)f
(construct)g(a)g(single)h(mac)o(hine)g(that)f(can)g(sim)o(ulate)h(ev)o
(ery)f(QTM,)g(w)o(e)g(m)o(ust)g(build)i(it)f(in)g(suc)o(h)-75
1716 y(a)h(w)o(a)o(y)f(that)g(ev)o(ery)h(QTM)g(can)g(b)q(e)g(pro)o
(vided)h(as)f(input.)32 b(Muc)o(h)19 b(of)g(the)g(de\014nition)h(of)f
(a)g(QTM)f(is)i(easily)g(enco)q(ded:)-75 1773 y(W)l(e)f(can)g(write)g
(do)o(wn)f(the)h(size)h(of)e(the)h(alphab)q(et)h(\006,)f(with)g(the)g
(\014rst)f(sym)o(b)q(ol)h(assumed)g(to)f(b)q(e)i(the)e(blank)i(sym)o(b)
q(ol,)-75 1829 y(and)c(w)o(e)h(can)f(write)g(do)o(wn)g(the)h(size)g(of)
f(the)g(state)g(set)g Fl(Q)p Fs(,)g(with)h(the)f(\014rst)g(state)f
(assumed)i(to)e(b)q(e)i(the)g(start)e(state.)22 b(T)l(o)-75
1886 y(complete)14 b(the)f(sp)q(eci\014cation,)i(w)o(e)e(need)i(to)d
(describ)q(e)j(the)f(transition)f(function)h Fl(\016)h
Fs(b)o(y)e(giving)i(the)e(2)g(card\(\006\))1812 1865
y Fj(2)1845 1886 y Fs(card\()p Fl(Q)p Fs(\))2002 1865
y Fj(2)-75 1942 y Fs(amplitudes)22 b(of)e(the)h(form)e
Fl(\016)r Fs(\()p Fl(i)472 1949 y Fj(1)491 1942 y Fl(;)8
b(i)528 1949 y Fj(2)547 1942 y Fl(;)g(i)584 1949 y Fj(3)603
1942 y Fl(;)g(i)640 1949 y Fj(4)658 1942 y Fl(;)g(d)p
Fs(\).)34 b(If)21 b(w)o(e)f(had)h(restricted)g(the)g(de\014nition)h(of)
e(a)g(QTM)h(to)f(include)i(only)-75 1999 y(mac)o(hines)17
b(with)g(rational)f(transition)g(amplitudes,)i(then)e(w)o(e)g(could)i
(write)e(do)o(wn)g(eac)o(h)g(amplitude)i(explicitly)h(as)d(the)-75
2055 y(ratio)g(of)g(t)o(w)o(o)g(in)o(tegers.)24 b(Ho)o(w)o(ev)o(er,)15
b(w)o(e)i(ha)o(v)o(e)f(instead)h(restricted)g(the)g(de\014nition)h(of)e
(a)h(QTM)f(to)g(include)j(only)e(those)-75 2112 y(mac)o(hines)h(with)f
(amplitudes)h(in)525 2100 y(~)517 2112 y Fn(C)p Fs(,)f(whic)o(h)h
(means)f(that)f(for)g(eac)o(h)h(amplitude)i(there)e(is)g(a)g
(deterministic)i(algorithm)-75 2168 y(whic)o(h)d(computes)f(the)g
(amplitude's)h(real)f(and)g(imaginary)g(parts)f(to)h(within)h(2)1305
2152 y Fy(\000)p Fk(n)1370 2168 y Fs(in)g(time)f(p)q(olynomial)i(in)e
Fl(n)p Fs(.)20 b(W)l(e)15 b(will)-75 2225 y(therefore)g(sp)q(ecify)h
Fl(\016)g Fs(b)o(y)f(giving)h(a)f(deterministic)h(algorithm)f(that)f
(computes)h(eac)o(h)g(transition)g(amplitude)i(to)d(within)-75
2281 y(2)-52 2265 y Fy(\000)p Fk(n)14 2281 y Fs(in)i(time)f(p)q
(olynomial)i(in)f Fl(n)p Fs(.)-4 2355 y(Since)g(the)e(univ)o(ersal)i
(QTM)e(w)o(e)g(will)j(construct)d(returns)g(its)h(tap)q(e)g(head)g(to)e
(the)i(start)e(cell)k(after)c(sim)o(ulating)j(eac)o(h)-75
2412 y(step)h(of)f(the)i(desired)g(mac)o(hine,)g(it)f(will)h(incur)g(a)
f(slo)o(wdo)o(wn)g(whic)o(h)g(is)h(\(at)e(least\))g(linear)j(in)e
Fl(T)6 b Fs(.)25 b(W)l(e)17 b(conjecture)h(that)-75 2468
y(with)e(more)e(care)h(a)g(univ)o(ersal)i(QTM)e(can)g(b)q(e)h
(constructed)f(whose)g(slo)o(wdo)o(wn)g(is)h(only)f(p)q(olylogarithmic)
i(in)f Fl(T)6 b Fs(.)-75 2572 y Fn(Theorem)17 b(7.0.2)22
b Fr(Ther)n(e)14 b(is)g(a)g(normal)g(form)h(QTM)f Fm(M)g
Fr(such)g(that)h(for)g(any)f(wel)r(l-forme)n(d)g(QTM)g
Fl(M)5 b Fr(,)14 b(any)h Fl(\017)e(>)g Fs(0)p Fr(,)h(and)-75
2629 y(any)i Fl(T)6 b Fr(,)16 b Fm(M)g Fr(c)n(an)g(simulate)g
Fl(M)21 b Fr(with)c(ac)n(cur)n(acy)f Fl(\017)h Fr(for)g
Fl(T)22 b Fr(steps)16 b(with)g(slowdown)g(p)n(olynomial)g(in)g
Fl(T)22 b Fr(and)16 b Fs(1)p Fl(=\017)p Fr(.)951 2779
y Fs(38)p eop
%%Page: 39 39
39 38 bop -75 -26 a Fn(Pro)q(of.)18 b Fs(As)12 b(describ)q(ed)h(ab)q(o)
o(v)o(e,)f(our)f(approac)o(h)g(will)i(b)q(e)f(\014rst)g(to)e(use)i(the)
g(construction)g(of)f(the)g(Unidirection)j(Lemma)e(to)-75
31 y(build)h(a)d(unidirectional)k(QTM)d Fl(M)524 14 y
Fy(0)546 31 y Fs(whic)o(h)h(sim)o(ulates)f Fl(M)16 b
Fs(with)11 b(slo)o(wdo)o(wn)f(b)o(y)h(a)g(factor)f(of)g(5,)h(and)g
(then)g(to)f(sim)o(ulate)i Fl(M)1998 14 y Fy(0)2009 31
y Fs(.)-75 87 y(W)l(e)g(will)h(\014rst)f(describ)q(e)h(the)f(sim)o
(ulation)h(of)e Fl(M)735 71 y Fy(0)747 87 y Fs(,)h(and)f(then)i(return)
e(to)g(describ)q(e)j(the)e(easily)g(computable)h(prepro)q(cessing)-75
144 y(that)h(needs)i(to)f(b)q(e)h(carried)g(out.)-4 218
y(So,)e(supp)q(ose)i Fl(M)i Fs(=)13 b(\(\006)p Fl(;)8
b(Q;)g(\016)r Fs(\))13 b(is)i(a)g(unidirectional)j(QTM)d(that)g(w)o(e)g
(wish)g(to)g(sim)o(ulate)h(on)f(our)g(univ)o(ersal)h(QTM.)-4
292 y(W)l(e)f(start)f(b)o(y)h(reviewing)h(the)f(standard)g(tec)o
(hnique)h(of)f(represen)o(ting)h(the)f(con\014guration)g(of)g(a)f
(target)g(TM)h(on)g(the)-75 348 y(tap)q(e)i(of)f(a)g(univ)o(ersal)i
(TM.)e(W)l(e)g(will)j(use)d(one)h(trac)o(k)f(of)g(the)h(tap)q(e)g(of)f
(our)g(univ)o(ersal)i(QTM)e(to)g(sim)o(ulate)h(the)g(curren)o(t)-75
405 y(con\014guration)d(of)f Fl(M)5 b Fs(.)19 b(Since)c(the)f(alphab)q
(et)h(and)e(state)g(set)h(of)f Fl(M)18 b Fs(could)d(ha)o(v)o(e)e(an)o
(y)h(\014xed)g(size,)g(w)o(e)g(will)h(use)f(a)f(series)h(of)-75
461 y(log)24 b(card\()p Fl(Q)9 b Fm(\002)i Fs(\006\))k(cells)i(of)e
(our)g(tap)q(e,)g(referred)h(to)e(as)h(a)h(\\sup)q(ercell",)g(to)f(sim)
o(ulate)h(eac)o(h)g(cell)h(of)e Fl(M)5 b Fs(.)20 b(Eac)o(h)c(sup)q
(ercell)-75 518 y(holds)g(a)f(pair)g(of)g(in)o(tegers)g
Fl(p;)8 b(\033)16 b Fs(where)g Fl(\033)e Fm(2)f Fs([1)p
Fl(;)8 b Fs(card)o(\(\006\))o(])14 b(represen)o(ts)i(the)f(con)o(ten)o
(ts)f(of)h(the)h(corresp)q(onding)g(cell)h(of)d Fl(M)5
b Fs(,)-75 574 y(and)13 b Fl(p)g Fm(2)g Fs([0)p Fl(;)8
b Fs(card)n(\()p Fl(Q)p Fs(\))o(])13 b(represen)o(ts)g(the)g(state)f
(of)h Fl(M)5 b Fs(,)13 b(if)g(its)g(tap)q(e)g(head)h(is)f(scanning)h
(the)f(corresp)q(onding)h(cell)h(and)e Fl(p)f Fs(=)h(0)-75
631 y(otherwise.)20 b(Since)15 b(the)f(tap)q(e)f(head)h(of)g
Fl(M)k Fs(can)c(only)g(mo)o(v)o(e)f(distance)i Fl(T)k
Fs(a)o(w)o(a)o(y)13 b(from)f(the)i(start)f(cell)i(in)g(time)f
Fl(T)6 b Fs(,)13 b(w)o(e)g(only)-75 687 y(need)j(sup)q(ercells)i(for)c
(the)h(2)p Fl(T)h Fs(+)11 b(1)j(cells)j(at)e(the)g(cen)o(ter)g(of)g
Fl(M)5 b Fs('s)15 b(tap)q(e)g(\(and)g(w)o(e)g(place)h(mark)o(ers)e(to)h
(denote)g(the)h(ends\).)-4 761 y(No)o(w)21 b(w)o(e)g(kno)o(w)g(that)g
(if)h(w)o(e)g(ignore)g(the)g(up)q(date)g(direction,)i(then)e
Fl(\016)i Fs(giv)o(es)e(a)f(unitary)h(transformation)f
Fl(U)26 b Fs(of)-75 818 y(dimension)c Fl(d)e Fs(=)h(card\()p
Fl(Q)9 b Fm(\002)i Fs(\006\))19 b(from)g(sup)q(erp)q(ositions)j(of)d
(curren)o(t)h(state)f(and)h(tap)q(e)g(sym)o(b)q(ol)h(to)e(sup)q(erp)q
(ositions)i(of)-75 874 y(new)c(state)f(and)g(sym)o(b)q(ol.)25
b(So,)16 b(w)o(e)g(can)h(prop)q(erly)h(up)q(date)f(the)f(sup)q(erp)q
(osition)j(on)d(the)h(sim)o(ulation)g(trac)o(ks)f(if)h(w)o(e)f(\014rst)
-75 931 y(apply)f Fl(U)k Fs(to)14 b(the)g(curren)o(t)g(state)f(and)i
(sym)o(b)q(ol)f(of)g Fl(M)5 b Fs(,)14 b(and)h(then)f(mo)o(v)o(e)f(the)i
(new)f(state)g(sp)q(eci\014cation)i(left)e(or)g(righ)o(t)g(one)-75
987 y(sup)q(ercell)k(according)d(to)g(the)g(direction)i(in)f(whic)o(h)g
(that)e(state)g(of)h Fl(M)20 b Fs(can)c(b)q(e)g(en)o(tered.)-4
1061 y(W)l(e)c(will)h(therefore)f(build)i(a)d(QTM)h Fl(S)s(T)6
b(E)s(P)17 b Fs(that)11 b(carries)i(out)e(one)h(step)g(of)g(the)g(sim)o
(ulation)h(as)e(follo)o(ws.)19 b(In)13 b(addition)-75
1118 y(to)j(the)h(sim)o(ulation)h(trac)o(k,)e(this)i(mac)o(hine)f(will)
i(is)e(pro)o(vided)h(as)f(input)g(a)g(desired)h(accuracy)f
Fl(\015)s Fs(,)f(a)h(sp)q(eci\014cation)i(of)d Fl(U)-75
1179 y Fs(\(whic)o(h)i(is)g(guaran)o(teed)f(to)g(b)q(e)549
1159 y Fk(\015)p 486 1168 147 2 v 486 1201 a Fj(2\(10)554
1173 y Fy(p)p 582 1173 19 2 v 582 1201 a Fk(d)p Fj(\))614
1192 y Fb(d)637 1179 y Fs(-close)h(to)f(the)g(unitary\),)h(and)f(a)h
(string)f Fl(s)g Fm(2)f(f)p Fs(0)p Fl(;)8 b Fs(1)p Fm(g)1554
1162 y Fs(card)n Fj(\()p Fk(Q)p Fj(\))1713 1179 y Fs(whic)o(h)18
b(giv)o(es)g(the)-75 1245 y(direction)f(in)f(whic)o(h)g(eac)o(h)f
(state)f(of)h Fl(M)20 b Fs(can)c(b)q(e)f(en)o(tered.)21
b(The)15 b(mac)o(hine)h Fl(S)s(T)6 b(E)s(P)20 b Fs(op)q(erates)15
b(as)g(follo)o(ws.)-19 1369 y(1.)22 b(T)l(ransfer)14
b(the)h(curren)o(t)f(state)g(and)h(sym)o(b)q(ol)g Fl(p)p
Fs(;)8 b Fl(\033)16 b Fs(to)e(empt)o(y)g(w)o(ork)g(space)h(near)g(the)g
(start)e(cell,)j(lea)o(ving)g(a)e(sp)q(ecial)39 1426
y(mark)o(er)g(in)i(their)g(place.)-19 1520 y(2.)22 b(Apply)16
b Fl(U)k Fs(to)15 b Fl(p)p Fs(;)8 b Fl(\033)16 b Fs(to)e(within)i
Fl(\015)s Fs(,)e(transforming)h Fl(p)p Fs(;)8 b Fl(\033)16
b Fs(in)o(to)f(a)g(sup)q(erp)q(osition)i(of)d(new)i(state)e(and)i(sym)o
(b)q(ol)f Fl(q)r Fs(;)8 b Fl(\034)d Fs(.)-19 1613 y(3.)22
b(Rev)o(erse)13 b(Step)f(1,)h(transferring)f Fl(q)r(;)c(\034)16
b Fs(bac)o(k)c(to)g(the)h(mark)o(ed,)f(empt)o(y)g(sup)q(ercell)j(\(and)
d(empt)o(ying)g(the)h(w)o(ork)e(space\).)-19 1707 y(4.)22
b(T)l(ransfer)15 b(the)i(state)e(sp)q(eci\014cation)j
Fl(q)g Fs(one)e(sup)q(ercell)j(to)c(the)i(righ)o(t)e(or)h(left)h(dep)q
(ending)h(whether)e(the)h Fl(q)1863 1691 y Fk(th)1914
1707 y Fs(bit)f(of)39 1764 y Fl(s)f Fs(is)h(a)f(0)g(or)f(1.)-4
1888 y(Using)j(the)f(Sync)o(hronization)i(Theorem)e(on)h(page)f(17,)g
(w)o(e)g(can)g(construct)h(stationary)l(,)e(normal)i(form)e(QTMs)i(for)
-75 1944 y(Steps)d(1,)f(3,)h(and)g(4)f(whic)o(h)i(tak)o(e)e(time)h
(whic)o(h)h(is)f(p)q(olynomial)h(in)g Fl(T)k Fs(and)14
b(\(for)f(a)h(\014xed)g Fl(M)5 b Fs(\))14 b(dep)q(ends)h(only)f(on)g
Fl(T)6 b Fs(.)19 b(Step)14 b(2)-75 2001 y(can)f(b)q(e)g(carried)h(out)e
(in)i(time)f(p)q(olynomial)h(in)g(card\(\006\))o Fl(;)8
b Fs(card)o(\()p Fl(Q)p Fs(\))o Fl(;)13 b Fs(and)f Fl(\015)j
Fs(with)e(the)g(unitary)g(transformation)f(applying)-75
2057 y(QTM)19 b(constructed)h(in)g(the)g(Unitary)g(T)l(ransformation)e
(Theorem.)33 b(With)20 b(appropriate)g(use)f(of)h(Lemmas)f(4.2.1)f(on)
-75 2114 y(page)d(17)f(and)h(4.2.2)f(on)g(page)h(17,)f(do)o(v)o
(etailing)i(these)f(four)g(normal)g(form)f(QTMs)g(giv)o(es)i(us)f(the)g
(desired)h(normal)f(form)-75 2170 y(QTM)g Fl(S)s(T)6
b(E)s(P)g Fs(.)-4 2244 y(Since)14 b(eac)o(h)f(of)g(the)g(four)g(QTMs)g
(tak)o(es)f(time)i(whic)o(h)g(dep)q(ends)g(\(for)e(a)h(\014xed)h
Fl(M)5 b Fs(\))13 b(only)g(on)g Fl(T)19 b Fs(and)14 b
Fl(\017)f Fs(so)g(do)q(es)g Fl(S)s(T)6 b(E)s(P)g Fs(.)-75
2301 y(Therefore,)12 b(if)h(w)o(e)f(insert)h Fl(S)s(T)6
b(E)s(P)17 b Fs(for)11 b(the)i(sp)q(ecial)h(state)d(in)i(the)f(rev)o
(ersible)i(TM)d(constructed)i(in)g(the)f(Lo)q(oping)h(Lemma,)-75
2357 y(and)k(pro)o(vide)f(additional)i(input)g Fl(T)6
b Fs(,)16 b(the)g(resulting)h(QTM)g Fl(S)s(T)6 b(E)s(P)1108
2341 y Fy(0)1134 2357 y Fs(will)18 b(halt)f(after)f(time)g(p)q
(olynomial)i(in)f Fl(T)23 b Fs(and)16 b(1)p Fl(=\017)-75
2414 y Fs(after)e(sim)o(ulating)j Fl(T)k Fs(steps)15
b(of)g Fl(M)20 b Fs(with)15 b(accuracy)h Fl(T)6 b(\017)p
Fs(.)-4 2488 y(Finally)l(,)16 b(w)o(e)e(construct)g(the)h(desired)h
(univ)o(ersal)f(QTM)g Fm(M)f Fs(b)o(y)g(do)o(v)o(etailing)i
Fl(S)s(T)6 b(E)s(P)1470 2471 y Fy(0)1495 2488 y Fs(after)14
b(a)g(QTM)g(whic)o(h)i(carries)-75 2544 y(out)i(the)h(necessary)f
(prepro)q(cessing.)31 b(In)19 b(general,)h(the)f(univ)o(ersal)g(mac)o
(hine)g(m)o(ust)f(sim)o(ulate)i(QTMs)e(whic)o(h)h(are)f(not)-75
2601 y(unidirectional.)k(So,)12 b(the)g(prepro)q(cessing)i(for)d
(desired)j(QTM)e Fl(M)5 b Fs(,)13 b(desired)g(input)g
Fl(x)p Fs(,)g(and)f(desired)i(sim)o(ulation)f(accuracy)951
2779 y(39)p eop
%%Page: 40 40
40 39 bop -75 -26 a Fl(\017)15 b Fs(consists)g(of)g(\014rst)f(carrying)
h(out)f(the)h(construction)g(of)g(Unidirection)i(Lemma)e(to)f(build)j
(a)d(unidirectional)k(QTM)c Fl(M)2010 -42 y Fy(0)-75
31 y Fs(whic)o(h)i(sim)o(ulates)f Fl(M)20 b Fs(with)15
b(slo)o(wdo)o(wn)g(b)o(y)g(a)f(factor)g(of)h(5)930 14
y Fj(3)949 31 y Fs(.)20 b(The)15 b(follo)o(wing)g(inputs)h(are)f(then)g
(computed)g(for)g Fl(S)s(T)6 b(E)s(P)1999 14 y Fy(0)2009
31 y Fs(.)-19 142 y(1.)22 b(The)15 b(prop)q(er)h(2)p
Fl(T)f Fs(+)c(1)k(sup)q(ercell)i(represen)o(tation)e(of)g(the)g
(initial)j(con\014guration)d(of)g Fl(M)1550 126 y Fy(0)1577
142 y Fs(with)g(input)h Fl(x)p Fs(.)-19 236 y(2.)22 b(The)15
b Fl(d)p Fs(-dimensional)i(transformation)d Fl(U)20 b
Fs(for)15 b Fl(M)901 220 y Fy(0)928 236 y Fs(with)g(eac)o(h)g(en)o(try)
g(written)g(to)g(accuracy)1767 218 y Fk(\017)p 1660 225
228 2 v 1660 259 a Fj(40)p Fk(T)5 b Fj(\(10)1772 230
y Fy(p)p 1799 230 19 2 v 1799 259 a Fk(d)p Fj(\))1831
249 y Fb(d)p Fg(+2)-19 343 y Fs(3.)22 b(The)15 b(string)g(of)g
(directions)h Fl(s)g Fs(for)e Fl(M)675 327 y Fy(0)687
343 y Fs(.)-19 437 y(4.)22 b(The)15 b(desired)h(n)o(um)o(b)q(er)g(of)f
(sim)o(ulation)h(steps)f(5)p Fl(T)6 b Fs(,)15 b(and)g(the)g(desired)i
(accuracy)e Fl(\015)g Fs(=)e Fl(\017=)p Fs(40)p Fl(T)6
b Fs(.)-4 549 y(It)20 b(can)h(b)q(e)g(v)o(eri\014ed)g(that)f(eac)o(h)g
(of)g(these)h(inputs)g(to)f Fm(M)g Fs(can)h(b)q(e)g(computed)g(in)g
(deterministic)h(time)f(whic)o(h)g(is)-75 605 y(p)q(olynomial)e(in)f
Fl(T)6 b Fs(,)17 b(1)p Fl(=\017)p Fs(,)g(and)g(the)h(length)f(of)g(the)
g(input.)27 b(If)18 b(the)f(transformation)f Fl(U)22
b Fs(is)17 b(computed)h(to)f(the)g(sp)q(eci\014ed)-75
662 y(accuracy)l(,)f(the)g(transformation)f(actually)i(pro)o(vided)g
(to)e Fl(S)s(T)6 b(E)s(P)22 b Fs(will)17 b(b)q(e)g(within)1467
644 y Fk(\017)p 1379 651 190 2 v 1379 684 a Fj(40)p Fk(T)5
b Fj(\(10)1491 656 y Fy(p)p 1518 656 19 2 v 1518 684
a Fk(d)q Fj(\))1551 675 y Fb(d)1589 662 y Fs(of)16 b(the)g(desired)i
(unitary)-75 729 y Fl(U)5 b Fs(,)14 b(and)g(so)g(will)h(b)q(e)368
711 y Fk(\017)p 280 718 190 2 v 280 758 a Fj(40)p Fk(T)5
b Fj(\(10)392 730 y Fy(p)p 419 730 19 2 v 419 758 a Fk(d)437
737 y Fb(d)456 758 y Fj(\))474 729 y Fs(-close)15 b(to)f(unitary)g(as)g
(required)h(for)e(the)h(op)q(eration)g(of)g Fl(S)s(T)6
b(E)s(P)g Fs(.)19 b(So,)13 b(eac)o(h)i(time)f Fl(S)s(T)6
b(E)s(P)-75 805 y Fs(applies)21 b(runs)f(with)f(accuracy)h
Fl(\017=)p Fs(40)p Fl(T)6 b Fs(,)20 b(it)f(will)i(ha)o(v)o(e)e(applied)
j(a)d(unitary)h(transformation)e(whic)o(h)i(is)g(within)g
Fl(\017=)p Fs(20)p Fl(T)-75 861 y Fs(of)d Fl(U)5 b Fs(.)25
b(Therefore,)17 b(after)f(5)p Fl(T)23 b Fs(runs)17 b(of)g
Fl(S)s(T)6 b(E)s(P)g Fs(,)16 b(w)o(e)h(will)i(ha)o(v)o(e)d(applied)j(a)
e(unitary)g(transformation)f(whic)o(h)i(is)g(within)-75
918 y Fl(\017=)p Fs(4)i(of)f(the)h(5)p Fl(T)26 b Fs(step)20
b(transformation)f(of)g Fl(M)745 901 y Fy(0)757 918 y
Fs(.)34 b(This)21 b(means)f(that)f(observing)h(the)h(sim)o(ulation)g
(trac)o(k)e(of)g Fm(M)h Fs(after)-75 974 y(it)e(has)g(completed)h(will)
g(giv)o(e)g(a)e(sample)i(from)e(a)h(distribution)h(whic)o(h)g(is)f
(within)h(total)f(v)m(ariation)g(distance)h Fl(\017)f
Fs(of)g(the)-75 1031 y(distribution)f(sampled)f(from)e(b)o(y)h
(observing)h Fl(M)k Fs(on)15 b(input)i Fl(x)e Fs(at)f(time)i
Fl(T)6 b Fs(.)769 b Fd(2)-75 1248 y Ft(8)69 b(The)23
b(computational)e(p)r(o)n(w)n(er)i(of)g(QTMs)-75 1367
y Fs(In)14 b(this)f(section,)g(w)o(e)g(explore)h(the)f(computational)g
(p)q(o)o(w)o(er)f(of)h(QTMs)g(from)f(a)g(complexit)o(y)i(theoretic)f(p)
q(oin)o(t)h(of)e(view.)20 b(It)-75 1424 y(is)c(natural)f(to)g(de\014ne)
h(quan)o(tum)f(analogues)g(of)g(classical)i(complexit)o(y)f(classes)g
([13)o(].)k(In)c(classical)g(complexit)o(y)h(theory)l(,)-75
1480 y Fn(BPP)27 b Fs(is)20 b(regarded)f(as)h(the)f(class)h(of)g(all)g
(languages)g(that)f(are)g(e\016cien)o(tly)i(computable)f(on)g(a)f
(classical)i(computer.)-75 1537 y(The)16 b(quan)o(tum)g(analog)f(of)h
Fl(B)r(P)6 b(P)23 b Fs(|)16 b Fl(B)r(QP)23 b Fs(\(b)q(ounded-error)17
b(quan)o(tum)e(p)q(olynomial)j(time\))e(|)g(should)h(similarly)g(b)q(e)
-75 1593 y(regarded)e(as)g(the)g(class)h(of)f(all)h(languages)f(that)f
(are)h(e\016cien)o(tly)i(computable)f(on)f(a)g(QTM.)-75
1733 y Fh(8.1)56 b(Accepting)18 b(languages)g(with)h(QTMs)-75
1836 y Fn(De\014nition)g(8.1.1)j Fr(L)n(et)14 b Fl(M)20
b Fr(b)n(e)15 b(a)g(stationary,)g(normal)g(form,)h(multi-tr)n(ack)f
(QTM)f Fl(M)20 b Fr(whose)15 b(last)g(tr)n(ack)g(has)g(alphab)n(et)-75
1893 y Fm(f)p Fs(#)p Fl(;)8 b Fs(0)p Fl(;)g Fs(1)p Fm(g)p
Fr(.)17 b(If)d(we)g(run)g Fl(M)19 b Fr(with)14 b(string)f
Fl(x)h Fr(on)g(the)g(\014rst)g(tr)n(ack)f(and)h(the)h(empty)f(string)f
(elsewher)n(e,)h(wait)g(until)g Fl(M)19 b Fr(halts)1988
1876 y Fj(4)2008 1893 y Fr(,)-75 1949 y(and)e(then)g(observe)g(the)g
(last)f(tr)n(ack)h(of)h(the)f(start)g(c)n(el)r(l,)f(we)h(wil)r(l)g(se)n
(e)f(a)h Fs(1)g Fr(with)h(some)f(pr)n(ob)n(ability)f
Fl(p)p Fr(.)23 b(We)18 b(wil)r(l)e(say)h(that)-75 2005
y Fl(M)k Fs(accepts)c Fl(x)f Fr(with)h(pr)n(ob)n(ability)f
Fl(p)g Fr(and)g Fs(rejects)g Fl(x)h Fr(with)f(pr)n(ob)n(ability)g
Fs(1)10 b Fm(\000)h Fl(p)p Fr(.)-4 2080 y(Consider)k(any)h(language)g
Fm(L)d(\022)g Fs(\(\006)d Fm(\000)g Fs(#\))717 2063 y
Fy(\003)736 2080 y Fr(.)-4 2154 y(We)18 b(say)h(that)g(QTM)f
Fl(M)24 b Fs(exactly)36 b(accepts)19 b Fr(the)g Fm(L)g
Fr(if)f Fl(M)24 b Fr(ac)n(c)n(epts)18 b(every)g(string)g
Fl(x)f Fm(2)g(L)i Fr(with)g(pr)n(ob)n(ability)g Fs(1)f
Fr(and)-75 2210 y(r)n(eje)n(cts)d(every)h(string)g Fl(x)c
Fm(2)h Fs(\(\006)d Fm(\000)g Fs(#\))559 2194 y Fy(\003)589
2210 y Fm(\000)g(L)17 b Fr(with)g(pr)n(ob)n(ability)f
Fs(1)p Fr(.)-4 2284 y(We)f(de\014ne)e(the)i(class)f Fn(EQP)22
b Fs(\(exact)14 b Fr(or)h Fs(error-free)e(quan)o(tum)g(p)q(olynomial)j
(time\))e Fr(as)h(the)g(set)f(of)h(languages)e(which)-75
2341 y(ar)n(e)k(exactly)f(ac)n(c)n(epte)n(d)g(by)h(some)g(p)n
(olynomial)f(time)h(QTM.)e(Mor)n(e)i(gener)n(al)r(ly,)e(we)i(de\014ne)f
(the)h(class)f Fn(EQTime)8 b Fs(\()p Fl(T)e Fs(\()p Fl(n)p
Fs(\)\))p -75 2383 839 2 v -23 2410 a Fg(3)-6 2426 y
Fp(Note)12 b(that)g(the)g(transition)i(function)f(of)f
Ff(M)640 2410 y Fq(0)663 2426 y Fp(is)g(again)h(sp)q(eci\014ed)h(with)e
(a)g(deterministic)j(algorithm,)f(whic)o(h)e(dep)q(ends)i(on)e(the)g
(algorithm)-75 2471 y(for)h(the)g(transition)i(function)g(of)d
Ff(M)-23 2501 y Fg(4)-6 2517 y Fp(This)j(can)g(b)q(e)g(accomplished)j
(b)o(y)d(p)q(erforming)h(a)e(measuremen)o(t)i(to)e(c)o(hec)o(k)h
(whether)g(the)g(mac)o(hine)h(is)f(in)g(the)g(\014nal)h(state)f
Ff(q)1844 2521 y Fb(f)1864 2517 y Fp(.)21 b(Making)-75
2563 y(this)14 b(partial)h(measuremen)o(t)f(do)q(es)f(not)g(ha)o(v)o(e)
h(an)o(y)g(other)f(e\013ect)g(on)h(the)f(computation)i(of)d(the)i(QTM)
951 2779 y Fs(40)p eop
%%Page: 41 41
41 40 bop -75 -26 a Fr(as)14 b(the)f(set)h(of)g(languages)f(which)h(ar)
n(e)g(exactly)f(ac)n(c)n(epte)n(d)g(by)h(some)g(QTM)e(whose)i(running)f
(time)h(on)f(any)h(input)g(of)g(length)-75 31 y Fl(n)j
Fr(is)e(b)n(ounde)n(d)h(by)h Fl(T)6 b Fs(\()p Fl(n)p
Fs(\))p Fr(.)-4 105 y(A)18 b(QTM)f Fs(accepts)i Fr(the)f(language)g
Fm(L)f(\022)f Fs(\(\006)11 b Fm(\000)h Fs(#\))867 88
y Fy(\003)905 105 y Fs(with)18 b(probabilit)o(y)g Fl(p)g
Fr(if)h Fl(M)k Fr(ac)n(c)n(epts)18 b(with)g(pr)n(ob)n(ability)g(at)h
(le)n(ast)-75 161 y Fl(p)h Fr(every)g(string)f Fl(x)g
Fm(2)h(L)h Fr(and)f(r)n(eje)n(cts)e(with)j(pr)n(ob)n(ability)f(at)g(le)
n(ast)f Fl(p)h Fr(every)g(string)f Fl(x)h Fm(2)f Fs(\(\006)13
b Fm(\000)g Fs(#\))1662 145 y Fy(\003)1694 161 y Fm(\000)g(L)p
Fr(.)33 b(We)20 b(de\014ne)-75 218 y(the)15 b(class)f
Fn(BQP)23 b Fr(\()p Fs(b)q(ounded-error)15 b(quan)o(tum)e(p)q
(olynomial)j(time\))f Fr(as)g(the)h(set)e(of)i(languages)e(which)i(ar)n
(e)f(ac)n(c)n(epte)n(d)g(with)-75 274 y(pr)n(ob)n(ability)f
Fs(2)p Fl(=)p Fs(3)g Fr(by)g(some)g(p)n(olynomial)g(time)h(QTM.)e(Mor)n
(e)h(gener)n(al)r(ly,)g(we)g(de\014ne)g(the)h(class)e
Fn(BQTime)8 b Fs(\()p Fl(T)e Fs(\()p Fl(n)p Fs(\)\))14
b Fr(as)g(the)-75 331 y(set)j(of)h(languages)f(which)h(ar)n(e)f(ac)n(c)
n(epte)n(d)g(with)h(pr)n(ob)n(ability)f Fs(2)p Fl(=)p
Fs(3)g Fr(by)g(some)h(QTM)e(whose)i(running)f(time)g(on)g(any)h(input)
-75 387 y(of)e(length)g Fl(n)h Fr(is)e(b)n(ounde)n(d)h(by)h
Fl(T)6 b Fs(\()p Fl(n)p Fs(\))p Fr(.)-4 505 y Fs(The)14
b(limitation)h(of)e(considering)j(only)e(stationary)l(,)f(normal)h
(form)f(QTMs)g(in)i(these)f(de\014nitions)i(is)e(easily)h(seen)f(not)
-75 562 y(to)f(limit)j(the)e(computational)g(p)q(o)o(w)o(er)g(b)o(y)g
(app)q(ealing)i(to)d(the)h(stationary)l(,)f(normal)h(form)g(univ)o
(ersal)h(QTM)f(constructed)-75 618 y(in)i(Theorem)f(7.0.2)f(on)h(page)g
(38.)-75 757 y Fh(8.2)56 b(Upp)r(er)18 b(and)h(lo)n(w)n(er)g(b)r(ounds)
g(on)g(the)f(p)r(o)n(w)n(er)h(of)g(QTMs)-75 860 y Fs(Clearly)g
Fn(EQP)25 b Fm(\022)18 b Fn(BQP)7 b Fs(.)29 b(Since)19
b(rev)o(ersible)h(TMs)d(are)h(a)f(sp)q(ecial)j(case)e(of)g(QTMs,)g
(Bennett's)g(results)g(imply)i(that)-75 917 y Fn(P)g
Fm(\022)13 b Fn(EQP)23 b Fs(and)15 b Fn(BPP)20 b Fm(\022)13
b Fn(BQP)8 b Fs(.)20 b(W)l(e)15 b(include)j(these)d(t)o(w)o(o)f(simple)
j(pro)q(ofs)d(for)h(completeness.)-75 1035 y Fn(Theorem)i(8.2.1)22
b(P)e Fm(\022)13 b Fn(EQP)-75 1153 y(Pro)q(of.)34 b Fs(Let)20
b Fm(L)g Fs(b)q(e)g(a)g(language)g(in)g Fn(P)8 b Fs(.)33
b(Then)21 b(there)f(is)g(some)f(p)q(olynomial)j(time)e(deterministic)i
(algorithm)e(that)-75 1209 y(on)e(input)g Fl(x)g Fs(pro)q(duces)g
(output)g(1)f(if)h Fl(x)f Fm(2)g(L)h Fs(and)g(0)g(otherwise.)27
b(App)q(ealing)20 b(to)d(the)h(Sync)o(hronization)g(Theorem)g(on)-75
1266 y(page)h(pagerefdet.sync)o(hronized,)h(there)f(is)g(therefore)f(a)
h(stationary)l(,)g(normal)f(form)g(QTM)h(running)h(in)f(p)q(olynomial)
-75 1322 y(time)12 b(whic)o(h)h(on)f(input)h Fl(x)e Fs(pro)q(duces)i
(output)f Fl(x)p Fs(;)c(1)i(if)j Fl(x)f Fm(2)h(L)f Fs(and)g
Fl(x)p Fs(;)c(0)j(otherwise.)19 b(This)13 b(is)f(an)g
Fn(EQP)19 b Fs(mac)o(hine)13 b(accepting)-75 1379 y Fm(L)p
Fs(.)2019 b Fd(2)-75 1553 y Fn(Theorem)17 b(8.2.2)22
b(BPP)e Fm(\022)13 b Fn(BQP)-75 1671 y(Pro)q(of.)31 b
Fs(Let)19 b Fm(L)h Fs(b)q(e)f(a)g(language)g(in)h Fn(BPP)7
b Fs(.)32 b(Then)19 b(there)g(m)o(ust)g(b)q(e)g(a)g(p)q(olynomial)i
Fl(p)p Fs(\()p Fl(n)p Fs(\))d(and)h(a)g(p)q(olynomial)i(time)-75
1728 y(deterministic)d(TM)d Fl(M)21 b Fs(with)c(0)p Fl(;)8
b Fs(1)14 b(output)i(whic)o(h)h(satisfy)f(the)g(follo)o(wing.)23
b(F)l(or)15 b(an)o(y)h(string)f Fl(x)h Fs(of)g(length)h
Fl(n)p Fs(,)f(if)g(w)o(e)g(call)-75 1784 y Fl(S)-47 1791
y Fk(x)-11 1784 y Fs(the)e(set)g(of)f(2)209 1768 y Fk(p)p
Fj(\()p Fk(n)p Fj(\))292 1784 y Fs(bits)h(computed)g(b)o(y)g
Fl(M)19 b Fs(on)14 b(the)g(inputs)h Fl(x)p Fs(;)8 b Fl(y)15
b Fs(with)g Fl(y)f Fm(2)f(f)p Fs(0)p Fl(;)8 b Fs(1)p
Fm(g)1368 1768 y Fk(p)p Fj(\()p Fk(n)p Fj(\))1435 1784
y Fs(,)14 b(then)g(the)g(prop)q(ortion)g(of)g(1's)f(in)-75
1841 y Fl(S)-47 1848 y Fk(x)-10 1841 y Fs(is)k(at)e(least)g(2)p
Fl(=)p Fs(3)g(when)h Fl(x)e Fm(2)f(L)j Fs(and)g(at)f(most)g(1)p
Fl(=)p Fs(3)g(otherwise.)21 b(W)l(e)16 b(can)g(use)g(a)f(QTM)g(to)g
(decide)j(whether)e(a)f(string)-75 1897 y Fl(x)g Fs(in)h(the)f
(language)g Fm(L)g Fs(b)o(y)g(\014rst)g(breaking)g(in)o(to)g(a)g(sup)q
(erp)q(osition)h(split)g(equally)h(among)d(all)i Fm(j)p
Fl(x)p Fm(i)o(j)p Fl(y)r Fm(i)e Fs(and)i(then)f(running)-75
1954 y(this)h(deterministic)h(algorithm.)-4 2028 y(First,)23
b(w)o(e)g(do)o(v)o(etail)g(a)f(stationary)l(,)i(normal)e(form)g(QTM)h
(whic)o(h)g(tak)o(es)f(input)i Fl(x)e Fs(to)h(output)f
Fl(x)p Fs(;)8 b(0)1798 2011 y Fk(p)p Fj(\()p Fk(n)p Fj(\))1888
2028 y Fs(with)23 b(a)-75 2084 y(stationary)l(,)13 b(normal)g(form)g
(QTM)g(constructed)h(as)f(in)i(Theorem)e(8.4.1)f(b)q(elo)o(w)i(whic)o
(h)g(applies)h(a)f(F)l(ourier)f(transform)g(to)-75 2141
y(the)i(con)o(ten)o(ts)f(of)g(its)g(second)h(trac)o(k.)k(This)c(giv)o
(es)g(us)g(a)f(stationary)l(,)g(normal)g(form)g(QTM)g(whic)o(h)i(on)e
(input)i Fl(x)e Fs(pro)q(duces)-75 2197 y(the)k(sup)q(erp)q(osition)289
2165 y Fi(P)333 2210 y Fk(y)q Fy(2f)p Fj(0)p Fk(;)p Fj(1)p
Fy(g)457 2200 y Fb(p)p Fg(\()p Fb(n)p Fg(\))577 2179
y Fj(1)p 531 2186 111 2 v 531 2217 a(2)549 2207 y Fb(p)p
Fg(\()p Fb(n)p Fg(\))p Fb(=)p Fg(2)646 2197 y Fm(j)p
Fl(x)p Fm(i)o(j)p Fl(y)r Fm(i)p Fs(.)26 b(Do)o(v)o(etailing)18
b(this)g(with)g(a)f(sync)o(hronized,)i(normal)f(form)f(v)o(ersion)g(of)
-75 2254 y Fl(M)23 b Fs(built)c(according)g(to)e(the)h(Sync)o
(hronization)h(Theorem)f(on)g(page)g(pagerefdet.sync)o(hronized)h(giv)o
(es)f(a)f(p)q(olynomial)-75 2310 y(time)f(QTM)f(whic)o(h)h(on)f(input)h
Fl(x)f Fs(pro)q(duces)h(a)f(\014nal)h(sup)q(erp)q(osition)724
2383 y Fi(X)662 2481 y Fk(y)q Fy(2f)p Fj(0)p Fk(;)p Fj(1)p
Fy(g)786 2471 y Fb(p)p Fg(\()p Fb(n)p Fg(\))910 2393
y Fs(1)p 858 2413 127 2 v 858 2456 a(2)881 2443 y Fk(p)p
Fj(\()p Fk(n)p Fj(\))p Fk(=)p Fj(2)990 2424 y Fm(j)p
Fl(x)p Fm(i)o(j)p Fl(y)r Fm(i)o(j)p Fl(M)5 b Fs(\()p
Fl(x)p Fs(;)j Fl(y)r Fs(\))p Fm(i)-75 2572 y Fs(Since)18
b(the)e(prop)q(ortion)g(of)f(1's)h(in)h Fl(S)555 2579
y Fk(x)592 2572 y Fs(is)g(at)e(least)h(2)p Fl(=)p Fs(3)g(if)g
Fl(x)e Fm(2)g(L)j Fs(and)f(at)f(most)h(1)p Fl(=)p Fs(3)f(otherwise,)h
(observing)g(the)g(bit)h(on)-75 2629 y(the)e(third)g(trac)o(k)e(will)j
(giv)o(e)f(the)g(prop)q(er)g(classi\014cation)h(for)d(string)i
Fl(x)f Fs(with)h(probabilit)o(y)h(at)e(least)h(2)p Fl(=)p
Fs(3.)j(Therefore,)d(this)951 2779 y(41)p eop
%%Page: 42 42
42 41 bop -75 -26 a Fs(is)16 b(a)f Fn(BQP)22 b Fs(mac)o(hine)17
b(accepting)f(the)f(language)g Fm(L)p Fs(.)1153 b Fd(2)-4
105 y Fs(Clearly)14 b Fn(BQP)21 b Fs(is)14 b(in)h(exp)q(onen)o(tial)g
(time.)k(The)14 b(next)g(result)g(giv)o(es)f(the)h(\014rst)f
(non-trivial)i(upp)q(er)g(b)q(ound)f(on)g Fn(BQP)7 b
Fs(.)-75 228 y Fn(Theorem)17 b(8.2.3)22 b(BQP)f Fm(\022)13
b Fn(PSP)l(A)o(CE)-75 351 y(Pro)q(of.)20 b Fs(Let)15
b Fl(M)j Fs(=)13 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))k(b)q(e)k(a)f
Fn(BQP)23 b Fs(mac)o(hine)16 b(with)g(running)g(time)f
Fl(p)p Fs(\()p Fl(n)p Fs(\).)-4 425 y(According)h(to)e(Theorem)h(3.4.3)
f(on)h(page)g(13,)f(an)o(y)h(QTM)g Fl(M)1070 408 y Fy(0)1097
425 y Fs(whic)o(h)h(is)910 502 y Fl(\017)p 683 522 473
2 v 683 564 a Fs(24)e(card\(\006\))h(card\()p Fl(Q)p
Fs(\))o Fl(p)p Fs(\()p Fl(n)p Fs(\))1160 533 y(-close)-75
658 y(to)k Fl(M)24 b Fs(will)d(sim)o(ulate)e Fl(M)24
b Fs(for)19 b Fl(p)p Fs(\()p Fl(n)p Fs(\))g(steps)g(with)g(accuracy)h
Fl(\017)p Fs(.)32 b(If)19 b(w)o(e)g(sim)o(ulate)h Fl(M)k
Fs(with)19 b(accuracy)h(1)p Fl(=)p Fs(12,)e(then)i(the)-75
715 y(success)15 b(probabilit)o(y)g(will)h(still)g(b)q(e)f(at)f(least)g
(7)p Fl(=)p Fs(12.)k(Therefore,)c(w)o(e)g(need)h(only)g(w)o(ork)e(with)
i(the)f(QTM)g Fl(M)1778 698 y Fy(0)1804 715 y Fs(where)h(eac)o(h)-75
771 y(transition)g(amplitude)i(from)e Fl(M)20 b Fs(is)15
b(computed)h(to)f(its)g(\014rst)g(log)8 b(\(288)14 b(card\(\006\))g
(card\()p Fl(Q)p Fs(\))p Fl(p)p Fs(\()p Fl(n)p Fs(\))o(\))h(bits.)-4
845 y(No)o(w)k(the)h(amplitude)h(of)e(an)o(y)h(particular)g
(con\014guration)g(at)f(time)h Fl(T)26 b Fs(is)20 b(the)g(sum)g(of)f
(the)h(amplitudes)i(of)d(eac)o(h)-75 902 y(p)q(ossible)f(computational)
f(path)g(of)f Fl(M)609 885 y Fy(0)637 902 y Fs(of)h(length)g
Fl(T)23 b Fs(from)15 b(the)i(start)f(con\014guration)g(to)h(the)f
(desired)i(con\014guration.)-75 958 y(The)d(amplitude)h(of)e(eac)o(h)h
(suc)o(h)g(path)g(can)g(b)q(e)g(computed)g(exactly)g(in)h(p)q
(olynomial)g(time.)k(So,)15 b(if)g(w)o(e)f(main)o(tain)h(a)g(stac)o(k)
-75 1015 y(of)e(at)f(most)g Fl(p)p Fs(\()p Fl(n)p Fs(\))h(in)o
(termediate)h(con\014gurations)f(w)o(e)g(can)g(carry)g(out)g(a)f
(depth-\014rst)i(searc)o(h)f(of)f(the)i(computational)f(tree)-75
1071 y(to)k(calculate)i(the)f(amplitude)h(of)e(an)o(y)g(particular)h
(con\014guration)g(using)h(only)f(p)q(olynomial)h(space)f(\(but)f(exp)q
(onen)o(tial)-75 1128 y(time\).)-4 1202 y(Finally)l(,)h(w)o(e)e(can)h
(determine)g(whether)g(a)f(string)h Fl(x)f Fs(of)g(length)i
Fl(n)e Fs(is)h(accepted)h(b)o(y)e Fl(M)22 b Fs(b)o(y)16
b(computing)h(the)g(sum)f(of)-75 1258 y(squared)e(magnitudes)g(at)f
(time)g Fl(p)p Fs(\()p Fl(n)p Fs(\))g(of)h(all)g(con\014gurations)g
(that)f Fl(M)1137 1242 y Fy(0)1162 1258 y Fs(can)g(reac)o(h)h(that)f
(ha)o(v)o(e)g(a)g(1)g(in)i(the)e(start)g(cell)i(and)-75
1315 y(comparing)f(this)h(sum)f(to)g(7)p Fl(=)p Fs(12.)k(Clearly)d(the)
f(only)h(reac)o(hable)g(\\accepting")f(con\014gurations)g(of)g
Fl(M)1678 1298 y Fy(0)1704 1315 y Fs(are)g(those)g(with)g(a)-75
1371 y(1)g(in)g(the)g(start)f(cell)i(and)f(blanks)h(in)f(all)h(but)f
(the)g(2)p Fl(p)p Fs(\()p Fl(n)p Fs(\))f(cells)i(within)g(distance)g
Fl(p)p Fs(\()p Fl(n)p Fs(\))e(of)h(the)g(start)e(cell.)21
b(So,)14 b(using)g(only)-75 1428 y(p)q(olynomial)19 b(space,)f(w)o(e)f
(can)g(step)g(through)g(all)h(of)f(these)h(con\014gurations)f
(computing)h(a)f(running)h(sum)f(of)g(the)g(their)-75
1484 y(squared)e(magnitudes.)1655 b Fd(2)-4 1615 y Fs(F)l(ollo)o(wing)
20 b(V)l(alian)o(t's)f(suggestion)h([43)o(],)g(the)f(upp)q(er)i(b)q
(ound)f(can)g(b)q(e)g(further)f(impro)o(v)o(ed)h(to)f
Fn(P)1703 1598 y Fl(])p Fn(P)1765 1615 y Fs(.)32 b(This)20
b(pro)q(of)-75 1671 y(can)c(b)q(e)h(simpli\014ed)i(b)o(y)d(using)h(a)f
(theorem)g(from)f([9])g(whic)o(h)i(sho)o(ws)f(ho)o(w)g(an)o(y)f
Fn(BQP)24 b Fs(mac)o(hine)17 b(can)g(b)q(e)g(turned)f(in)o(to)g(a)-75
1728 y(\\clean")f(v)o(ersion)g Fl(M)20 b Fs(that)13 b(on)i(input)h
Fl(x)e Fs(pro)q(duces)i(a)e(\014nal)h(sup)q(erp)q(osition)i(with)e
(almost)f(all)h(of)g(its)g(w)o(eigh)o(t)f(on)g Fl(x)p
Fs(;)8 b Fl(M)d Fs(\()p Fl(x)p Fs(\))-75 1784 y(where)15
b Fl(M)5 b Fs(\()p Fl(x)p Fs(\))15 b(is)h(a)f(1)g(if)g
Fl(M)21 b Fs(accepts)15 b Fl(x)g Fs(and)g(a)g(0)g(otherwise.)20
b(This)c(means)f(w)o(e)g(need)i(only)e(estimate)g(the)h(amplitude)g(of)
-75 1840 y(this)g(one)f(con\014guration)g(in)h(the)g(\014nal)g(sup)q
(erp)q(osition)h(of)d Fl(M)5 b Fs(.)-4 1915 y(No)o(w,)10
b(the)h(amplitude)h(of)e(a)g(single)i(con\014guration)e(can)h(b)q(e)g
(brok)o(en)g(do)o(wn)f(not)g(only)h(in)o(to)g(the)f(sum)h(of)f(the)h
(amplitudes)-75 1971 y(of)17 b(all)i(of)f(the)f(computational)i(paths)e
(that)g(reac)o(h)h(it,)g(but)g(also)g(in)o(to)g(the)g(sum)g(of)f(p)q
(ositiv)o(e)i(real)f(con)o(tributions,)h(the)-75 2028
y(sum)d(of)g(negativ)o(e)g(real)h(con)o(tributions,)g(the)f(sum)g(of)g
(p)q(ositiv)o(e)h(imaginary)f(con)o(tributions,)h(and)g(the)f(sum)g(of)
g(negativ)o(e)-75 2084 y(imaginary)d(con)o(tributions.)19
b(W)l(e)13 b(will)h(sho)o(w)e(that)f(eac)o(h)i(of)f(these)g(four)g
(pieces)i(can)e(b)q(e)h(computed)g(using)g(a)f Fl(])p
Fn(P)19 b Fs(mac)o(hine.)-4 2158 y(Recall)c(that)e Fl(])p
Fn(P)21 b Fs(is)14 b(the)g(set)f(of)g(functions)i Fl(f)k
Fs(mapping)14 b(strings)g(to)f(in)o(tegers)h(for)f(whic)o(h)h(there)g
(exists)g(a)f(p)q(olynomial)-75 2215 y Fl(p)p Fs(\()p
Fl(n)p Fs(\))h(and)h(a)g(language)g Fm(L)e(2)g Fn(P)22
b Fs(suc)o(h)15 b(that)g(for)f(an)o(y)g(string)h Fl(x)p
Fs(,)g(the)g(v)m(alue)h Fl(f)5 b Fs(\()p Fl(x)p Fs(\))14
b(is)i(the)f(n)o(um)o(b)q(er)g(of)f(strings)h Fl(y)i
Fs(of)d(length)-75 2271 y Fl(p)p Fs(\()p Fm(j)p Fl(x)p
Fm(j)o Fs(\))h(for)f(whic)o(h)i Fl(xy)h Fs(is)f(con)o(tained)g(in)g
Fm(L)p Fs(.)-75 2394 y Fn(Theorem)h(8.2.4)22 b Fr(If)c(the)h(language)f
Fm(L)h Fr(is)f(c)n(ontaine)n(d)g(in)g(the)h(class)e Fn(BQTime)8
b Fs(\()p Fl(T)e Fs(\()p Fl(n)p Fs(\)\))18 b Fr(with)h
Fl(T)6 b Fs(\()p Fl(n)p Fs(\))16 b Fl(>)h(n)p Fr(,)i(with)g
Fl(T)6 b Fs(\()p Fl(n)p Fs(\))-75 2450 y Fr(time-c)n(onstructible,)16
b(then)g(for)h(any)f Fl(\017)e(>)f Fs(0)p Fr(,)k(ther)n(e)f(is)g(a)h
(QTM)f Fl(M)1078 2434 y Fy(0)1106 2450 y Fr(which)h(ac)n(c)n(epts)f
Fm(L)h Fr(with)g(pr)n(ob)n(ability)f Fs(1)10 b Fm(\000)g
Fl(\017)17 b Fr(and)g(has)-75 2507 y(the)g(fol)r(lowing)g(pr)n(op)n
(erty.)23 b(When)17 b(run)g(on)f(input)h Fl(x)g Fr(of)g(length)g
Fl(n)p Fr(,)g Fl(M)1134 2490 y Fy(0)1162 2507 y Fr(runs)g(for)g(time)g
(b)n(ounde)n(d)g(by)g Fl(cT)6 b Fs(\()p Fl(n)p Fs(\))p
Fr(,)16 b(wher)n(e)h Fl(c)f Fr(is)-75 2563 y(a)g(p)n(olynomial)g(in)f
Fs(log)9 b(1)p Fl(=\017)p Fr(,)15 b(and)h(pr)n(o)n(duc)n(es)g(a)g
(\014nal)f(sup)n(erp)n(osition)h(in)f(which)i Fm(j)p
Fl(x)p Fm(i)o(jL)p Fs(\()p Fl(x)p Fs(\))p Fm(i)o Fr(,)f(with)g
Fm(L)p Fs(\()p Fl(x)p Fs(\))d(=)g(1)i Fr(if)h Fl(x)d
Fm(2)g(L)j Fr(and)-75 2620 y Fs(0)g Fr(otherwise,)g(has)h(squar)n(e)n
(d)f(magnitude)h(at)f(le)n(ast)g Fs(1)9 b Fm(\000)i Fl(\017)p
Fr(.)951 2779 y Fs(42)p eop
%%Page: 43 43
43 42 bop -75 -23 a Fn(Theorem)17 b(8.2.5)22 b(BQP)f
Fm(\022)13 b Fn(P)501 -40 y Fl(])p Fn(P)-75 101 y(Pro)q(of.)23
b Fs(Let)17 b Fl(M)i Fs(=)c(\(\006)p Fl(;)8 b(Q;)g(\016)r
Fs(\))14 b(b)q(e)j(a)f Fn(BQP)24 b Fs(mac)o(hine)17 b(with)g(observ)m
(ation)g(time)f Fl(p)p Fs(\()p Fl(n)p Fs(\).)23 b(App)q(ealing)c(to)c
(Theorem)i(8.2.4)-75 157 y(ab)q(o)o(v)o(e,)f(w)o(e)g(can)g(without)g
(loss)g(of)g(generalit)o(y)h(that)e Fl(M)21 b Fs(is)c(a)f(`clean)h
Fn(BQP)24 b Fs(mac)o(hine'.)f(i.e.)g(on)16 b(an)o(y)g(input)h
Fl(x)p Fs(,)f(at)g(time)-75 214 y Fl(p)p Fs(\()p Fm(j)p
Fl(x)p Fm(j)o Fs(\),)e(the)i(squared)f(magnitude)h(of)e(the)i(\014nal)g
(con\014guration)f(with)h(output)f Fl(x)p Fs(;)8 b Fl(M)d
Fs(\()p Fl(x)p Fs(\))13 b(is)j(at)f(least)g(2)p Fl(=)p
Fs(3.)-4 288 y(No)o(w)j(as)g(ab)q(o)o(v)o(e,)h(w)o(e)f(will)j(app)q
(eal)f(to)e(Theorem)g(3.4.3)f(on)i(page)g(13)f(whic)o(h)i(tells)f(us)g
(that)f(if)h(w)o(e)g(w)o(ork)f(with)h(the)-75 344 y(QTM)c
Fl(M)99 328 y Fy(0)125 344 y Fs(where)h(eac)o(h)f(amplitude)h(of)f
Fl(M)20 b Fs(is)15 b(computed)g(to)g(its)g(\014rst)g
Fl(b)d Fs(=)h(log)8 b(\(288)14 b(card\(\006\))g(card\()p
Fl(Q)p Fs(\))p Fl(p)p Fs(\()p Fl(n)p Fs(\))o(\))h(bits,)g(and)-75
401 y(w)o(e)i(run)g Fl(M)128 384 y Fy(0)156 401 y Fs(on)g(input)h
Fl(x)p Fs(,)f(then)g(the)g(squared)g(magnitude)g(at)f(time)i
Fl(p)p Fs(\()p Fm(j)p Fl(x)p Fm(j)n Fs(\))f(of)f(the)h(\014nal)h
(con\014guration)f(with)g(output)-75 457 y Fl(x)p Fs(;)8
b Fl(M)d Fs(\()p Fl(x)p Fs(\))14 b(will)j(b)q(e)e(at)g(least)g(7)p
Fl(=)p Fs(12.)-4 531 y(W)l(e)i(will)j(carry)d(out)g(the)h(pro)q(of)f(b)
o(y)h(sho)o(wing)g(ho)o(w)f(to)g(use)h(an)f(oracle)h(for)f(the)h(class)
g Fl(])p Fn(P)25 b Fs(to)17 b(e\016cien)o(tly)i(compute)-75
588 y(with)e(error)e(magnitude)i(less)g(than)f(1)p Fl(=)p
Fs(36)f(the)i(amplitude)g(of)f(the)h(\014nal)g(con\014guration)f
Fl(x)p Fs(;)8 b(1)15 b(of)h Fl(M)1660 571 y Fy(0)1688
588 y Fs(at)g(time)g Fl(T)6 b Fs(.)23 b(Since)-75 644
y(the)13 b(true)h(amplitude)h(has)e(magnitude)h(at)e(most)h(1,)g(the)g
(squared)h(magnitude)g(of)f(this)h(appro)o(ximated)f(amplitude)i(m)o
(ust)-75 701 y(b)q(e)g(within)h(1)p Fl(=)p Fs(12)d(of)h(the)g(squared)h
(magnitude)g(of)f(the)g(true)h(amplitude.)21 b(T)l(o)14
b(see)h(this,)f(just)g(note)g(that)g(if)h Fl(\013)g Fs(is)g(the)f(true)
-75 757 y(amplitude,)i(and)g Fm(k)p Fl(\013)293 741 y
Fy(0)314 757 y Fm(\000)11 b Fl(\013)p Fm(k)h Fl(<)h Fs(1)p
Fl(=)p Fs(36,)h(then)290 818 y Fi(\014)290 843 y(\014)290
868 y(\014)304 867 y Fm(k)p Fl(\013)p Fm(k)379 846 y
Fj(2)408 867 y Fm(\000)d(k)p Fl(\013)506 848 y Fy(0)517
867 y Fm(k)540 843 y Fj(2)560 818 y Fi(\014)560 843 y(\014)560
868 y(\014)586 867 y Fm(\024)i(k)p Fl(\013)686 848 y
Fy(0)708 867 y Fm(\000)e Fl(\013)p Fm(k)806 843 y Fj(2)835
867 y Fs(+)g(2)p Fm(k)p Fl(\013)p Fm(k)o(k)p Fl(\013)1030
848 y Fy(0)1052 867 y Fm(\000)f Fl(\013)p Fm(k)j(\024)g
Fs(1)p Fl(=)p Fs(36\(2)8 b(+)j(1)p Fl(=)p Fs(36\))g Fl(<)i
Fs(1)p Fl(=)p Fs(12)-75 978 y(Since)h(the)e(success)h(probabilit)o(y)g
(of)f Fl(M)595 961 y Fy(0)619 978 y Fs(is)g(at)g(least)g(7)p
Fl(=)p Fs(12,)f(comparing)i(the)f(squared)g(magnitude)h(of)f(this)g
(appro)o(ximated)-75 1034 y(amplitude)17 b(to)d(1)p Fl(=)p
Fs(2)h(lets)g(us)g(correctly)h(classify)g(the)f(string)g
Fl(x)p Fs(.)-4 1108 y(W)l(e)e(will)h(no)o(w)f(sho)o(w)f(ho)o(w)g(to)h
(appro)o(ximate)f(the)h(amplitude)h(describ)q(ed)h(ab)q(o)o(v)o(e.)k
(First,)13 b(notice)g(that)f(the)i(amplitude)-75 1165
y(of)f(a)h(con\014guration)g(at)f(time)h Fl(T)20 b Fs(is)14
b(the)g(sum)g(of)f(the)h(amplitudes)h(of)f(eac)o(h)g(computational)g
(path)f(of)h(length)g Fl(T)20 b Fs(from)13 b(the)-75
1221 y(start)e(con\014guration)i(to)f(the)h(desired)h(con\014guration.)
19 b(The)13 b(amplitude)h(of)e(an)o(y)g(particular)h(path)g(is)g(the)g
(pro)q(duct)g(of)f(the)-75 1278 y(amplitudes)i(in)f(the)f(transition)h
(function)g(of)f Fl(M)758 1261 y Fy(0)782 1278 y Fs(used)h(in)g(eac)o
(h)g(step)f(along)g(the)h(path.)19 b(Since)13 b(eac)o(h)g(amplitude)h
(consists)-75 1334 y(of)j(a)g(real)g(part)g(and)g(an)g(imaginary)h
(part,)e(w)o(e)h(can)h(think)f(of)g(this)h(pro)q(duct)f(as)g
(consisting)h(of)f(the)g(sum)g(of)g(2)1866 1318 y Fk(T)1911
1334 y Fs(terms)-75 1391 y(eac)o(h)f(of)g(whic)o(h)h(is)f(either)h
(purely)g(real)g(or)e(purely)j(imaginary)l(.)23 b(So,)15
b(the)i(amplitude)g(of)f(the)g(desired)h(con\014guration)g(at)-75
1447 y(time)g Fl(T)22 b Fs(is)16 b(the)h(sum)f(of)g(these)g(2)495
1431 y Fk(T)539 1447 y Fs(terms)f(o)o(v)o(er)h(eac)o(h)g(path.)23
b(W)l(e)16 b(will)i(break)e(this)h(sum)f(in)o(to)g(four)g(pieces,)i
(the)e(sum)g(of)-75 1504 y(the)g(p)q(ositiv)o(e)h(real)f(terms,)f(the)h
(sum)g(of)f(the)h(negativ)o(e)g(real)g(terms,)f(the)h(sum)g(of)g(the)g
(p)q(ositiv)o(e)h(imaginary)f(terms,)f(and)-75 1560 y(the)i(sum)f(of)h
(the)f(negativ)o(e)h(imaginary)g(terms,)f(and)h(w)o(e)f(will)i(compute)
f(eac)o(h)g(to)f(within)i(error)e(magnitude)h(less)g(than)-75
1616 y(1)p Fl(=)p Fs(144)12 b(with)i(the)g(aid)h(of)e(a)g
Fl(])p Fn(P)21 b Fs(algorithm.)e(T)l(aking)c(the)e(di\013erence)i(of)f
(the)g(\014rst)f(t)o(w)o(o)f(and)i(the)g(last)g(t)o(w)o(o)e(will)k
(then)e(giv)o(e)-75 1673 y(us)h(the)h(amplitude)g(of)f(the)g(desired)i
(con\014guration)e(to)g(with)g(error)g(of)f(magnitude)i(at)f(most)f(1)p
Fl(=)p Fs(36)g(as)h(desired.)-4 1747 y(W)l(e)h(can)g(compute)g(the)g
(sum)g(of)g(the)g(p)q(ositiv)o(e)h(real)g(con)o(tributions)f(for)g(all)
h(paths)f(as)f(follo)o(ws.)23 b(Supp)q(ose)17 b(for)e(some)-75
1804 y(\014xed)g(constan)o(t)e Fl(c)h Fs(whic)o(h)h(is)g(p)q(olynomial)
h(in)f Fl(T)21 b Fs(w)o(e)14 b(are)g(giv)o(en)g(the)h(follo)o(wing)g
(three)f(inputs,)h(all)g(of)f(length)h(p)q(olynomial)-75
1860 y(in)20 b Fl(T)6 b Fs(:)26 b(a)19 b(sp)q(eci\014cation)i(of)d(a)g
Fl(T)25 b Fs(step)19 b(computational)g(path)f Fl(p)h
Fs(of)f Fl(M)1166 1843 y Fy(0)1178 1860 y Fs(,)h(a)g(sp)q
(eci\014cation)h Fl(t)f Fs(of)g(one)g(of)f(the)h(2)1852
1843 y Fk(T)1898 1860 y Fs(terms,)-75 1916 y(and)f(an)h(in)o(teger)f
Fl(w)h Fs(b)q(et)o(w)o(een)g(0)f(and)g(2)622 1900 y Fk(cT)664
1916 y Fs(.)29 b(Then)19 b(it)g(is)f(easy)h(to)e(see)i(that)e(w)o(e)h
(could)h(decide)h(in)f(deterministic)i(time)-75 1973
y(p)q(olynomial)f(in)g Fl(T)k Fs(whether)19 b Fl(p)g
Fs(is)g(really)g(a)g(path)f(from)g(the)h(start)e(con\014guration)i(of)g
Fl(M)k Fs(on)c Fl(x)f Fs(to)g(the)h(desired)h(\014nal)-75
2029 y(con\014guration,)14 b(whether)h(the)g(term)f Fl(t)h
Fs(is)g(real)g(and)f(p)q(ositiv)o(e,)i(and)e(whether)h(the)g(term)f
Fl(t)1467 2013 y Fk(th)1517 2029 y Fs(term)g(of)g(the)h(amplitude)h
(for)-75 2086 y(path)f Fl(p)h Fs(is)g(greater)f(than)g
Fl(w)q(=)p Fs(2)457 2069 y Fk(cT)499 2086 y Fs(.)21 b(If)16
b(w)o(e)f(\014x)h(a)g(path)f Fl(p)g Fs(and)h(term)f Fl(t)h
Fs(satisfying)g(these)g(constrain)o(ts,)f(then)h(the)g(n)o(um)o(b)q(er)
-75 2142 y(of)h Fl(w)h Fs(for)e(whic)o(h)i(this)g(algorithm)f(accepts,)
h(divided)h(b)o(y)e(2)958 2126 y Fk(cT)1001 2142 y Fs(,)g(is)h(within)g
(1)p Fl(=)p Fs(2)1291 2126 y Fk(cT)1350 2142 y Fs(of)f(the)h(v)m(alue)g
(of)f(the)g Fl(t)1754 2126 y Fk(th)1807 2142 y Fs(for)f(path)i
Fl(p)p Fs(.)-75 2199 y(So,)g(if)g(w)o(e)f(\014x)h(only)h(a)e(path)h
Fl(p)f Fs(satisfying)h(these)g(constrain)o(ts,)f(then)h(the)g(n)o(um)o
(b)q(er)g(of)g Fl(t;)8 b(w)18 b Fs(for)f(whic)o(h)h(the)g(algorithm)-75
2255 y(accepts,)g(divided)i(b)o(y)d(2)351 2239 y Fk(cT)394
2255 y Fs(,)g(is)h(within)h(1)p Fl(=)p Fs(2)685 2239
y Fj(\()p Fk(c)p Fy(\000)p Fj(1\))p Fk(T)817 2255 y Fs(of)e(the)h(sum)f
(of)g(the)h(p)q(ositiv)o(e)h(real)e(terms)g(for)g(path)h
Fl(p)p Fs(.)26 b(Therefore,)-75 2312 y(the)17 b(n)o(um)o(b)q(er)h(of)e
Fl(p;)8 b(t;)g(w)17 b Fs(for)f(whic)o(h)i(the)f(algorithm)h(accepts,)f
(divided)i(b)o(y)e(2)1274 2295 y Fk(cT)1317 2312 y Fs(,)g(is)h(within)g
Fl(N)q(=)p Fs(2)1622 2295 y Fj(\()p Fk(c)p Fy(\000)p
Fj(1\))p Fk(T)1753 2312 y Fs(of)f(the)g(sum)g(of)-75
2368 y(all)h(of)e(the)h(p)q(ositiv)o(e)h(real)g(terms)e(of)g(all)i(of)f
(the)g Fl(T)23 b Fs(step)17 b(paths)f(of)h Fl(M)1140
2352 y Fy(0)1168 2368 y Fs(from)g(the)g(start)e(con\014guration)i(to)g
(the)g(desired)-75 2425 y(con\014guration.)j(Since)15
b(there)f(are)f(at)g(most)g(2card\(\006\))o(card\()p
Fl(Q)p Fs(\))g(p)q(ossible)i(successors)f(for)f(an)o(y)g
(con\014guration)h(in)h(a)e(legal)-75 2494 y(path)19
b(of)f Fl(M)5 b Fs(,)19 b(c)o(ho)q(osing)h Fl(c)e(>)h
Fs(1)12 b(+)540 2473 y Fj(log)6 b(144)p 540 2483 105
2 v 580 2509 a Fk(T)662 2494 y Fs(+)715 2472 y Fj(2)p
Fs(card)p Fj(\(\006\))p Fs(card)p Fj(\()p Fk(Q)p Fj(\))f(log)g
Fk(T)p 715 2483 381 2 v 893 2509 a(T)1119 2494 y Fs(giv)o(es)19
b Fl(N)q(=)p Fs(2)1318 2477 y Fj(\()p Fk(c)p Fy(\000)p
Fj(1\))p Fk(T)1452 2494 y Fl(<)g Fs(1)p Fl(=)p Fs(144)e(as)h(desired.)
32 b(Similar)-75 2562 y(reasoning)15 b(giv)o(es)h Fn(P)282
2545 y Fl(])p Fn(P)359 2562 y Fs(algorithms)f(for)f(appro)o(ximating)h
(eac)o(h)h(of)e(the)i(remaining)g(three)f(sums)g(of)g(terms.)180
b Fd(2)951 2779 y Fs(43)p eop
%%Page: 44 44
44 43 bop -75 -26 a Fh(8.3)56 b(Oracle)18 b(QTMs)-75
78 y Fs(In)e(this)h(subsection)g(and)f(the)g(next,)f(w)o(e)h(will)h
(assume)f(without)g(loss)g(of)f(generalit)o(y)i(that)e(the)h(TM)f
(alphab)q(et)i(for)e(eac)o(h)-75 134 y(trac)o(k)20 b(is)i
Fm(f)p Fs(0)p Fl(;)8 b Fs(1)p Fl(;)g Fs(#)p Fm(g)m Fs(.)38
b(Initially)23 b(all)g(trac)o(ks)d(are)h(blank)g(except)h(that)f(the)g
(input)h(trac)o(k)e(con)o(tains)h(the)h(actual)f(input)-75
191 y(surrounded)16 b(b)o(y)f(blanks.)21 b(W)l(e)15 b(will)i(use)e
(\006)g(to)g(denote)g Fm(f)p Fs(0)p Fl(;)8 b Fs(1)p Fm(g)n
Fs(.)-4 265 y(In)15 b(the)f(classical)i(setting,)f(an)f(oracle)h(ma)o
(y)e(b)q(e)i(describ)q(ed)i(informally)e(as)g(a)f(device)i(for)d(ev)m
(aluating)j(some)e(Bo)q(olean)-75 321 y(function)22 b
Fl(f)28 b Fs(:)22 b(\006)227 305 y Fy(\003)270 321 y
Fm(!)h Fs(\006,)f(on)f(arbitrary)g(argumen)o(ts,)g(at)g(unit)h(cost)f
(p)q(er)g(ev)m(aluation.)40 b(This)21 b(allo)o(ws)h(to)e(form)o(ulate)
-75 378 y(questions)d(suc)o(h)h(as)e(\\if)h Fl(f)22 b
Fs(w)o(ere)17 b(e\016cien)o(tly)h(computable)f(b)o(y)g(a)g(TM,)f(whic)o
(h)h(other)g(functions)g(\(or)f(languages\))h(could)-75
434 y(b)q(e)f(e\016cien)o(tly)h(computed)f(b)o(y)f(TMs?".)20
b(In)c(this)g(section)g(w)o(e)f(de\014ne)i(oracle)f(QTMs)f(so)g(that)g
(the)g(equiv)m(alen)o(t)i(question)-75 491 y(can)e(b)q(e)h(ask)o(ed)f
(in)h(the)g(quan)o(tum)e(setting.)-4 565 y(An)h(oracle)g(QTM)g(has)g(a)
g(sp)q(ecial)i Fr(query)f(tr)n(ack)k Fs(on)15 b(whic)o(h)h(the)f(mac)o
(hine)h(will)h(place)f(its)f(questions)h(for)e(the)h(oracle.)-75
621 y(Oracle)22 b(QTMs)g(ha)o(v)o(e)f(t)o(w)o(o)f(distinguished)k(in)o
(ternal)f(states:)32 b(a)21 b(pre-query)h(state)f Fl(q)1438
628 y Fk(q)1479 621 y Fs(and)g(a)h(p)q(ost-query)g(state)e
Fl(q)1988 628 y Fk(a)2009 621 y Fs(.)-75 678 y(A)c(query)h(is)g
(executed)g(whenev)o(er)f(the)h(mac)o(hine)g(en)o(ters)f(the)g
(pre-query)h(state)f(with)g(a)g(single)i(\(non-empt)o(y\))d(blo)q(c)o
(k)i(of)-75 734 y(non-blank)e(cells)g(on)e(the)h(query)g(trac)o(k)612
718 y Fj(5)631 734 y Fs(.)20 b(Assume)13 b(that)g(the)h(non-blank)h
(region)f(on)f(the)h(query)g(tap)q(e)f(is)i(in)f(state)f
Fm(j)p Fl(x)7 b Fm(\001)g Fl(b)p Fm(i)-75 791 y Fs(when)18
b(the)f(pre-query)h(state)f(is)g(en)o(tered,)h(where)g
Fl(x)e Fm(2)g Fs(\006)925 774 y Fy(\003)945 791 y Fs(,)h
Fl(b)f Fm(2)g Fs(\006,)h(and)h(\\)p Fm(\001)p Fs(")e(denotes)i
(concatenation.)26 b(Let)18 b Fl(f)k Fs(b)q(e)c(the)-75
847 y(Bo)q(olean)e(function)g(computed)g(b)o(y)f(the)g(oracle.)21
b(The)15 b(result)h(of)f(the)g(oracle)h(call)g(is)g(that)e(the)i(state)
e(of)h(the)g(query)h(tap)q(e)-75 904 y(b)q(ecomes)f Fm(j)p
Fl(x)8 b Fm(\001)g Fl(b)g Fm(\010)g Fl(f)d Fs(\()p Fl(x)p
Fs(\))p Fm(i)p Fs(,)14 b(where)g(\\)p Fm(\010)p Fs(")g(denotes)h(the)f
(exclusiv)o(e-or)i(\(addition)f(mo)q(dulo)g(2\),)e(after)h(whic)o(h)h
(the)g(mac)o(hine's)-75 960 y(in)o(ternal)g(con)o(trol)e(passes)h(to)f
(the)h(p)q(ost-query)f(state.)19 b(Except)14 b(for)f(the)h(query)g(tap)
q(e)f(and)h(in)o(ternal)h(con)o(trol,)e(other)h(parts)-75
1016 y(of)i(the)h(oracle)g(QTM)f(do)h(not)f(c)o(hange)h(during)g(the)g
(query)l(.)25 b(If)17 b(the)f(target)g(bit)h Fm(j)p Fl(b)p
Fm(i)e Fs(w)o(as)h(supplied)j(in)f(initial)h(state)c
Fm(j)p Fs(0)p Fm(i)p Fs(,)-75 1073 y(then)20 b(its)f(\014nal)i(state)d
(will)j(b)q(e)f Fm(j)p Fl(f)5 b Fs(\()p Fl(x)p Fs(\))p
Fm(i)p Fs(,)19 b(just)g(as)g(in)i(a)e(classical)i(oracle)e(mac)o(hine.)
34 b(Con)o(v)o(ersely)l(,)20 b(if)g(the)f(target)g(bit)g(is)-75
1129 y(already)d(in)g(state)f Fm(j)p Fl(f)5 b Fs(\()p
Fl(x)p Fs(\))p Fm(i)p Fs(,)14 b(calling)j(the)e(oracle)h(will)h(reset)f
(it)f(to)g Fm(j)p Fs(0)p Fm(i)p Fs(,)f(a)h(pro)q(cess)h(kno)o(wn)f(as)g
(\\uncomputing",)h(whic)o(h)g(is)-75 1186 y(essen)o(tial)g(for)f(prop)q
(er)g(in)o(terference)h(to)f(tak)o(e)f(place.)-4 1260
y(The)i(p)q(o)o(w)o(er)f(of)g(quan)o(tum)h(computers)f(comes)h(from)f
(their)h(abilit)o(y)h(to)e(follo)o(w)h(a)f(coheren)o(t)h(sup)q(erp)q
(osition)i(of)d(com-)-75 1316 y(putation)i(paths.)26
b(Similarly)19 b(oracle)e(QTMs)g(deriv)o(e)h(great)e(p)q(o)o(w)o(er)h
(from)f(the)h(abilit)o(y)h(to)f(p)q(erform)g(sup)q(erp)q(ositions)h(of)
-75 1373 y(queries.)29 b(F)l(or)17 b(example,)i(an)f(oracle)g(for)f(Bo)
q(olean)h(function)h Fl(f)k Fs(migh)o(t)18 b(b)q(e)g(called)i(when)e
(the)g(query)g(tap)q(e)g(is)g(in)h(state)-75 1429 y Fm(j)p
Fl( )r(;)8 b Fs(0)p Fm(i)17 b Fs(=)105 1397 y Fi(P)148
1441 y Fk(x)178 1429 y Fl(\013)207 1436 y Fk(x)229 1429
y Fm(j)p Fl(x;)8 b Fs(0)p Fm(i)p Fs(,)18 b(where)i Fl(\013)526
1436 y Fk(x)568 1429 y Fs(are)f(complex)h(co)q(e\016cien)o(ts,)h
(corresp)q(onding)g(to)e(an)g(arbitrary)g(sup)q(erp)q(osition)i(of)-75
1486 y(queries)c(with)g(a)f(constan)o(t)f Fm(j)p Fs(0)p
Fm(i)g Fs(in)i(the)f(target)f(bit.)24 b(In)16 b(this)h(case,)f(after)f
(the)i(query)l(,)f(the)g(query)h(string)f(will)i(b)q(e)f(left)f(in)-75
1542 y(the)f(en)o(tangled)h(state)320 1510 y Fi(P)364
1554 y Fk(x)394 1542 y Fl(\013)423 1549 y Fk(x)445 1542
y Fm(j)p Fl(x;)8 b(f)d Fs(\()p Fl(x)p Fs(\))p Fm(i)p
Fs(.)-4 1616 y(That)11 b(the)g(ab)q(o)o(v)o(e)h(de\014nition)h(of)e
(oracle)h(QTMs)g(yields)h(unitary)f(ev)o(olutions)g(is)g(self-eviden)o
(t)i(if)e(w)o(e)f(restrict)h(ourselv)o(es)-75 1673 y(to)j(mac)o(hines)i
(that)e(are)h(w)o(ell-formed)h(in)f(other)g(resp)q(ects,)g(in)h
(particular)f(ev)o(olving)h(unitarily)g(as)f(they)g(en)o(ter)g(the)g
(pre-)-75 1729 y(query)f(state)g(and)g(lea)o(v)o(e)h(the)f(p)q
(ost-query)g(state.)-4 1804 y(Let)e(us)g(de\014ne)h Fn(BQTime)9
b Fs(\()p Fl(T)d Fs(\()p Fl(n)p Fs(\)\))595 1787 y Fk(O)636
1804 y Fs(as)13 b(the)g(sets)g(of)f(languages)h(accepted)h(with)f
(probabilit)o(y)i(at)d(least)h(2)p Fl(=)p Fs(3)f(b)o(y)h(some)-75
1860 y(oracle)19 b(QTM)f Fl(M)237 1844 y Fk(O)286 1860
y Fs(whose)h(running)g(time)g(is)h(b)q(ounded)g(b)o(y)e
Fl(T)6 b Fs(\()p Fl(n)p Fs(\).)30 b(This)19 b(b)q(ound)h(on)f(the)f
(running)i(time)f(applies)i(to)-75 1916 y(eac)o(h)15
b(individual)j(input,)e(not)f(just)f(on)h(the)g(a)o(v)o(erage.)k
(Notice)d(that)e(whether)h(or)g(not)f Fl(M)1466 1900
y Fk(O)1511 1916 y Fs(is)i(a)e Fn(BQP)8 b Fs(-mac)o(hine)16
b(migh)o(t)-75 1973 y(dep)q(end)h(up)q(on)f(the)f(oracle)g
Fl(O)q Fs(|th)o(us)h Fl(M)638 1956 y Fk(O)683 1973 y
Fs(migh)o(t)f(b)q(e)h(a)f Fn(BQP)7 b Fs(-mac)o(hine)17
b(while)f Fl(M)1393 1956 y Fk(O)1421 1945 y Fq(0)1450
1973 y Fs(migh)o(t)f(not)f(b)q(e)i(one.)-4 2047 y(W)l(e)k(ha)o(v)o(e)g
(carefully)h(de\014ned)h(oracle)f(QTMs)f(so)f(that)h(the)g(same)g(tec)o
(hnique)i(used)f(to)f(rev)o(erse)g(a)g(QTM)g(in)h(the)-75
2104 y(Rev)o(ersal)16 b(Lemma)f(can)g(also)h(b)q(e)f(used)h(to)f(rev)o
(erse)g(an)g(oracle)g(QTM.)-75 2216 y Fn(Lemma)i(8.3.1)23
b Fr(If)d Fl(M)26 b Fr(is)20 b(a)i(normal)e(form,)j(unidir)n(e)n
(ctional)d(or)n(acle)h(QTM)f(then)g(ther)n(e)h(is)g(a)g(normal)g(form)g
(or)n(acle)-75 2273 y(QTM)d Fl(M)101 2256 y Fy(0)131
2273 y Fr(such)h(that)g(for)g(any)f(or)n(acle)h Fl(O)q
Fr(,)g Fl(M)750 2256 y Fy(0)p Fk(O)808 2273 y Fr(r)n(everses)e(the)i(c)
n(omputation)g(of)g Fl(M)1427 2256 y Fk(O)1475 2273 y
Fr(while)g(taking)f(two)h(extr)n(a)g(time)-75 2329 y(steps.)-75
2442 y Fn(Pro)q(of.)27 b Fs(Let)18 b Fl(M)k Fs(=)17 b(\(\006)p
Fl(;)8 b(Q;)g(\016)r Fs(\))15 b(b)q(e)j(a)g(normal)f(form,)g
(unidirectional)k(oracle)d(QTM)f(with)h(initial)i(and)e(\014nal)g
(states)f Fl(q)2002 2449 y Fj(0)-75 2499 y Fs(and)i Fl(q)37
2506 y Fk(f)78 2499 y Fs(and)f(with)h(query)g(states)e
Fl(q)558 2506 y Fk(q)595 2499 y Fm(6)p Fs(=)h Fl(q)668
2506 y Fk(f)710 2499 y Fs(and)g Fl(q)821 2506 y Fk(a)842
2499 y Fs(.)29 b(W)l(e)19 b(construct)f Fl(M)1218 2482
y Fy(0)1248 2499 y Fs(from)f Fl(M)24 b Fs(exactly)18
b(as)g(in)i(the)e(pro)q(of)g(of)g(the)p -75 2540 839
2 v -23 2567 a Fg(5)-6 2583 y Fp(Since)e(a)f(QTM)g(m)o(ust)g(b)q(e)g
(careful)h(to)f(a)o(v)o(oid)h(lea)o(ving)i(around)e(in)o(termediate)h
(computations)g(on)e(its)h(tap)q(e,)f(requiring)j(that)d(the)g(query)
-75 2629 y(trac)o(k)e(con)o(tain)i(only)f(the)f(query)h(string)g(adds)g
(no)f(further)g(di\016cult)o(y)i(to)e(the)g(construction)i(of)e(oracle)
h(QTMs)951 2779 y Fs(44)p eop
%%Page: 45 45
45 44 bop -75 -26 a Fs(Rev)o(ersal)15 b(Lemma.)k(W)l(e)14
b(further)g(giv)o(e)h Fl(M)657 -42 y Fy(0)682 -26 y Fs(the)f(same)g
(query)g(states)g Fl(q)1146 -19 y Fk(q)1165 -26 y Fl(;)8
b(q)1206 -19 y Fk(a)1240 -26 y Fs(as)14 b Fl(M)5 b Fs(,)14
b(but)g(with)h(roles)f(rev)o(ersed.)19 b(Since)d Fl(M)-75
31 y Fs(is)f(in)h(normal)f(form,)e(and)i Fl(q)404 38
y Fk(q)436 31 y Fm(6)p Fs(=)e Fl(q)504 38 y Fk(f)527
31 y Fs(,)h(w)o(e)h(m)o(ust)f(ha)o(v)o(e)g Fl(q)857 38
y Fk(a)891 31 y Fm(6)p Fs(=)f Fl(q)959 38 y Fj(0)979
31 y Fs(.)20 b(Recall)c(that)e(the)h(transition)g(function)h(of)e
Fl(M)1809 14 y Fy(0)1835 31 y Fs(is)i(de\014ned)-75 87
y(so)f(that)f(for)h Fl(q)f Fm(6)p Fs(=)f Fl(q)251 94
y Fj(0)603 144 y Fl(\016)625 125 y Fy(0)636 144 y Fs(\()p
Fl(q)r(;)8 b(\034)d Fs(\))11 b(=)799 103 y Fi(X)805 190
y Fk(p;\033)867 144 y Fl(\016)r Fs(\()p Fl(p;)d(\033)o(;)g(\034)s(;)f
(q)r(;)h(d)1106 151 y Fk(q)1122 144 y Fs(\))1140 125
y Fy(\003)1160 144 y Fm(j)p Fl(\033)r Fm(i)n(j)p Fl(p)p
Fm(ij)1291 132 y Fs(^)1284 144 y Fl(d)1308 151 y Fk(p)1327
144 y Fm(i)-75 264 y Fs(Therefore,)15 b(since)h(state)f
Fl(q)387 271 y Fk(q)421 264 y Fs(alw)o(a)o(ys)g(leads)h(to)f(state)f
Fl(q)868 271 y Fk(a)905 264 y Fs(in)i Fl(M)5 b Fs(,)15
b(state)f Fl(q)1166 271 y Fk(a)1203 264 y Fs(alw)o(a)o(ys)g(leads)i(to)
f(state)f Fl(q)1649 271 y Fk(q)1684 264 y Fs(in)i Fl(M)1786
247 y Fy(0)1798 264 y Fs(.)k(Therefore)-75 320 y Fl(M)-26
304 y Fy(0)1 320 y Fs(is)c(an)f(oracle)g(QTM.)-4 394
y(Next,)d(note)g(that)g(since)i(the)e(tap)q(e)h(head)g(p)q(osition)g
(is)g(irrelev)m(an)o(t)h(for)d(the)i(functioning)h(of)e(the)g(oracle,)h
(the)g(op)q(eration)-75 451 y(of)j(the)g(oracle)h(in)g
Fl(M)293 434 y Fy(0)p Fk(O)348 451 y Fs(rev)o(erses)f(the)h(op)q
(eration)f(of)g(the)g(oracle)h(in)g Fl(M)1171 434 y Fk(O)1201
451 y Fs(.)23 b(Finally)l(,)17 b(the)g(same)f(argumen)o(t)f(used)i(in)g
(the)-75 507 y(Rev)o(ersal)k(Lemma)f(can)h(b)q(e)g(used)g(again)g(here)
f(to)g(pro)o(v)o(e)g(that)g Fl(M)1117 491 y Fy(0)p Fk(O)1176
507 y Fs(is)h(w)o(ell-formed)h(and)e(that)g Fl(M)1724
491 y Fy(0)p Fk(O)1784 507 y Fs(rev)o(erses)g(the)-75
564 y(computation)15 b(of)g Fl(M)291 547 y Fk(O)336 564
y Fs(while)i(taking)e(t)o(w)o(o)f(extra)g(time)i(steps.)974
b Fd(2)-4 694 y Fs(The)13 b(ab)q(o)o(v)o(e)g(de\014nition)h(of)f(a)g
(quan)o(tum)g(oracle)g(for)f(an)h(arbitrary)g(Bo)q(olean)h(function)g
(will)g(su\016ce)g(for)e(the)h(purp)q(oses)-75 751 y(of)18
b(the)g(presen)o(t)h(pap)q(er,)g(but)f(the)h(abilit)o(y)g(of)f(quan)o
(tum)g(computers)g(to)g(p)q(erform)g(general)h(unitary)f
(transformations)-75 807 y(suggests)e(a)h(broader)g(de\014nition,)i
(whic)o(h)f(ma)o(y)e(b)q(e)i(useful)g(in)g(other)f(con)o(texts.)25
b(F)l(or)16 b(example,)j(oracles)e(that)f(p)q(erform)-75
864 y(more)d(general,)h(non-Bo)q(olean)h(unitary)e(op)q(erations)h(ha)o
(v)o(e)f(b)q(een)i(considered)g(in)f(computational)g(learning)h(theory)
e([15)o(],)-75 920 y(and)19 b(used)h(to)e(obtain)h(large)g(separations)
f([32])g(b)q(et)o(w)o(een)h(quan)o(tum)g(and)g(classical)h(relativized)
h(complexit)o(y)f(classes.)-75 977 y(See)c([9)o(])f(for)g(a)f
(discussion)j(of)e(more)g(general)g(de\014nitions)i(of)e(oracle)h(quan)
o(tum)f(computing.)-75 1115 y Fh(8.4)56 b(F)-5 b(ourier)18
b(Sampling)f(and)i(the)f(p)r(o)n(w)n(er)i(of)f(QTMs)-75
1218 y Fs(In)c(this)g(section)g(w)o(e)f(giv)o(e)h(evidence)h(that)e
(QTMs)g(are)g(more)g(p)q(o)o(w)o(erful)h(than)f(b)q(ounded-error)h
(probabilistic)i(TMs.)i(W)l(e)-75 1275 y(de\014ne)c(the)f(recursiv)o(e)
g(F)l(ourier)g(sampling)h(problem)f(whic)o(h)h(on)f(input)h(the)e
(program)g(for)g(a)h(b)q(o)q(olean)g(function)h(tak)o(es)e(on)-75
1331 y(v)m(alue)18 b(0)f(or)g(1.)25 b(W)l(e)17 b(sho)o(w)g(that)f(the)h
(recursiv)o(e)h(F)l(ourier)f(sampling)h(problem)g(is)g(in)g
Fn(BQP)8 b Fs(.)25 b(On)18 b(the)f(other)g(hand,)g(w)o(e)-75
1388 y(pro)o(v)o(e)f(that)g(if)i(the)f(b)q(o)q(olean)g(function)h(is)f
(sp)q(eci\014ed)i(b)o(y)e(an)g(oracle,)g(then)g(the)g(recursiv)o(e)g(F)
l(ourier)g(sampling)h(problem)-75 1444 y(is)f(not)f(in)h
Fn(BQTime)9 b Fs(\()p Fl(n)356 1428 y Fk(o)p Fj(\(log)c
Fk(n)p Fj(\))475 1444 y Fs(\).)23 b(This)17 b(result)g(pro)o(vided)g
(the)g(\014rst)f(evidence)i(that)e(QTMs)g(are)g(more)g(p)q(o)o(w)o
(erful)h(than)-75 1501 y(classical)g(probabilistic)g(TMs)e(with)g(b)q
(ounded)i(error)d(probabilit)o(y)j([11)o(].)-4 1575 y(One)h(could)g
(ask)e(what)h(the)g(relev)m(ance)i(of)e(these)g(oracle)h(results)f(is,)
h(in)g(view)g(of)f(the)g(non-relativizing)i(results)f(on)-75
1631 y(probabilistically)f(c)o(hec)o(k)m(able)e(pro)q(ofs)e([36)o(,)g
(3].)19 b(Moreo)o(v)o(er,)12 b(Arora)g(et)i(al.)f([2])g(mak)o(e)g(the)g
(case)h(that)f(the)g(fact)g(that)g(the)h Fn(P)-75 1688
y Fs(v)o(ersus)e Fn(NP)20 b Fs(question)13 b(relativizes)i(do)q(es)d
(not)h(imply)h(that)d(the)i(question)g(\\cannot)f(b)q(e)i(resolv)o(ed)f
(b)o(y)f(curren)o(t)h(tec)o(hniques)-75 1744 y(in)h(complexit)o(y)g
(theory".)k(On)c(the)f(other)f(hand,)i(in)g(our)e(oracle)i(results)f
(\(and)g(also)g(in)g(the)g(subsequen)o(t)h(results)f(of)g([39)o(]\),)
-75 1801 y(the)i(k)o(ey)g(prop)q(ert)o(y)g(of)g(oracles)g(that)g(is)h
(exploited)g(is)g(their)g(bac)o(k-b)q(o)o(x)f(nature,)f(and)i(for)e
(the)i(reasons)e(sk)o(etc)o(hed)i(b)q(elo)o(w,)-75 1857
y(these)i(results)g(did)h(indeed)g(pro)o(vide)f(strong)f(evidence)j
(that)d Fn(BQP)24 b Fm(6)p Fs(=)18 b Fn(BPP)24 b Fs(\(of)17
b(course,)h(the)g(later)g(results)g(of)f([36)o(])-75
1914 y(ga)o(v)o(e)d(ev)o(en)i(stronger)f(evidence\).)22
b(This)16 b(is)f(b)q(ecause)i(if)f(one)f(assumes)g(that)g
Fn(P)20 b Fm(6)p Fs(=)14 b Fn(NP)22 b Fs(and)16 b(the)f(existence)i(of)
e(one-w)o(a)o(y)-75 1970 y(functions)20 b(\(b)q(oth)g(these)f(h)o(yp)q
(otheses)h(are)g(unpro)o(v)o(en,)g(but)g(widely)h(b)q(eliev)o(ed)h(b)o
(y)d(complexit)o(y)h(theorists\),)g(it)g(is)g(also)-75
2027 y(reasonable)c(to)e(assume)h(that,)f(in)i(general,)f(it)h(is)f
(imp)q(ossible)j(to)c(\(e\016cien)o(tly\))i(\014gure)g(out)e(the)i
(function)f(computed)h(b)o(y)-75 2083 y(a)d(program)g(b)o(y)g(just)g
(lo)q(oking)i(at)e(its)g(text)h(\(i.e.)f(without)g(explicitly)k
(running)d(it)g(on)g(v)m(arious)g(inputs\).)20 b(Suc)o(h)14
b(a)f(program)-75 2139 y(w)o(ould)j(ha)o(v)o(e)g(to)g(b)q(e)g(treated)g
(as)g(a)f(blac)o(k-b)q(o)o(x.)24 b(Of)16 b(course,)g(suc)o(h)g
(assumptions)g(cannot)g(b)q(e)h(made)f(if)h(the)f(question)h(at)-75
2205 y(hand)f(is)f(whether)h Fn(P)324 2180 y Fj(?)315
2205 y Fs(=)d Fn(NP)7 b Fs(.)-4 2279 y Fr(F)m(ourier)19
b(Sampling:)28 b Fs(Consider)19 b(the)h(v)o(ector)e(space)i(of)e
(complex)i(v)m(alued)h(functions)f Fl(f)k Fs(:)19 b Fl(Z)1624
2262 y Fk(n)1621 2290 y Fj(2)1667 2279 y Fm(!)h Fn(C)p
Fs(.)31 b(There)20 b(is)f(a)-75 2335 y(natural)c(inner)i(pro)q(duct)e
(on)g(this)h(space)f(giv)o(en)h(b)o(y)746 2431 y(\()p
Fl(f)r(;)8 b(g)r Fs(\))j(=)925 2390 y Fi(X)910 2482 y
Fk(x)p Fy(2)p Fk(Z)980 2471 y Fb(n)978 2493 y Fg(2)1008
2431 y Fl(f)5 b Fs(\()p Fl(x)p Fs(\))p Fl(g)r Fs(\()p
Fl(x)p Fs(\))1181 2410 y Fy(\003)-75 2572 y Fs(The)17
b(standard)g(orthonormal)f(basis)h(for)g(the)g(v)o(ector)f(space)h(is)g
(the)h(set)e(of)h(delta)g(functions)h Fl(\016)1587 2579
y Fk(y)1623 2572 y Fs(:)e Fl(Z)1686 2556 y Fk(n)1683
2584 y Fj(2)1725 2572 y Fm(!)g Fn(C)p Fs(,)h(giv)o(en)g(b)o(y)-75
2629 y Fl(\016)-55 2636 y Fk(y)-34 2629 y Fs(\()p Fl(y)r
Fs(\))12 b(=)h(1)h(and)g Fl(\016)230 2636 y Fk(y)251
2629 y Fs(\()p Fl(x)p Fs(\))e(=)h(0)h(for)g Fl(x)e Fm(6)p
Fs(=)h Fl(y)r Fs(.)20 b(Expressing)14 b(a)g(function)h(in)h(this)e
(basis)h(is)g(equiv)m(alen)o(t)h(to)d(sp)q(ecifying)j(its)f(v)m(alues)
951 2779 y(45)p eop
%%Page: 46 46
46 45 bop -75 -26 a Fs(at)13 b(eac)o(h)h(p)q(oin)o(t)g(in)g(the)g
(domain.)20 b(The)14 b(c)o(haracters)e(of)i(the)f(group)h
Fl(Z)1099 -42 y Fk(n)1096 -14 y Fj(2)1136 -26 y Fs(yield)h(a)e
(di\013eren)o(t)h(orthonormal)f(basis)h(consisting)-75
31 y(of)j(the)h(parit)o(y)g(basis)g(functions)h Fl(\037)538
38 y Fk(s)574 31 y Fs(:)d Fl(Z)637 14 y Fk(n)634 42 y
Fj(2)678 31 y Fm(!)h Fn(C)p Fs(,)h(giv)o(en)g(b)o(y)g
Fl(\037)1024 38 y Fk(s)1043 31 y Fs(\()p Fl(x)p Fs(\))e(=)1179
13 y Fy(\000)p Fj(1)1224 1 y Fb(s)p Fq(\001)p Fb(x)p
1179 20 89 2 v 1188 50 a Fj(2)1206 41 y Fb(n=)p Fg(2)1272
31 y Fs(,)i(where)g Fl(s)13 b Fm(\001)e Fl(x)17 b Fs(=)1590
-1 y Fi(P)1634 12 y Fk(n)1634 42 y(i)p Fj(=1)1701 31
y Fl(s)1722 38 y Fk(i)1736 31 y Fl(x)1762 38 y Fk(i)1776
31 y Fs(.)28 b(Giv)o(en)18 b(an)o(y)-75 98 y(function)h
Fl(f)j Fs(:)16 b Fl(Z)213 82 y Fk(n)210 110 y Fj(2)254
98 y Fm(!)h Fn(C)p Fs(,)h(w)o(e)f(ma)o(y)g(write)h(it)g(in)h(the)f(new)
g(parit)o(y)f(basis)h(as)g Fl(f)k Fs(=)1360 66 y Fi(P)1404
109 y Fk(s)1440 86 y Fs(^)1430 98 y Fl(f)5 b Fs(\()p
Fl(s)p Fs(\))p Fl(\037)1542 105 y Fk(s)1560 98 y Fs(,)18
b(where)1735 86 y(^)1725 98 y Fl(f)k Fs(:)17 b Fl(Z)1833
82 y Fk(n)1830 110 y Fj(2)1874 98 y Fm(!)g Fn(C)g Fs(is)-75
154 y(giv)o(en)h(b)o(y)121 142 y(^)111 154 y Fl(f)5 b
Fs(\()p Fl(s)p Fs(\))15 b(=)i(\()p Fl(f)r(;)8 b(\037)353
161 y Fk(s)371 154 y Fs(\).)25 b(The)18 b(function)713
142 y(^)703 154 y Fl(f)k Fs(is)c(called)h(the)e(discrete)h(F)l(ourier)f
(transform)f(or)h(Hadamard)f(transform)-75 211 y(of)f
Fl(f)5 b Fs(.)23 b(Here)16 b(the)g(latter)f(name)h(refers)g(to)f(the)h
(fact)g(that)f(the)h(linear)h(transformation)d(that)i(maps)f(a)h
(function)h Fl(f)k Fs(to)15 b(its)-75 267 y(F)l(ourier)j(transform)307
255 y(^)297 267 y Fl(f)23 b Fs(is)18 b(the)g(Hadamard)f(matrix)h
Fm(H)886 274 y Fk(n)910 267 y Fs(.)28 b(Clearly)19 b(this)f
(transformation)e(is)j(unitary)l(,)g(since)g(it)f(is)g(just)-75
324 y(e\013ecting)h(a)e(c)o(hange)i(of)e(basis)i(from)f(one)g
(orthonormal)f(basis)i(\(the)f(delta)h(function)g(basis\))f(to)f
(another)h(\(the)g(parit)o(y)-75 380 y(function)e(basis\).)k(It)15
b(follo)o(ws)g(that)547 348 y Fi(P)591 392 y Fk(x)620
380 y Fm(j)p Fl(f)5 b Fs(\()p Fl(x)p Fs(\))p Fm(j)735
364 y Fj(2)766 380 y Fs(=)814 348 y Fi(P)858 392 y Fk(s)884
380 y Fm(j)907 368 y Fs(^)897 380 y Fl(f)g Fs(\()p Fl(s)p
Fs(\))p Fm(j)994 364 y Fj(2)1013 380 y Fs(.)-4 454 y(Moreo)o(v)o(er,)13
b(the)i(discrete)g(F)l(ourier)g(transform)f(on)h Fl(Z)915
438 y Fk(n)912 466 y Fj(2)953 454 y Fs(can)g(b)q(e)h(written)f(as)f
(the)h(Kronec)o(k)o(er)g(pro)q(duct)g(of)g(the)f(trans-)-75
547 y(form)h(on)g(eac)o(h)h(of)f Fl(n)h Fs(copies)h(of)e
Fl(Z)512 554 y Fj(2)547 547 y Fs(|)h(the)g(transform)e(in)j(that)e
(case)g(is)h(giv)o(en)h(b)o(y)e(the)h(matrix)1601 475
y Fi( )1674 492 y Fj(1)p 1660 499 48 2 v 1660 504 a Fy(p)p
1689 504 18 2 v 27 x Fj(2)1808 492 y(1)p 1794 499 48
2 v 1794 504 a Fy(p)p 1823 504 18 2 v 27 x Fj(2)1674
557 y(1)p 1660 564 48 2 v 1660 569 a Fy(p)p 1689 569
18 2 v 28 x Fj(2)1753 575 y Fm(\000)1808 557 y Fj(1)p
1793 564 48 2 v 1793 569 a Fy(p)p 1823 569 18 2 v 1823
597 a Fj(2)1866 475 y Fi(!)1899 547 y Fs(.)21 b(This)-75
637 y(fact)12 b(can)i(b)q(e)f(used)h(to)e(write)h(a)g(simple)h(and)g
(e\016cien)o(t)f(QTM)g(that)f(e\013ects)h(the)g(discrete)h(F)l(ourier)f
(transformation)f(in)i(the)-75 693 y(follo)o(wing)i(sense:)21
b(supp)q(ose)16 b(the)g(QTM)f(has)h(tap)q(e)f(alphab)q(et)i
Fm(f)p Fs(0)p Fl(;)8 b Fs(1)p Fl(;)g Fs(#)p Fm(g)p Fs(,)k(and)k(the)f
(initially)j(only)e Fl(n)g Fs(tap)q(e)g(cells)h(con)o(tain)-75
749 y(non-blank)g(sym)o(b)q(ols.)j(Then)c(w)o(e)g(can)f(express)h(the)f
(initial)j(sup)q(erp)q(osition)f(as)1306 717 y Fi(P)1350
761 y Fk(x)p Fy(2f)p Fj(0)p Fk(;)p Fj(1)p Fy(g)1476 752
y Fb(n)1505 749 y Fl(f)5 b Fs(\()p Fl(x)p Fs(\))p Fm(j)p
Fl(x)p Fm(i)n Fs(,)15 b(where)h Fl(f)5 b Fs(\()p Fl(x)p
Fs(\))15 b(is)h(the)-75 806 y(amplitude)f(of)e(the)h(con\014guration)f
(with)h Fl(x)g Fs(in)g(the)g(non-blank)g(cells.)21 b(Then)14
b(there)g(is)g(a)f(QTM)g(that)g(e\013ects)g(the)h(F)l(ourier)-75
862 y(transformation)f(b)o(y)i(applying)g(the)g(ab)q(o)o(v)o(e)f
(transform)f(on)i(eac)o(h)f(of)g(the)h Fl(n)f Fs(bits)h(in)h(the)e
Fl(n)h Fs(non-blank)h(cells.)21 b(This)15 b(tak)o(es)-75
919 y Fl(O)q Fs(\()p Fl(n)p Fs(\))e(steps,)g(and)g(results)h(in)g(the)f
(\014nal)h(con\014guration)890 887 y Fi(P)934 930 y Fk(s)p
Fy(2f)p Fj(0)p Fk(;)p Fj(1)p Fy(g)1056 921 y Fb(n)1095
907 y Fs(^)1085 919 y Fl(f)5 b Fs(\()p Fl(s)p Fs(\))p
Fm(j)p Fl(s)p Fm(i)13 b Fs(\(Theorem)f(8.4.1)g(b)q(elo)o(w\).)19
b(Notice)14 b(that)f(this)-75 975 y(fourier)j(transformation)f(is)h
(taking)g(place)g(o)o(v)o(er)f(a)h(v)o(ector)f(space)h(of)f(dimension)j
(2)1372 959 y Fk(n)1395 975 y Fs(.)k(On)16 b(the)g(other)g(hand,)g(the)
g(result)-75 1032 y(of)g(the)h(fourier)f(transform)f(|)486
1020 y(^)476 1032 y Fl(f)22 b Fs(|)17 b(resides)g(in)g(the)g
(amplitudes)h(of)e(the)g(quan)o(tum)g(sup)q(erp)q(osition,)i(and)f(is)g
(th)o(us)f(not)-75 1088 y(directly)k(accessible.)34 b(W)l(e)19
b(can,)g(ho)o(w)o(ev)o(er,)g(p)q(erform)g(a)g(measuremen)o(t)g(on)f
(the)i Fl(n)f Fs(non-blank)h(tap)q(e)f(cells,)i(to)e(obtain)-75
1145 y(a)f(sample)h(from)e(the)i(probabilit)o(y)g(distribution)h
Fl(P)25 b Fs(suc)o(h)19 b(that)e Fl(P)6 b Fs([)p Fl(s)p
Fs(])18 b(=)g Fm(j)1236 1133 y Fs(^)1226 1145 y Fl(f)5
b Fs(\()p Fl(s)p Fs(\))p Fm(j)1323 1128 y Fj(2)1342 1145
y Fs(.)29 b(W)l(e)19 b(shall)g(refer)f(to)g(this)h(op)q(eration)-75
1201 y(as)g(F)l(ourier)g(sampling.)32 b(As)19 b(w)o(e)g(shall)h(see,)g
(this)g(is)f(a)g(v)o(ery)g(p)q(o)o(w)o(erful)g(op)q(eration.)32
b(The)19 b(reason)g(is)g(that)g(eac)o(h)g(v)m(alue)-65
1246 y(^)-75 1258 y Fl(f)5 b Fs(\()p Fl(s)p Fs(\))17
b(dep)q(ends)i(up)q(on)e(all)i(the)e(\(exp)q(onen)o(tially)i(man)o(y)d
(v)m(alues\))i(of)f Fl(f)5 b Fs(,)18 b(and)f(it)g(do)q(es)h(not)f(seem)
g(p)q(ossible)i(to)d(an)o(ticipate)-75 1314 y(whic)o(h)i(v)m(alues)g
(of)e Fl(s)h Fs(will)i(ha)o(v)o(e)d(large)h(probabilit)o(y)i
(\(constructiv)o(e)d(in)o(terference\))i(without)f(actually)h(carrying)
f(out)f(an)-75 1371 y(exp)q(onen)o(tial)h(searc)o(h.)-4
1445 y(Giv)o(en)d(a)g(b)q(o)q(olean)i(function)f Fl(g)f
Fs(:)e Fl(Z)604 1428 y Fk(n)601 1456 y Fj(2)640 1445
y Fm(!)h(f)p Fs(1)p Fl(;)8 b Fm(\000)p Fs(1)p Fm(g)p
Fs(,)13 b(w)o(e)h(ma)o(y)f(de\014ne)j(a)e(function)h
Fl(f)j Fs(:)12 b Fl(Z)1479 1428 y Fk(n)1476 1456 y Fj(2)1515
1445 y Fm(!)h Fn(C)h Fs(of)g(norm)g(1)g(b)o(y)g(letting)-75
1501 y Fl(f)5 b Fs(\()p Fl(x)p Fs(\))13 b(=)h Fl(g)r
Fs(\()p Fl(x)p Fs(\))p Fl(=)p Fs(2)208 1485 y Fk(n=)p
Fj(2)265 1501 y Fs(.)22 b(F)l(ollo)o(wing)16 b(Deutsc)o(h)g(and)g
(Josza)g([22)o(])f(if)h Fl(g)h Fs(is)g(a)e(p)q(olynomial)j(time)e
(computable)g(function,)h(there)-75 1558 y(is)j(a)g(QTM)g(that)f(pro)q
(duces)i(the)f(sup)q(erp)q(osition)816 1525 y Fi(P)859
1569 y Fk(x)p Fy(2f)p Fj(0)p Fk(;)p Fj(1)p Fy(g)985 1560
y Fb(n)1014 1558 y Fl(g)r Fs(\()p Fl(x)p Fs(\))p Fm(j)p
Fl(x)p Fm(i)e Fs(in)j(time)f(p)q(olynomial)i(in)e Fl(n)p
Fs(.)35 b(Com)o(bining)21 b(this)-75 1614 y(with)c(the)g(F)l(ourier)g
(sampling)h(op)q(eration)f(ab)q(o)o(v)o(e,)g(w)o(e)f(get)h(a)f(p)q
(olynomial)j(time)e(QTM)f(that)h(samples)g(from)f(a)h(certain)-75
1670 y(distribution)f(related)f(to)g(the)f(giv)o(en)h(p)q(olynomial)i
(time)e(computable)g(function)h Fl(g)g Fs(\(Theorem)e(8.4.2)f(b)q(elo)o
(w\).)20 b(W)l(e)15 b(shall)-75 1727 y(call)h(this)g(comp)q(osite)g(op)
q(eration)f(F)l(ourier)g(sampling)i(with)e(resp)q(ect)h(to)e
Fl(g)r Fs(.)-75 1851 y Fn(Theorem)j(8.4.1)22 b Fr(Ther)n(e)14
b(is)g(a)h(normal)f(form)h(QTM)f(which)h(when)f(run)g(on)h(an)f
(initial)g(sup)n(erp)n(osition)g(of)g Fl(n)p Fr(-bit)h(strings)-75
1907 y Fm(j)p Fl(\036)p Fm(i)o Fr(,)i(halts)f(in)f(time)i
Fs(2)p Fl(n)10 b Fs(+)g(4)16 b Fr(with)h(its)f(tap)n(e)g(he)n(ad)h(b)n
(ack)f(in)g(the)g(start)h(c)n(el)r(l,)e(and)h(pr)n(o)n(duc)n(es)g
(\014nal)f(sup)n(erp)n(osition)h Fm(H)1908 1914 y Fk(n)1932
1907 y Fm(j)p Fl(\036)p Fm(i)o Fr(.)-75 2031 y Fn(Pro)q(of.)i
Fs(W)l(e)10 b(can)h(construct)e(the)i(desired)g(mac)o(hine)g(using)g
(the)f(alphab)q(et)h Fm(f)p Fs(#)p Fl(;)d Fs(0)p Fl(;)g
Fs(1)p Fm(g)f Fs(and)k(the)f(set)g(of)g(states)f Fm(f)p
Fl(q)1813 2038 y Fj(0)1833 2031 y Fl(;)f(q)1874 2038
y Fk(a)1894 2031 y Fl(;)g(q)1935 2038 y Fk(b)1952 2031
y Fl(;)g(q)1993 2038 y Fk(c)2009 2031 y Fl(;)g(q)2050
2038 y Fk(f)2073 2031 y Fm(g)p Fs(.)-75 2088 y(The)16
b(mac)o(hine)g(will)i(op)q(erate)d(as)g(follo)o(ws)h(when)g(started)f
(with)h(a)f(string)h(of)f(length)i Fl(n)f Fs(as)f(input.)22
b(In)16 b(state)f Fl(q)1819 2095 y Fj(0)1839 2088 y Fs(,)h(the)f(ma-)
-75 2144 y(c)o(hine)j(steps)f(righ)o(t)g(and)g(left)g(and)g(en)o(ters)g
(state)f Fl(q)801 2151 y Fk(b)818 2144 y Fs(.)25 b(In)18
b(state)e Fl(q)1048 2151 y Fk(b)1065 2144 y Fs(,)h(the)g(mac)o(hine)h
(steps)f(righ)o(t)f(along)h(the)g(input)h(string)-75
2201 y(un)o(til)e(it)f(reac)o(hes)g(the)f(#)h(at)f(the)h(end)g(and)g
(en)o(ters)f(state)g Fl(q)934 2208 y Fk(c)967 2201 y
Fs(stepping)h(bac)o(k)g(left)g(to)f(the)h(string's)f(last)h(sym)o(b)q
(ol.)20 b(During)-75 2290 y(this)13 b(righ)o(t)o(w)o(ard)f(scan,)i(the)
f(mac)o(hine)h(applies)g(the)f(transformation)1113 2218
y Fi( )1186 2235 y Fj(1)p 1172 2242 48 2 v 1172 2247
a Fy(p)p 1201 2247 18 2 v 28 x Fj(2)1320 2235 y(1)p 1306
2242 48 2 v 1306 2247 a Fy(p)p 1335 2247 18 2 v 28 x
Fj(2)1186 2301 y(1)p 1172 2308 48 2 v 1172 2313 a Fy(p)p
1201 2313 18 2 v 27 x Fj(2)1265 2319 y Fm(\000)1320 2301
y Fj(1)p 1305 2308 48 2 v 1305 2313 a Fy(p)p 1335 2313
18 2 v 1335 2340 a Fj(2)1378 2218 y Fi(!)1424 2290 y
Fs(to)g(the)g(bit)g(in)h(eac)o(h)f(cell.)21 b(In)14 b(state)-75
2380 y Fl(q)-55 2387 y Fk(c)-37 2380 y Fs(,)f(the)i(mac)o(hine)f(steps)
g(left)h(un)o(til)g(it)f(reac)o(hes)g(the)g(#)g(to)f(the)h(left)h(of)e
(the)h(start)f(cell,)j(at)d(whic)o(h)i(p)q(oin)o(t)f(steps)g(bac)o(k)g
(righ)o(t)951 2779 y(46)p eop
%%Page: 47 47
47 46 bop -75 -26 a Fs(and)15 b(halts.)20 b(The)c(follo)o(wing)g(giv)o
(es)f(the)g(quan)o(tum)g(transition)h(function)g(of)f(the)g(desired)h
(mac)o(hine.)p 309 87 2 57 v 414 70 a(#)383 b(0)560 b(1)p
226 89 1496 2 v 248 128 a Fl(q)268 135 y Fj(0)p 309 145
2 57 v 752 128 a Fm(j)p Fs(0)p Fm(i)o(j)p Fl(q)838 135
y Fk(a)859 128 y Fm(i)o(j)p Fl(R)p Fm(i)393 b(j)p Fs(1)p
Fm(i)o(j)p Fl(q)1421 135 y Fk(a)1442 128 y Fm(i)o(j)p
Fl(R)p Fm(i)247 185 y Fl(q)267 192 y Fk(a)p 309 202 V
334 185 a Fm(j)p Fs(#)p Fm(i)o(j)p Fl(q)435 192 y Fk(b)452
185 y Fm(ij)p Fl(L)p Fm(i)249 241 y Fl(q)269 248 y Fk(b)p
309 267 2 66 v 334 241 a Fm(j)p Fs(#)p Fm(i)o(j)p Fl(q)435
248 y Fk(c)453 241 y Fm(i)o(j)p Fl(L)p Fm(i)596 223 y
Fj(1)p 581 230 48 2 v 581 235 a Fy(p)p 610 235 18 2 v
28 x Fj(2)633 241 y Fm(j)p Fs(0)p Fm(i)o(j)p Fl(q)719
248 y Fk(b)736 241 y Fm(ij)p Fl(R)p Fm(i)9 b Fs(+)894
223 y Fj(1)p 880 230 48 2 v 880 235 a Fy(p)p 909 235
18 2 v 28 x Fj(2)932 241 y Fm(j)p Fs(1)p Fm(i)o(j)p Fl(q)1018
248 y Fk(b)1035 241 y Fm(i)o(j)p Fl(R)p Fm(i)1179 223
y Fj(1)p 1164 230 48 2 v 1164 235 a Fy(p)p 1193 235 18
2 v 28 x Fj(2)1216 241 y Fm(j)p Fs(0)p Fm(i)o(j)p Fl(q)1302
248 y Fk(b)1319 241 y Fm(ij)p Fl(R)p Fm(i)g(\000)1477
223 y Fj(1)p 1463 230 48 2 v 1463 235 a Fy(p)p 1492 235
18 2 v 28 x Fj(2)1515 241 y Fm(j)p Fs(1)p Fm(i)o(j)p
Fl(q)1601 248 y Fk(b)1618 241 y Fm(i)o(j)p Fl(R)p Fm(i)249
307 y Fl(q)269 314 y Fk(c)p 309 323 2 57 v 331 307 a
Fm(j)p Fs(#)p Fm(ij)p Fl(q)433 314 y Fk(f)455 307 y Fm(ij)p
Fl(L)p Fm(i)221 b(j)p Fs(0)p Fm(i)o(j)p Fl(q)842 314
y Fk(c)859 307 y Fm(ij)p Fl(L)p Fm(i)400 b(j)p Fs(1)p
Fm(i)o(j)p Fl(q)1425 314 y Fk(c)1442 307 y Fm(ij)p Fl(L)p
Fm(i)246 363 y Fl(q)266 370 y Fk(f)p 309 380 V 331 363
a Fm(j)p Fs(#)p Fm(i)o(j)p Fl(q)432 370 y Fj(0)452 363
y Fm(i)o(j)p Fl(R)p Fm(i)218 b(j)p Fs(0)p Fm(i)o(j)p
Fl(q)839 370 y Fj(0)858 363 y Fm(ij)p Fl(R)p Fm(i)394
b(j)p Fs(1)p Fm(i)o(j)p Fl(q)1422 370 y Fj(0)1441 363
y Fm(ij)p Fl(R)p Fm(i)-75 459 y Fs(It)12 b(is)h(can)g(b)q(e)g(easily)g
(v)o(eri\014ed)h(that)d(the)i(Completion)g(Lemma)f(can)h(b)q(e)g(used)g
(to)e(extend)i(this)g(mac)o(hine)g(to)f(a)g(w)o(ell-formed)-75
515 y(QTM,)j(and)g(that)f(this)i(mac)o(hine)g(has)f(the)h(desired)g(b)q
(eha)o(vior)g(describ)q(ed)h(ab)q(o)o(v)o(e.)644 b Fd(2)-75
693 y Fn(Theorem)17 b(8.4.2)22 b Fr(F)m(or)16 b(every)h(p)n(olynomial)f
(time)h(c)n(omputable)g(function)f Fl(g)f Fs(:)e Fm(f)p
Fs(0)p Fl(;)8 b Fs(1)p Fm(g)1406 677 y Fk(n)1441 693
y Fm(!)13 b(f\000)p Fs(1)p Fl(;)8 b Fs(1)p Fm(g)p Fr(,)15
b(ther)n(e)i(is)f(a)h(p)n(olyno-)-75 750 y(mial)h(time,)i(stationary)e
(QTM)g(wher)n(e)g(observing)g(the)h(\014nal)e(sup)n(erp)n(osition)h(on)
g(input)h Fs(0)1497 733 y Fk(n)1539 750 y Fr(gives)f(e)n(ach)g
Fl(n)p Fr(-bit)h(string)f Fl(s)-75 806 y Fr(with)f(pr)n(ob)n(ability)f
Fm(j)265 794 y Fs(^)256 806 y Fl(f)t Fs(\()p Fl(s)p Fs(\))p
Fm(j)352 790 y Fj(2)371 806 y Fr(,)h(wher)n(e)f Fl(f)5
b Fs(\()p Fl(x)p Fs(\))12 b(=)h Fl(g)r Fs(\()p Fl(x)p
Fs(\))p Fl(=)p Fs(2)811 790 y Fk(n=)p Fj(2)868 806 y
Fr(.)-75 927 y Fn(Pro)q(of.)20 b Fs(W)l(e)15 b(build)i(a)e(QTM)g(to)g
(carry)f(out)h(the)g(follo)o(wing)h(steps.)-19 1037 y(1.)22
b(Apply)16 b(a)f(F)l(ourier)g(transform)f(to)h(0)658
1021 y Fk(n)696 1037 y Fs(to)g(pro)q(duce)925 1005 y
Fi(P)969 1049 y Fk(i)p Fy(2f)p Fj(0)p Fk(;)p Fj(1)p Fy(g)1087
1039 y Fb(n)1147 1019 y Fj(1)p 1120 1026 71 2 v 1120
1057 a(2)1138 1047 y Fb(n=)p Fg(2)1195 1037 y Fm(j)p
Fl(i)p Fm(i)o Fs(.)-19 1137 y(2.)22 b(Compute)15 b Fl(f)20
b Fs(to)14 b(pro)q(duce)507 1105 y Fi(P)550 1148 y Fk(i)p
Fy(2f)p Fj(0)p Fk(;)p Fj(1)p Fy(g)668 1139 y Fb(n)728
1119 y Fj(1)p 702 1126 V 702 1157 a(2)720 1147 y Fb(n=)p
Fg(2)777 1137 y Fm(j)p Fl(i)p Fm(i)o(j)p Fl(f)5 b Fs(\()p
Fl(i)p Fs(\))p Fm(i)o Fs(.)-19 1237 y(3.)22 b(Apply)16
b(a)f(phase-applying)i(mac)o(hine)f(to)f(pro)q(duce)932
1205 y Fi(P)976 1248 y Fk(i)p Fy(2f)p Fj(0)p Fk(;)p Fj(1)p
Fy(g)1094 1239 y Fb(n)1153 1219 y Fj(1)p 1127 1226 V
1127 1256 a(2)1145 1247 y Fb(n=)p Fg(2)1202 1237 y Fl(f)5
b Fs(\()p Fl(i)p Fs(\))p Fm(j)p Fl(i)p Fm(i)n(j)p Fl(f)g
Fs(\()p Fl(i)p Fs(\))p Fm(i)o Fs(.)-19 1337 y(4.)22 b(Apply)16
b(the)f(rev)o(erse)g(of)g(the)g(mac)o(hine)h(in)g(Step)g(2)f(to)f(pro)q
(duce)1136 1304 y Fi(P)1180 1348 y Fk(i)p Fy(2f)p Fj(0)p
Fk(;)p Fj(1)p Fy(g)1298 1339 y Fb(n)1358 1319 y Fj(1)p
1332 1326 V 1332 1356 a(2)1350 1346 y Fb(n=)p Fg(2)1407
1337 y Fl(f)5 b Fs(\()p Fl(i)p Fs(\))p Fm(j)p Fl(i)p
Fm(i)n Fs(.)-19 1441 y(5.)22 b(Apply)16 b(another)f(F)l(ourier)g
(transform)f(to)h(pro)q(duce)937 1408 y Fi(P)981 1452
y Fk(i)p Fy(2f)p Fj(0)p Fk(;)p Fj(1)p Fy(g)1099 1443
y Fb(n)1159 1423 y Fj(1)p 1132 1430 V 1132 1460 a(2)1150
1450 y Fb(n=)p Fg(2)1217 1429 y Fs(^)1207 1441 y Fl(f)5
b Fs(\()p Fl(s)p Fs(\))p Fm(j)p Fl(s)p Fm(i)15 b Fs(as)g(desired.)-4
1550 y(W)l(e)h(ha)o(v)o(e)g(already)h(constructed)f(ab)q(o)o(v)o(e)g
(the)h(F)l(ourier)f(transform)f(mac)o(hine)i(for)f(Steps)h(1)f(and)g
(5.)23 b(Since)18 b Fl(f)k Fs(can)16 b(b)q(e)-75 1607
y(computed)j(in)h(deterministic)h(p)q(olynomial)g(time,)f(the)f(Sync)o
(hronization)h(Theorem)f(on)g(page)f(17)h(lets)g(us)g(construct)-75
1663 y(p)q(olynomial)i(time)f(QTMs)f(for)g(Steps)h(2)f(and)g(4)g(whic)o
(h)i(tak)o(e)d(input)j Fm(j)p Fl(i)p Fm(i)d Fs(to)h(output)g
Fm(j)p Fl(i)p Fm(i)o(j)p Fl(f)5 b Fs(\()p Fl(i)p Fs(\))p
Fm(i)18 b Fs(and)i(vice)g(v)o(ersa,)g(with)-75 1720 y(running)c(time)g
(indep)q(enden)o(t)h(of)e(the)g(particular)h(v)m(alue)h(of)e
Fl(i)p Fs(.)-4 1794 y(Finally)l(,)22 b(w)o(e)d(can)h(apply)h(phase)f
(according)g(to)f Fl(f)5 b Fs(\()p Fl(i)p Fs(\))19 b(in)h(Step)g(3)g(b)
o(y)f(extending)i(to)e(t)o(w)o(o)g(trac)o(ks)f(the)i(stationary)l(,)-75
1850 y(normal)15 b(form)g(QTM)g(with)g(alphab)q(et)h
Fm(f)p Fs(#)p Fl(;)8 b Fm(\000)p Fs(1)p Fl(;)g Fs(1)p
Fm(g)13 b Fs(de\014ned)k(b)o(y)p 647 1966 2 57 v 752
1949 a(#)214 b(-)q(1)g(1)p 563 1967 821 2 v 586 2007
a Fl(q)606 2014 y Fj(0)p 647 2024 2 57 v 669 2007 a Fm(j)p
Fs(#)p Fm(i)o(j)p Fl(q)770 2014 y Fj(1)790 2007 y Fm(i)o(j)p
Fl(R)p Fm(i)41 b Fs(-)p Fm(j)p Fs(-1)p Fm(i)o(j)p Fl(q)1030
2014 y Fj(1)1050 2007 y Fm(ij)p Fl(R)p Fm(i)f(j)p Fs(1)p
Fm(i)o(j)p Fl(q)1260 2014 y Fj(1)1280 2007 y Fm(ij)p
Fl(R)p Fm(i)586 2063 y Fl(q)606 2070 y Fj(1)p 647 2080
V 669 2063 a Fm(j)p Fs(#)p Fm(i)o(j)p Fl(q)770 2070 y
Fk(f)793 2063 y Fm(ij)p Fl(L)p Fm(i)57 b(j)p Fs(-)o(1)p
Fm(ij)p Fl(q)1031 2070 y Fk(f)1053 2063 y Fm(ij)p Fl(L)p
Fm(i)42 b(j)p Fs(1)p Fm(i)o(j)p Fl(q)1261 2070 y Fk(f)1283
2063 y Fm(ij)p Fl(L)p Fm(i)584 2120 y Fl(q)604 2127 y
Fk(f)p 647 2137 V 669 2120 a Fm(j)p Fs(#)p Fm(i)o(j)p
Fl(q)770 2127 y Fj(0)790 2120 y Fm(i)o(j)p Fl(R)p Fm(i)56
b(j)p Fs(-1)p Fm(i)o(j)p Fl(q)1030 2127 y Fj(0)1050 2120
y Fm(ij)p Fl(R)p Fm(i)40 b(j)p Fs(1)p Fm(i)o(j)p Fl(q)1260
2127 y Fj(0)1280 2120 y Fm(ij)p Fl(R)p Fm(i)-75 2216
y Fs(Do)o(v)o(etailing)16 b(these)f(\014v)o(e)g(stationary)l(,)f
(normal)i(form)e(QTMs)h(giv)o(es)g(the)h(desired)g(mac)o(hine.)474
b Fd(2)-4 2346 y Fs(Remark)m(ably)l(,)21 b(this)f(quan)o(tum)f
(algorithm)g(p)q(erforms)g(F)l(ourier)g(sampling)i(with)e(resp)q(ect)h
(to)f Fl(f)24 b Fs(while)d(calling)g(the)-75 2403 y(algorithm)h(for)f
Fl(f)27 b Fs(only)c(t)o(wice.)40 b(T)l(o)22 b(see)g(more)g(clearly)h
(wh)o(y)f(this)g(is)h(remark)m(able,)h(consider)f(the)f(sp)q(ecial)h
(case)f(of)-75 2459 y(the)f(sampling)g(problem)g(where)g(the)f
(function)i Fl(f)j Fs(is)c(one)g(of)f(the)g(\(unnormalized\))i(parit)o
(y)e(functions.)36 b(Supp)q(ose)22 b Fl(f)-75 2516 y
Fs(corresp)q(onds)16 b(to)g(the)g(parit)o(y)g(function)h
Fl(\037)653 2523 y Fk(k)674 2516 y Fs(;)f(i.e.)23 b Fl(f)5
b Fs(\()p Fl(i)p Fs(\))13 b(=)i(\()p Fm(\000)p Fs(1\))1020
2499 y Fk(i)p Fy(\001)p Fk(k)1062 2516 y Fs(,)h(where)h
Fl(i;)8 b(k)14 b Fm(2)g(f)p Fs(0)p Fl(;)8 b Fs(1)p Fm(g)1456
2499 y Fk(n)1478 2516 y Fs(.)22 b(Then)16 b(the)h(result)f(of)g
(fourier)-75 2572 y(sampling)j(with)g(resp)q(ect)g(to)e
Fl(f)24 b Fs(is)18 b(alw)o(a)o(ys)g Fl(k)q Fs(.)29 b(Let)19
b(us)f(call)h(this)g(promise)g(problem)g(the)f(parit)o(y)g(problem:)27
b(on)18 b(input)-75 2629 y(a)f(program)f(that)g(computes)h
Fl(f)22 b Fs(where)c Fl(f)k Fs(is)17 b(an)g(\(unnormalized\))i(parit)o
(y)d(function,)i(determine)g Fl(k)q Fs(.)26 b(Notice)18
b(that)e(the)951 2779 y(47)p eop
%%Page: 48 48
48 47 bop -75 -26 a Fs(QTM)15 b(for)f(fourier)h(sampling)g(extracts)f
Fl(n)h Fs(bits)h(of)e(information)h(\(the)f(v)m(alue)i(of)f
Fl(k)q Fs(\))f(using)i(just)e(t)o(w)o(o)f(in)o(v)o(o)q(cations)j(of)e
(the)-75 31 y(subroutine)h(for)f(computing)h(b)q(o)q(olean)h(function)f
Fl(f)5 b Fs(.)20 b(It)15 b(is)g(not)f(hard)g(to)g(sho)o(w)g(that)g(if)h
(w)o(e)f Fl(f)20 b Fs(is)15 b(sp)q(eci\014ed)h(b)o(y)f(an)f(oracle,)-75
87 y(then)i(in)h(a)f(probabilistic)i(setting,)e(extracting)f
Fl(n)i Fs(bits)f(of)f(information)h(m)o(ust)g(require)h(at)e(least)h
Fl(n)g Fs(in)o(v)o(o)q(cations)g(of)g(the)-75 144 y(b)q(o)q(olean)c
(function.)19 b(W)l(e)10 b(no)o(w)g(sho)o(w)g(ho)o(w)h(to)e(amplify)j
(this)f(this)g(adv)m(an)o(tage)f(of)g(quan)o(tum)g(computers)h(o)o(v)o
(er)f(probabilistic)-75 200 y(computers)15 b(b)o(y)g(de\014ning)i(a)e
(recursiv)o(e)h(v)o(ersion)f(of)g(the)g(parit)o(y)g(problem:)21
b(the)15 b(recursiv)o(e)h(F)l(ourier)f(sampling)i(problem.)-4
274 y(T)l(o)12 b(ready)h(this)g(problem)h(for)e(recursion,)i(w)o(e)f
(\014rst)f(need)i(to)f(turn)f(the)h(parit)o(y)g(problem)h(in)o(to)f(a)f
(problem)i(with)f(range)-75 331 y Fm(f\000)p Fs(1)p Fl(;)8
b Fs(1)p Fm(g)p Fs(.)23 b(This)17 b(is)g(easily)h(done)f(b)o(y)g
(adding)h(a)e(second)h(function)h Fl(g)r Fs(,)e(and)h(requiring)h(the)f
(answ)o(er)f Fl(g)r Fs(\()p Fl(k)q Fs(\))f(rather)h(than)h
Fl(k)-75 387 y Fs(itself.)-4 461 y(No)o(w,)e(w)o(e)g(will)j(mak)o(e)d
(the)h(problem)h(recursiv)o(e.)22 b(F)l(or)15 b(eac)o(h)h(problem)h
(instance)g(of)e(size)i Fl(n)p Fs(,)f(w)o(e)f(will)j(replace)f(the)f(2)
1999 445 y Fk(n)-75 518 y Fs(v)m(alues)g(of)e Fl(f)19
b Fs(with)c(2)278 501 y Fk(n)316 518 y Fs(indep)q(enden)o(t)h(recursiv)
o(e)f(subproblems)h(of)e(size)h Fl(n=)p Fs(2,)f(and)h(so)f(on,)g
(stopping)h(the)f(recursion)i(with)-75 574 y(function)h(calls)h(at)e
(the)h(b)q(ottom.)23 b(Since)18 b(a)e(QTM)h(needs)g(only)g(t)o(w)o(o)e
(calls)j(to)e Fl(f)22 b Fs(to)15 b(solv)o(e)i(the)g(parit)o(y)f
(problem,)h(it)g(will)-75 631 y(b)q(e)f(able)g(to)e(solv)o(e)i(an)f
(instance)h(of)f(the)g(recursiv)o(e)h(problem)g(of)f(size)h
Fl(n)f Fs(recursiv)o(ely)i(in)f(time)f Fl(T)6 b Fs(\()p
Fl(n)p Fs(\))15 b(where)422 733 y Fl(T)6 b Fs(\()p Fl(n)p
Fs(\))27 b Fm(\024)h Fl(pol)q(y)r Fs(\()p Fl(n)p Fs(\))9
b(+)i(4)p Fl(T)6 b Fs(\()p Fl(n=)p Fs(2\))87 b(=)-8 b
Fm(\))89 b Fl(T)6 b Fs(\()p Fl(n)p Fs(\))12 b Fm(\024)h
Fl(pol)q(y)r Fs(\()p Fl(n)p Fs(\))-75 835 y(Ho)o(w)o(ev)o(er,)f(since)h
(a)f(PTM)g(needs)h Fl(n)f Fs(calls)i(to)d Fl(f)18 b Fs(to)11
b(solv)o(e)i(the)f(parit)o(y)g(problem,)i(the)e(straigh)o(tforw)o(ard)e
(recursiv)o(e)j(solution)-75 891 y(to)i(the)g(recursiv)o(e)h(problem)g
(on)f(a)g(PTM)f(will)j(require)f(time)g Fl(T)6 b Fs(\()p
Fl(n)p Fs(\))14 b(where)527 993 y Fl(T)6 b Fs(\()p Fl(n)p
Fs(\))27 b Fm(\025)h Fl(nT)6 b Fs(\()p Fl(n=)p Fs(2\))88
b(=)-8 b Fm(\))90 b Fl(T)6 b Fs(\()p Fl(n)p Fs(\))27
b Fm(\025)h Fl(n)1345 975 y Fj(log)6 b Fk(n)-4 1113 y
Fs(T)l(o)11 b(allo)o(w)h(us)f(to)g(pro)o(v)o(e)g(a)g(separation)h(b)q
(et)o(w)o(een)g(quan)o(tum)f(and)h(classical)h(mac)o(hines,)g(w)o(e)e
(will)i(replace)g(the)e(functions)-75 1170 y(with)18
b(an)g(oracle.)29 b(F)l(or)17 b(an)o(y)h(\\legal")g(oracle)g
Fl(O)q Fs(,)g(an)o(y)g(oracle)g(satisfying)g(some)g(sp)q(ecial)i
(constrain)o(ts)d(to)g(b)q(e)i(describ)q(ed)-75 1226
y(b)q(elo)o(w,)c(w)o(e)f(will)i(de\014ne)g(the)f(language)f
Fm(R)653 1233 y Fk(O)683 1226 y Fs(.)19 b(W)l(e)c(will)h(sho)o(w)e
(that)g(there)g(is)h(a)g(QTM)f(whic)o(h)h(giv)o(en)g(access)g(to)f(an)o
(y)g(legal)-75 1283 y(oracle)h Fl(O)q Fs(,)f(accepts)h
Fm(R)317 1290 y Fk(O)361 1283 y Fs(in)g(time)g Fl(O)q
Fs(\()p Fl(n)8 b Fs(log)g Fl(n)p Fs(\))14 b(with)h(success)g
(probabilit)o(y)h(1,)e(but)h(that)f(there)h(is)g(a)f(legal)h(oracle)g
Fl(O)h Fs(suc)o(h)-75 1339 y(that)e Fm(R)62 1346 y Fk(O)107
1339 y Fs(is)i(not)f(con)o(tained)g(in)h Fn(BPTime)8
b Fs(\()p Fl(n)736 1323 y Fk(o)p Fj(\(log)d Fk(n)p Fj(\))856
1339 y Fs(\))874 1323 y Fk(O)903 1339 y Fs(.)-4 1413
y(Our)15 b(language)f(will)j(consist)e(of)f(strings)h(from)f
Fm(f)p Fs(0)p Fl(;)8 b Fs(1)p Fm(g)930 1397 y Fy(\003)962
1413 y Fs(with)15 b(length)g(a)g(p)q(o)o(w)o(er)f(of)g(2.)20
b(W)l(e)14 b(will)j(call)e(all)h(suc)o(h)f(strings)-75
1470 y Fr(c)n(andidates)p Fs(.)26 b(The)18 b(decision)h(whether)f(a)f
(candidate)h Fl(x)g Fs(is)g(con)o(tained)g(in)g(the)g(language)f(will)j
(dep)q(end)f(on)e(a)g(recursiv)o(e)-75 1526 y(tree.)31
b(If)19 b(candidate)h Fl(x)f Fs(has)g(length)h Fl(n)p
Fs(,)f(then)h(it)f(will)i(ha)o(v)o(e)d(2)1015 1510 y
Fk(n=)p Fj(2)1093 1526 y Fs(c)o(hildren)j(in)e(the)g(tree,)h(and)f(in)h
(general)f(a)g(no)q(de)h(at)-75 1583 y(lev)o(el)d Fl(l)e
Fm(\025)f Fs(0)i(\(coun)o(ting)g(from)f(the)h(b)q(ottom)f(with)h(lea)o
(v)o(es)g(at)g(lev)o(el)h Fm(\000)p Fs(1)f(for)f(con)o(v)o(enience\))j
(will)f(ha)o(v)o(e)f(2)1721 1566 y Fj(2)1739 1554 y Fb(l)1768
1583 y Fs(c)o(hildren.)24 b(So,)-75 1639 y(the)17 b(ro)q(ot)g(of)g(the)
g(tree)g(for)g(a)g(candidate)h Fl(x)f Fs(of)g(length)h
Fl(n)g Fs(is)g(iden)o(ti\014ed)h(b)o(y)e(the)h(string)f
Fl(x)p Fs(,)g(its)h(2)1606 1623 y Fk(n=)p Fj(2)1682 1639
y Fs(c)o(hildren)h(are)e(eac)o(h)-75 1696 y(iden)o(ti\014ed)22
b(b)o(y)d(a)g(string)h Fl(x)p Fs($)p Fl(x)446 1703 y
Fj(1)484 1696 y Fs(where)g Fl(x)646 1703 y Fj(1)686 1696
y Fm(2)g(f)p Fs(0)p Fl(;)8 b Fs(1)p Fm(g)849 1679 y Fk(n=)p
Fj(2)905 1696 y Fs(,)21 b(and,)f(in)g(general,)h(a)e(descenden)o(t)i
(in)f(the)g(tree)f(at)g(lev)o(el)i Fl(l)e Fs(is)-75 1752
y(iden)o(ti\014ed)f(b)o(y)f(a)f(string)g(of)g(the)h(form)e
Fl(x)p Fs($)p Fl(x)674 1759 y Fj(1)694 1752 y Fs($)p
Fl(x)743 1759 y Fj(2)762 1752 y Fs($)8 b Fl(:)g(:)g(:)d
Fs($)p Fl(x)902 1759 y Fk(m)951 1752 y Fs(with)17 b Fm(j)p
Fl(x)p Fm(j)d Fs(=)h Fl(n;)8 b Fm(j)p Fl(x)1259 1759
y Fj(1)1278 1752 y Fm(j)14 b Fs(=)h Fl(n=)p Fs(2)p Fl(;)8
b(:)g(:)g(:)t(;)g Fm(j)p Fl(x)1568 1759 y Fk(m)1600 1752
y Fm(j)15 b Fs(=)g(2)1701 1736 y Fk(l)p Fj(+1)1758 1752
y Fs(.)24 b(Notice)17 b(that)-75 1809 y(an)o(y)e(string)g(of)g(this)g
(form)g(for)f(some)h Fl(n)h Fs(a)f(p)q(o)o(w)o(er)f(of)h(2)g(and)g
Fl(l)-75 1865 y(in)p Fs([0)p Fl(;)8 b Fs(log)f Fl(n)13
b Fm(\000)g Fs(1])18 b(de\014nes)i(a)e(no)q(de)i(in)f(some)g(tree.)31
b(So,)19 b(w)o(e)g(will)h(consider)g(oracles)f Fl(O)h
Fs(whic)o(h)f(map)g(queries)h(o)o(v)o(er)e(the)-75 1921
y(alphab)q(et)g Fm(f)p Fs(0)p Fl(;)8 b Fs(1)p Fl(;)g
Fs($)p Fm(g)15 b Fs(to)i(answ)o(ers)g Fm(f\000)p Fs(1)p
Fl(;)8 b Fs(+1)p Fm(g)p Fs(,)16 b(and)i(w)o(e)f(will)i(use)f(eac)o(h)f
(suc)o(h)h(oracle)g Fl(O)g Fs(to)f(de\014ne)h(a)g(function)g
Fl(V)1892 1928 y Fk(O)1939 1921 y Fs(that)-75 1978 y(giv)o(es)h(eac)o
(h)g(no)q(de)g(a)g(v)m(alue)h Fm(f\000)p Fs(1)p Fl(;)8
b Fs(+1)p Fm(g)p Fs(.)29 b(The)19 b(language)g Fm(R)976
1985 y Fk(O)1024 1978 y Fs(will)i(con)o(tain)e(exactly)g(those)g
(candidates)g Fl(x)g Fs(for)f(whic)o(h)-75 2034 y Fl(V)-48
2041 y Fk(O)-19 2034 y Fs(\()p Fl(x)p Fs(\))12 b(=)h(1.)-4
2108 y(W)l(e)j(will)i(de\014ne)f Fl(V)321 2115 y Fk(O)367
2108 y Fs(for)f(lea)o(v)o(es)g(\(lev)o(el)h(0)f(no)q(des\))h(based)f
(directly)i(on)e(the)h(oracle)f Fl(O)q Fs(.)23 b(So,)16
b(if)h Fl(x)f Fs(is)h(a)f(leaf,)h(then)f(w)o(e)-75 2165
y(let)g Fl(V)18 2172 y Fk(O)47 2165 y Fs(\()p Fl(x)p
Fs(\))c(=)h Fl(O)q Fs(\()p Fl(x)p Fs(\).)-4 2239 y(W)l(e)19
b(will)i(de\014ne)f Fl(V)330 2246 y Fk(O)379 2239 y Fs(for)e(all)i
(other)f(no)q(des)h(b)o(y)f(lo)q(oking)h(at)f(the)g(answ)o(er)g(of)g
Fl(O)h Fs(to)e(a)h(particular)h(query)f(whic)o(h)h(is)-75
2296 y(c)o(hosen)c(dep)q(ending)i(on)d(the)h(v)m(alues)h(of)e
Fl(V)647 2303 y Fk(O)692 2296 y Fs(for)g(its)h(c)o(hildren.)23
b(Consider)16 b(no)q(de)h Fl(x)e Fs(at)g(lev)o(el)i Fl(l)d
Fm(\025)g Fs(0.)21 b(W)l(e)16 b(will)h(insist)g(that)-75
2352 y(the)d(oracle)f Fl(O)i Fs(b)q(e)f(suc)o(h)g(that)e(there)i(is)g
(some)f Fl(k)733 2359 y Fk(x)767 2352 y Fm(2)g(f)p Fs(0)p
Fl(;)8 b Fs(1)p Fm(g)923 2336 y Fj(2)941 2324 y Fb(l)967
2352 y Fs(suc)o(h)13 b(that)g(the)h(c)o(hildren)h(of)e
Fl(x)h Fs(all)g(ha)o(v)o(e)f(v)m(alues)i(determined)-75
2408 y(b)o(y)g(their)h(parit)o(y)f(with)g Fl(k)358 2415
y Fk(x)634 2469 y Fm(8)p Fl(y)f Fm(2)f(f)p Fs(0)p Fl(;)8
b Fs(1)p Fm(g)851 2450 y Fj(2)869 2439 y Fb(l)927 2469
y Fl(V)954 2476 y Fk(O)983 2469 y Fs(\()p Fl(x)p Fs($)p
Fl(y)r Fs(\))k(=)h(\()p Fm(\000)p Fs(1\))1246 2450 y
Fk(y)q Fy(\001)p Fk(k)1292 2454 y Fb(x)-75 2553 y Fs(and)g(w)o(e)g
(will)i(then)e(giv)o(e)g Fl(V)379 2560 y Fk(O)409 2553
y Fs(\()p Fl(x)p Fs(\))f(the)h(v)m(alue)i Fl(O)q Fs(\()p
Fl(x)p Fs($)p Fl(k)802 2560 y Fk(x)822 2553 y Fs(\).)k(W)l(e)13
b(will)i(sa)o(y)d(that)h(the)g(oracle)g Fl(O)h Fs(is)g
Fr(le)n(gal)5 b Fs(,)11 b(if)j(this)f(pro)q(cess)h(allo)o(ws)-75
2609 y(us)i(to)e(successfully)k(de\014ne)e Fl(V)441 2616
y Fk(O)486 2609 y Fs(for)f(all)h(no)q(des)h(whose)e(lev)o(el)i(is)f
Fm(\025)d Fs(0.)20 b(An)o(y)c(query)g(of)f(the)g(form)g
Fl(x)p Fs($)p Fl(k)h Fs(with)g Fl(x)f Fs(a)g(no)q(de)i(at)951
2779 y(48)p eop
%%Page: 49 49
49 48 bop -75 -26 a Fs(lev)o(el)18 b Fl(l)c Fm(\025)h
Fs(0)h(and)h Fl(k)e Fm(2)g(f)p Fs(0)p Fl(;)8 b Fs(1)p
Fm(g)434 -42 y Fj(2)452 -54 y Fb(l)464 -26 y Fs(,)16
b(or)g(of)f(the)i(form)e Fl(x)i Fs(with)f Fl(x)g Fs(a)g(leaf,)h(is)g
(called)g(a)f Fr(query)i(at)g(no)n(de)f Fl(x)p Fs(.)23
b(A)16 b(query)g(whic)o(h)h(is)-75 31 y(lo)q(cated)h(in)h(the)f(same)f
(recursiv)o(e)i(tree)f(as)f(no)q(de)h Fl(x)p Fs(,)h(but)e(not)h(in)h
(the)e(subtree)h(ro)q(oted)g(at)f Fl(x)p Fs(,)h(is)g(called)i
Fr(outside)f(of)27 b Fl(x)p Fs(.)-75 87 y(Notice)14 b(that)e(for)h(an)o
(y)g(candidate)h Fl(x)p Fs(,)f(the)h(v)m(alues)g(of)f
Fl(V)858 94 y Fk(O)900 87 y Fs(at)g(no)q(des)h(in)g(the)f(tree)g(ro)q
(oted)g(at)g Fl(x)g Fs(and)g(the)h(decision)h(whether)-75
144 y Fl(x)g Fs(is)h(in)g Fm(R)104 151 y Fk(O)148 144
y Fs(all)h(dep)q(end)f(only)g(on)f(the)g(answ)o(ers)g(of)g(queries)h
(lo)q(cated)g(at)e(no)q(des)i(in)g(the)f(tree)g(ro)q(oted)g(at)g
Fl(x)p Fs(.)-75 268 y Fn(Theorem)i(8.4.3)22 b Fr(Ther)n(e)17
b(is)g(an)g(or)n(acle)h(QTM)e Fl(M)23 b Fr(such)17 b(that)h(for)g
(every)g(le)n(gal)e(or)n(acle)h Fl(O)q Fr(,)h Fl(M)1600
251 y Fk(O)1647 268 y Fr(runs)f(in)g(p)n(olynomial)-75
324 y(time)f(and)h(ac)n(c)n(epts)e(the)i(language)f Fm(R)573
331 y Fk(O)618 324 y Fr(with)h(pr)n(ob)n(ability)f(1.)-75
448 y Fn(Pro)q(of.)25 b Fs(W)l(e)17 b(ha)o(v)o(e)f(built)j(the)e
(language)g Fm(R)699 455 y Fk(O)745 448 y Fs(so)g(that)f(it)h(can)g(b)q
(e)h(accepted)f(e\016cien)o(tly)h(using)g(a)f(recursiv)o(e)g(quan)o
(tum)-75 504 y(algorithm.)25 b(T)l(o)17 b(a)o(v)o(oid)g(w)o(orking)f
(through)h(the)g(details)h(required)g(to)e(implemen)o(t)j(a)d(recursiv)
o(e)i(algorithm)f(rev)o(ersibly)l(,)-75 561 y(w)o(e)c(will)i(instead)f
(implemen)o(t)h(the)e(algorithm)h(with)f(a)g(mac)o(hine)i(that)d
(writes)i(do)o(wn)f(an)g(iteration)h(that)e(\\un)o(wraps")h(the)-75
617 y(desired)j(recursion.)21 b(Then)16 b(the)f(Lo)q(oping)h(Lemma)f
(will)i(let)f(us)f(build)i(a)e(QTM)g(to)g(carry)g(out)f(this)i
(iteration.)-4 692 y(First)e(consider)i(the)e(recursiv)o(e)i(algorithm)
f(to)f(compute)h Fl(V)1023 699 y Fk(O)1067 692 y Fs(for)f(a)g(no)q(de)i
Fl(x)p Fs(.)j(If)c Fl(x)g Fs(is)g(a)g(leaf,)f(then)i(the)e(v)m(alue)i
Fl(V)1931 699 y Fk(O)1961 692 y Fs(\()p Fl(x)p Fs(\))-75
748 y(can)f(b)q(e)h(found)g(b)o(y)f(querying)h(the)f(string)g
Fl(x)p Fs($.)20 b(If)15 b Fl(x)g Fs(is)h(a)f(no)q(de)h(at)e(lev)o(el)j
Fl(l)c Fm(\025)g Fs(0,)i(then)g(calculate)h Fl(V)1621
755 y Fk(O)1666 748 y Fs(as)f(follo)o(ws.)-19 872 y(1.)22
b(Split)16 b(in)o(to)f(an)h(equal)f(sup)q(erp)q(osition)i(of)e(the)g(2)
856 856 y Fj(2)874 844 y Fb(l)903 872 y Fs(c)o(hildren)i(of)e
Fl(x)p Fs(.)-19 966 y(2.)22 b(Recursiv)o(ely)17 b(compute)e
Fl(V)492 973 y Fk(O)537 966 y Fs(for)f(these)i(c)o(hildren)h(in)f(sup)q
(erp)q(osition.)-19 1060 y(3.)22 b(Apply)16 b(phase)g(to)e(eac)o(h)h(c)
o(hild)i(giv)o(en)f(b)o(y)f(that)f(c)o(hild's)j(v)m(alue)f
Fl(V)1134 1067 y Fk(O)1164 1060 y Fs(.)-19 1153 y(4.)22
b(Rev)o(erse)15 b(the)h(computation)f(of)g(Step)g(2)g(to)f(erase)i(the)
f(v)m(alue)h Fl(V)1135 1160 y Fk(O)1165 1153 y Fs(.)-19
1247 y(5.)22 b(Apply)17 b(the)f(F)l(ourier)g(transform)e(con)o(v)o
(erting)i(the)g(sup)q(erp)q(osition)i(of)d(c)o(hildren)j(of)e
Fl(x)g Fs(in)o(to)f(a)h(sup)q(erp)q(osition)i(con-)39
1304 y(sisting)e(en)o(tirely)g(of)f(the)g(single)h(string)g
Fl(k)755 1311 y Fk(x)776 1304 y Fs(.)-19 1398 y(6.)22
b(Query)15 b Fl(x)p Fs($)p Fl(k)249 1405 y Fk(x)286 1398
y Fs(to)f(\014nd)i(the)g(v)m(alue)g Fl(V)655 1405 y Fk(O)700
1398 y Fs(for)e Fl(x)p Fs(.)-19 1491 y(7.)22 b(Rev)o(erse)15
b(Steps)h(1-5)f(to)f(erase)h Fl(k)597 1498 y Fk(x)634
1491 y Fs(\(lea)o(ving)h(only)f Fl(x)g Fs(and)h Fl(V)1062
1498 y Fk(O)1091 1491 y Fs(\()p Fl(x)p Fs(\)\).)-4 1615
y(Notice)c(that)f(the)g(n)o(um)o(b)q(er)h(of)f(steps)h(required)h(in)f
(the)g(iteration)g(ob)q(eys)f(the)h(recursion)g(discussed)i(ab)q(o)o(v)
o(e,)d(and)h(hence)-75 1672 y(is)17 b(p)q(olynomial)g(in)g(the)g
(length)f(of)g Fl(x)p Fs(.)23 b(So,)15 b(w)o(e)h(can)h(use)f(the)g
(Sync)o(hronization)i(Theorem)d(on)i(page)f(17)f(to)g(construct)h(a)-75
1728 y(p)q(olynomial)j(time)f(QTM)g(whic)o(h,)g(for)f(an)o(y)h
(particular)g Fl(x)p Fs(,)g(writes)f(a)h(list)g(of)f(the)h(steps)g
(whic)o(h)g(m)o(ust)f(b)q(e)i(carried)f(out.)-75 1785
y(Therefore,)d(w)o(e)g(complete)h(the)g(pro)q(of)f(b)o(y)g
(constructing)h(a)f(p)q(olynomial)i(time)f(QTM)f(to)g(carry)g(out)g(an)
o(y)g(suc)o(h)h(a)f(list)h(of)-75 1841 y(step.)-4 1915
y(Since)i(our)f(algorithm)f(requires)i(us)f(to)f(recursiv)o(ely)i(run)g
(b)q(oth)f(the)f(algorithm)h(and)g(its)g(rev)o(erse,)g(w)o(e)g(need)g
(to)g(see)-75 1972 y(ho)o(w)j(to)f(handle)j(eac)o(h)e(step)g(and)g(its)
h(rev)o(erse.)34 b(Before)20 b(w)o(e)g(start,)g(w)o(e)g(will)i(\014ll)f
(out)f(the)g(no)q(de)h Fl(x)f Fs(to)g(a)f(description)-75
2028 y(of)f(a)g(leaf)i(b)o(y)e(adding)h(strings)g(of)f(0's.)30
b(Then,)19 b(Steps)g(1)f(and)h(5)f(at)g(lev)o(el)i Fl(l)f
Fm(\025)g Fs(0)f(just)h(require)g(applying)h(the)f(F)l(ourier)-75
2085 y(transform)13 b(QTM)i(to)f(the)h(2)414 2068 y Fk(l)441
2085 y Fs(bit)h(string)e(at)g(lev)o(el)i Fl(l)g Fs(in)f(the)g(curren)o
(t)g(no)q(de)g(description.)21 b(Since)16 b(the)f(F)l(ourier)g
(transform)-75 2141 y(is)h(its)f(o)o(wn)f(rev)o(erse,)h(the)g(same)g
(mac)o(hine)g(also)g(rev)o(erses)g(Steps)g(1)g(and)g(5.)20
b(Step)15 b(3)g(is)g(handled)i(b)o(y)e(the)g(phase-applying)-75
2198 y(mac)o(hine)k(already)f(constructed)g(ab)q(o)o(v)o(e)f(as)h(part)
f(of)g(the)h(F)l(ourier)g(sampling)h(QTM)f(in)g(Theorem)g(8.4.2.)26
b(Again,)19 b(the)-75 2254 y(transformation)f(in)j(Step)f(3)f(is)h(its)
g(o)o(wn)f(rev)o(erse,)h(so)g(the)f(same)h(mac)o(hine)g(can)g(b)q(e)g
(used)g(to)f(rev)o(erse)h(Step)g(3.)33 b(Step)-75 2311
y(6)17 b(and)h(its)g(rev)o(erse)g(can)g(b)q(e)h(handled)g(b)o(y)f(a)f
(rev)o(ersible)i(TM)e(whic)o(h)i(copies)g(the)f(relev)m(an)o(t)g(part)f
(of)h(the)g(curren)o(t)f(no)q(de)-75 2367 y(description,)j(queries)f
(the)f(oracle,)g(and)g(then)h(returns)f(the)g(no)q(de)g(description)i
(from)d(the)h(query)g(tap)q(e.)28 b(Notice)19 b(that)-75
2423 y(eac)o(h)c(of)g(these)g(mac)o(hines)h(tak)o(es)f(time)g(whic)o(h)
h(dep)q(ends)h(only)f(on)f(the)g(length)h(of)f(its)g(input.)-4
2498 y(Since)20 b(w)o(e)f(ha)o(v)o(e)g(stationary)l(,)g(normal)g(form)f
(QTMs)h(to)g(handle)h(eac)o(h)f(step)h(at)e(lev)o(el)i
Fl(l)g Fs(and)f(its)h(rev)o(erse)f(in)h(time)-75 2554
y(b)q(ounded)d(b)o(y)f(a)f(p)q(olynomial)i(in)f(2)524
2538 y Fk(l)537 2554 y Fs(,)f(w)o(e)h(can)f(use)h(the)g(Branc)o(hing)g
(Lemma)g(to)f(construct)g(a)h(stationary)l(,)e(normal)i(form)-75
2611 y(QTM)h(to)f(carry)h(out)g(an)o(y)g(sp)q(eci\014ed)i(step)e(of)g
(the)g(computation.)25 b(Do)o(v)o(etailing)18 b(with)f(a)g(mac)o(hine)h
(whic)o(h)g(rotates)e(the)951 2779 y(49)p eop
%%Page: 50 50
50 49 bop -75 -26 a Fs(\014rst)15 b(step)f(in)i(the)f(list)h(to)e(the)h
(end,)g(and)g(inserting)h(the)f(resulting)h(mac)o(hine)g(in)o(to)f(the)
g(rev)o(ersible)h(TM)f(of)f(the)h(Lo)q(oping)-75 31 y(Lemma)g(giv)o(es)
h(the)f(desired)h(QTM.)1434 b Fd(2)-4 161 y Fs(Computing)16
b(the)g(function)h Fl(V)519 168 y Fk(O)564 161 y Fs(tak)o(es)f(time)g
(\012\()p Fl(n)864 145 y Fj(log)5 b Fk(n)939 161 y Fs(\))15
b(ev)o(en)i(for)e(a)h(probabilistic)i(computer)e(allo)o(w)o(ed)h(a)f(b)
q(ounded)-75 218 y(probabilit)o(y)22 b(of)f(error.)37
b(W)l(e)21 b(can)h(see)f(this)h(with)f(the)g(follo)o(wing)h(in)o
(tuition.)39 b(First,)22 b(consider)g(asking)g(some)e(set)h(of)-75
274 y(queries)e(of)f(a)g(legal)h Fl(O)h Fs(that)d(determine)j(the)e(v)m
(alue)i(of)e Fl(V)942 281 y Fk(O)989 274 y Fs(for)g(a)g(no)q(de)h
Fl(x)f Fs(describ)q(ed)j(b)o(y)d(the)g(string)h Fl(x)1771
281 y Fj(1)1790 274 y Fs($)8 b Fl(:)g(:)g(:)d Fs($)p
Fl(x)1930 281 y Fk(m)1982 274 y Fs(at)-75 331 y(lev)o(el)18
b Fl(l)q Fs(.)24 b(There)17 b(are)f(t)o(w)o(o)f(w)o(a)o(ys)h(that)g
(the)h(ask)o(ed)f(queries)i(migh)o(t)e(\014x)h(the)g(v)m(alue)h(at)e
Fl(x)p Fs(.)24 b(The)17 b(\014rst)f(is)h(that)f(the)h(queries)-75
387 y(outside)h(of)f(the)h(subtree)g(ro)q(oted)f(at)g
Fl(x)h Fs(migh)o(t)f(b)q(e)i(enough)f(to)e(\014x)i Fl(V)1135
394 y Fk(O)1182 387 y Fs(for)f Fl(x)p Fs(.)27 b(If)18
b(this)g(happ)q(ens,)h(w)o(e)e(sa)o(y)g(that)g Fl(V)1931
394 y Fk(O)1961 387 y Fs(\()p Fl(x)p Fs(\))-75 444 y(is)h
Fr(\014xe)n(d)g(by)g(c)n(onstr)n(aint)p Fs(.)25 b(An)18
b(example)g(of)f(this)h(is)g(that)f(if)h(w)o(e)f(ask)o(ed)g(all)h(of)f
(the)h(queries)g(in)g(the)g(subtrees)g(ro)q(oted)f(at)-75
500 y(all)g(of)f(the)g(siblings)i(of)d Fl(x)p Fs(,)h(then)h(w)o(e)e(ha)
o(v)o(e)h(\014xed)h Fl(V)807 507 y Fk(O)852 500 y Fs(for)e(all)i(of)f
(the)g(siblings,)i(thereb)o(y)e(\014xing)h(the)f(string)g
Fl(k)h Fs(suc)o(h)g(that)-75 557 y Fl(V)-48 564 y Fk(O)-19
557 y Fs(\()p Fl(x)25 564 y Fj(1)45 557 y Fs($)8 b Fl(:)g(:)g(:)d
Fs($)p Fl(x)185 564 y Fk(m)218 557 y Fs($)p Fl(y)r Fs(\))14
b(equals)i(\()p Fm(\000)p Fs(1\))529 540 y Fk(y)q Fy(\001)p
Fk(k)578 557 y Fs(.)-4 631 y(The)f(only)h(other)g(w)o(a)o(y)e(that)h
(the)g(v)m(alue)i(of)e(the)h(no)q(de)g Fl(x)f Fs(migh)o(t)h(b)q(e)g
(\014xed)g(is)g(the)g(follo)o(wing.)21 b(If)16 b(the)g(queries)g(\014x)
g(the)-75 687 y(v)m(alue)i(of)e Fl(V)124 694 y Fk(O)170
687 y Fs(for)g(some)h(of)f(the)h(c)o(hildren)h(of)f Fl(x)f
Fs(then)h(this)h(will)g(restrict)f(the)f(p)q(ossible)j(v)m(alues)f(for)
e(the)h(string)f Fl(k)1896 694 y Fk(x)1935 687 y Fs(suc)o(h)-75
744 y(that)d Fl(V)49 751 y Fk(O)78 744 y Fs(\()p Fl(x)p
Fs($)p Fl(y)r Fs(\))f(alw)o(a)o(ys)h(equals)h(\()p Fm(\000)p
Fs(1\))573 727 y Fk(y)q Fy(\010)p Fk(k)636 731 y Fb(x)659
744 y Fs(,)f(and)h(suc)o(h)f(that)g Fl(V)996 751 y Fk(O)1026
744 y Fs(\()p Fl(x)p Fs(\))e(=)i Fl(O)q Fs(\()p Fl(x)p
Fs($)p Fl(k)1274 751 y Fk(x)1295 744 y Fs(\).)19 b(If)14
b(the)g(query)f Fl(x)p Fs($)p Fl(k)1663 751 y Fk(x)1698
744 y Fs(for)g(eac)o(h)g(p)q(ossible)-75 800 y Fl(k)-51
807 y Fk(x)-14 800 y Fs(has)i(b)q(een)i(ask)o(ed)e(and)g(all)i(ha)o(v)o
(e)e(the)g(same)g(answ)o(ers,)f(then)i(this)g(\014xes)g(the)f(v)m(alue)
i Fl(V)1448 807 y Fk(O)1492 800 y Fs(at)e Fl(x)p Fs(.)20
b(If)c(the)f(query)h Fl(x)p Fs($)p Fl(k)1931 807 y Fk(x)1968
800 y Fs(for)-75 857 y(the)f(correct)g Fl(k)179 864 y
Fk(x)216 857 y Fs(has)g(b)q(een)h(ask)o(ed,)f(then)g(w)o(e)g(call)i
Fl(x)e Fs(a)g Fr(hit)t Fs(.)-4 931 y(No)o(w)d(notice)j(that)d(\014xing)
j(the)e(v)m(alues)i(of)e(a)g(set)h(of)f(c)o(hildren)i(of)e(a)h(lev)o
(el)h Fl(l)e Fs(no)q(de)i Fl(x)e Fs(restricts)g(the)h(v)m(alue)h(of)e
Fl(k)1841 938 y Fk(x)1876 931 y Fs(to)g(a)g(set)-75 987
y(of)j(2)1 971 y Fj(2)19 959 y Fb(l)31 971 y Fy(\000)p
Fk(c)92 987 y Fs(p)q(ossibiliti)q(es)k(where)d Fl(c)f
Fs(is)i(the)e(maxim)o(um)h(size)h(of)e(a)h(linearly)i(indep)q(enden)o
(t)g(subset)e(of)f(the)h(c)o(hildren)i(whose)-75 1044
y(v)m(alues)d(are)f(\014xed.)21 b(This)16 b(can)f(b)q(e)h(used)g(to)e
(pro)o(v)o(e)h(that)f(it)i(tak)o(es)e Fl(n)c Fm(\001)g
Fl(n=)p Fs(2)e Fm(\001)g(\001)g(\001)d Fs(1)12 b(=)h
Fl(n)1366 1027 y Fj(\012\(log)6 b Fk(n)q Fj(\))1495 1044
y Fs(.)-4 1118 y(Ho)o(w)o(ev)o(er,)13 b(this)i(in)o(tuition)g(is)g(not)
f(y)o(et)g(enough)h(since)h(w)o(e)e(are)g(in)o(terested)h(in)g(arguing)
g(against)f(a)g(probabilistic)j(TM)-75 1174 y(rather)f(than)h(a)g
(deterministic)i(TM.)d(So,)h(w)o(e)f(will)j(argue)d(not)h(just)g(that)f
(it)h(tak)o(es)f Fl(n)1416 1158 y Fj(\012\(log)6 b Fk(n)q
Fj(\))1561 1174 y Fs(queries)18 b(to)f(\014x)g(the)g(v)m(alue)-75
1231 y(of)e(a)g(candidate)h(of)f(length)h Fl(n)p Fs(,)f(but)g(that)g
(if)g(few)o(er)g(than)g Fl(n)943 1214 y Fj(\012\(log)6
b Fk(n)q Fj(\))1087 1231 y Fs(queries)16 b(are)f(\014xed,)g(then)h(c)o
(ho)q(osing)f(a)g(random)g(legal)-75 1287 y(oracle)f(consisten)o(t)f
(with)h(those)f(queries)h(giv)o(es)g(to)f(a)g(candidate)h(of)f(length)h
Fl(n)g Fs(the)f(v)m(alue)i(1)e(with)h(probabilit)o(y)g(extremely)-75
1344 y(close)k(to)e(1)p Fl(=)p Fs(2.)24 b(This)18 b(will)h(giv)o(e)e
(the)g(desired)h(result.)26 b(T)l(o)17 b(see)g(this,)h(call)g(the)f
(set)g(of)f(queries)i(actually)g(ask)o(ed)f(and)g(the)-75
1400 y(answ)o(ers)d(giv)o(en)i(to)e(those)h(queries)h(a)f
Fr(run)k Fs(of)14 b(the)h(probabilistic)j(TM.)c(W)l(e)h(will)i(ha)o(v)o
(e)d(sho)o(wn)h(that)f(if)i(w)o(e)f(tak)o(e)f(an)o(y)h(run)-75
1456 y(on)d(a)h(candidate)g(of)f(length)h Fl(n)g Fs(with)g(few)o(er)f
(than)g Fl(n)797 1440 y Fj(\012\(log)6 b Fk(n)p Fj(\))938
1456 y Fs(queries,)13 b(then)g(the)g(probabilit)o(y)g(that)f(a)g
(random)g(legal)i(oracle)-75 1513 y(agreeing)j(with)f(the)h(run)f
(assigns)h(to)e Fl(x)i Fs(the)f(v)m(alue)i(1)e(is)h(extremely)g(close)g
(to)e(1)p Fl(=)p Fs(2.)23 b(This)17 b(means)f(that)g(a)g(probabilistic)
-75 1569 y(TM)e(whose)g(running)h(time)f(is)h Fl(n)489
1553 y Fk(o)p Fj(\(log)6 b Fk(n=)p Fj(2\))658 1569 y
Fs(will)16 b(fail)f(with)f(probabilit)o(y)i(1)e(to)f(accept)i
Fm(R)1424 1576 y Fk(O)1467 1569 y Fs(for)e(a)h(random)g(legal)h(oracle)
f Fl(O)q Fs(.)-75 1682 y Fn(De\014nition)19 b(8.4.4)j
Fr(A)15 b Fs(run)e(of)g(size)i Fl(k)h Fr(is)e(de\014ne)n(d)g(as)g(a)h
(p)n(air)f Fl(S;)8 b(f)19 b Fr(wher)n(e)c Fl(S)i Fr(is)d(a)h(set)f(of)g
Fl(k)i Fr(query)f(strings)e(and)i Fl(f)k Fr(is)14 b(map)-75
1739 y(fr)n(om)i Fl(S)j Fr(to)e Fm(f)p Fs(0)p Fl(;)8
b Fs(1)p Fm(g)14 b Fr(such)j(that)f(ther)n(e)h(is)f(at)g(le)n(ast)g
(one)f(le)n(gal)h(or)n(acle)g(agr)n(e)n(eing)f(with)i
Fl(f)5 b Fr(.)-4 1813 y(L)n(et)16 b Fl(r)j Fr(b)n(e)e(a)h(run,)g(let)f
Fl(y)i Fr(b)n(e)e(a)h(no)n(de)f(at)h(level)f Fl(l)e Fm(\025)h
Fs(2)p Fr(,)h(and)h(let)f Fl(O)i Fr(b)n(e)e(a)h(le)n(gal)e(or)n(acle)i
(at)g(and)f(b)n(elow)g Fl(y)j Fr(which)e(agr)n(e)n(es)-75
1869 y(with)e Fl(r)q Fr(.)21 b(Then)15 b Fl(O)i Fr(determines)e(the)h
(string)f Fl(k)709 1876 y Fk(y)746 1869 y Fr(for)h(which)g
Fl(V)972 1876 y Fk(O)1002 1869 y Fs(\()p Fl(y)r Fs(\))11
b(=)i Fl(O)q Fs(\()p Fl(y)r Fs($)p Fl(k)1246 1876 y Fk(y)1266
1869 y Fs(\))p Fr(.)20 b(If)c Fl(y)r Fs($)p Fl(k)1437
1876 y Fk(y)1473 1869 y Fr(is)f(a)h(query)g(in)g Fl(r)q
Fr(,)f(then)h(we)g(say)-75 1926 y Fl(O)h Fs(mak)o(es)d
Fl(y)j Fs(a)d(hit)h(for)h Fl(r)q Fr(.)k(Suppr)n(essing)15
b(the)h(dep)n(endency)f(on)h Fl(r)g Fr(in)g(the)g(notation,)g(we)g
(de\014ne)f Fl(P)6 b Fs(\()p Fl(y)r Fs(\))15 b Fr(as)h(the)g(pr)n(ob)n
(ability)-75 1982 y(that)h Fl(y)i Fr(is)d(a)h(hit)f(for)h
Fl(r)h Fr(when)e(we)h(cho)n(ose)f(a)h(le)n(gal)e(or)n(acle)i(at)f(and)h
(b)n(elow)f Fl(y)j Fr(uniformly)d(at)h(r)n(andom)g(fr)n(om)g(the)f(set)
g(of)h(al)r(l)-75 2039 y(such)h(or)n(acle)f(at)i(and)e(b)n(elow)h
Fl(y)i Fr(which)e(agr)n(e)n(e)f(with)h Fl(r)q Fr(.)26
b(Similarly,)17 b(for)h Fl(x)g Fr(an)g(anc)n(estor)f(of)h
Fl(y)r Fr(,)g(we)g(de\014ne)f Fl(P)1804 2046 y Fk(x)1826
2039 y Fs(\()p Fl(y)r Fs(\))g Fr(as)h(the)-75 2095 y(pr)n(ob)n(ability)
d(that)h Fl(y)h Fr(is)d(a)i(hit)f(when)g(a)h(le)n(gal)e(or)n(acle)h(is)
f(chosen)h(at)g(and)g(b)n(elow)g Fl(x)g Fr(uniformly)g(at)h(r)n(andom)f
(fr)n(om)h(the)f(set)g(of)-75 2152 y(al)r(l)h(or)n(acle)g(at)h(and)f(b)
n(elow)g Fl(x)g Fr(which)h(agr)n(e)n(e)e(with)i Fl(r)q
Fr(.)-75 2264 y Fn(Lemma)g(8.4.5)23 b Fl(P)270 2271 y
Fk(x)292 2264 y Fs(\()p Fl(y)r Fs(\))12 b Fm(\024)h Fs(2)p
Fl(P)6 b Fs(\()p Fl(y)r Fs(\))-75 2377 y Fn(Pro)q(of.)19
b Fs(Let)14 b Fl(S)i Fs(b)q(e)f(the)e(set)h(of)f(legal)h(oracles)g(at)f
(and)h(b)q(elo)o(w)g Fl(y)i Fs(whic)o(h)e(agree)g(with)g
Fl(r)q Fs(.)19 b(W)l(e)14 b(can)f(write)h Fl(S)i Fs(as)e(the)f(disjoin)
o(t)-75 2434 y(union)20 b(of)e Fl(S)138 2441 y Fk(h)179
2434 y Fs(and)h Fl(S)299 2441 y Fk(n)342 2434 y Fs(where)g(the)g
(former)f(is)h(the)g(set)f(of)h(those)f(oracles)h(in)h
Fl(S)h Fs(that)e(mak)o(e)f Fl(y)j Fs(a)d(hit)h(for)g
Fl(r)q Fs(.)30 b(F)l(urther)-75 2490 y(splitting)13 b(according)g(to)f
(the)g(v)m(alue)h Fl(V)572 2497 y Fk(O)602 2490 y Fs(\()p
Fl(y)r Fs(\),)e(w)o(e)h(can)g(write)h Fl(S)h Fs(as)e(the)g(disjoin)o(t)
h(union)g(of)f(four)g(sets,)g Fl(S)1664 2497 y Fk(h)p
Fj(+)1713 2490 y Fl(;)c(S)1762 2497 y Fk(h)p Fy(\000)1811
2490 y Fl(;)g(S)1860 2497 y Fk(n)p Fj(+)1910 2490 y Fl(;)g(S)1959
2497 y Fk(n)p Fy(\000)2009 2490 y Fs(.)-75 2559 y(Using)17
b(this)h(notation,)e(w)o(e)g(ha)o(v)o(e)h Fl(P)6 b Fs(\()p
Fl(y)r Fs(\))15 b(=)773 2537 y(card)p Fj(\()p Fk(S)894
2543 y Fb(h)915 2537 y Fj(\))p 681 2549 339 2 v 681 2582
a Fs(card)p Fj(\()p Fk(S)802 2588 y Fb(h)823 2582 y Fj(\)+)p
Fs(card)p Fj(\()p Fk(S)985 2586 y Fb(n)1006 2582 y Fj(\))1025
2559 y Fs(.)25 b(It)16 b(is)i(easy)e(to)g(see)h(that,)g(since)h(the)e
(oracles)h(in)h Fl(S)1934 2566 y Fk(n)1974 2559 y Fs(do)-75
2629 y(not)d(mak)o(e)f Fl(y)k Fs(a)c(hit)i(for)f Fl(r)q
Fs(,)f(card\()p Fl(S)523 2636 y Fk(n)p Fj(+)574 2629
y Fs(\))e(=)h(card\()p Fl(S)784 2636 y Fk(n)p Fy(\000)834
2629 y Fs(\))g(=)g(card\()p Fl(S)1045 2636 y Fk(n)1068
2629 y Fs(\))o Fl(=)p Fs(2.)951 2779 y(50)p eop
%%Page: 51 51
51 50 bop -4 -26 a Fs(Next)18 b(consider)h(the)f(set)g
Fl(T)24 b Fs(of)18 b(all)h(legal)g(oracles)f(de\014ned)i(at)e(and)g(b)q
(elo)o(w)h Fl(x)p Fs(,)f(but)h(outside)f Fl(y)r Fs(,)h(whic)o(h)g
(agree)f(with)-75 31 y Fl(r)q Fs(.)37 b(Eac)o(h)21 b(oracle)g
Fl(O)i Fm(2)f Fl(T)27 b Fs(determines)22 b(b)o(y)f(constrain)o(t)g(the)
g(v)m(alue)h Fl(V)1176 38 y Fk(O)1205 31 y Fs(\()p Fl(y)r
Fs(\),)f(but)g(lea)o(v)o(es)g(the)g(string)g Fl(k)1767
38 y Fk(y)1809 31 y Fs(completely)-75 87 y(undetermined.)h(If)16
b(w)o(e)f(again)h(write)f Fl(T)22 b Fs(as)15 b(the)g(disjoin)o(t)h
(union)h(of)e Fl(T)1133 94 y Fj(+)1177 87 y Fs(and)h
Fl(T)1293 94 y Fy(\000)1337 87 y Fs(according)g(to)f(the)h(constrained)
g(v)m(alue)-75 144 y Fl(V)-48 151 y Fk(O)-19 144 y Fs(\()p
Fl(y)r Fs(\),)d(w)o(e)g(notice)g(that)g(the)g(set)g(of)g(legal)h
(oracles)f(at)g(and)g(b)q(elo)o(w)h Fl(x)f Fs(is)h(exactly)f(\()p
Fl(T)1355 151 y Fj(+)1394 144 y Fm(\002)d Fl(S)1467 151
y Fj(+)1497 144 y Fs(\))5 b Fm([)h Fs(\()p Fl(T)1601
151 y Fy(\000)1641 144 y Fm(\002)k Fl(S)1714 151 y Fy(\000)1744
144 y Fs(\))o(.)19 b(So,)13 b(w)o(e)g(ha)o(v)o(e)236
264 y Fl(P)265 271 y Fk(x)287 264 y Fs(\()p Fl(y)r Fs(\))41
b(=)470 233 y(card\()p Fl(T)601 240 y Fj(+)629 233 y
Fs(\)card\()p Fl(S)779 240 y Fk(h)p Fj(+)828 233 y Fs(\))10
b(+)h(card\()p Fl(T)1033 240 y Fy(\000)1061 233 y Fs(\)card\()p
Fl(S)1211 240 y Fk(h)p Fy(\000)1261 233 y Fs(\))p 470
253 809 2 v 490 295 a(card\()p Fl(T)621 302 y Fj(+)650
295 y Fs(\))o(card\()p Fl(S)799 302 y Fj(+)828 295 y
Fs(\))f(+)h(card\()p Fl(T)1033 302 y Fy(\000)1061 295
y Fs(\)card\()p Fl(S)1211 302 y Fy(\000)1240 295 y Fs(\))388
388 y(=)684 357 y(card\()p Fl(T)815 364 y Fj(+)843 357
y Fs(\)card\()p Fl(S)993 364 y Fk(h)p Fj(+)1042 357 y
Fs(\))f(+)h(card\()p Fl(T)1247 364 y Fy(\000)1275 357
y Fs(\)card\()p Fl(S)1425 364 y Fk(h)p Fy(\000)1474 357
y Fs(\))p 470 377 1237 2 v 470 419 a(card\()p Fl(T)601
426 y Fj(+)629 419 y Fs(\)card\()p Fl(S)779 426 y Fk(h)p
Fj(+)828 419 y Fs(\))f(+)h(card\()p Fl(T)1033 426 y Fy(\000)1061
419 y Fs(\)card\()p Fl(S)1211 426 y Fk(h)p Fy(\000)1261
419 y Fs(\))e(+)i(card\()p Fl(T)6 b Fs(\))o(card\()p
Fl(S)1620 426 y Fk(n)1643 419 y Fs(\))p Fl(=)p Fs(2)-75
509 y(Without)15 b(loss)h(of)f(generalit)o(y)l(,)h(let)g(card\()p
Fl(T)663 516 y Fj(+)692 509 y Fs(\))d Fm(\025)g Fs(card\()p
Fl(T)902 516 y Fy(\000)931 509 y Fs(\).)20 b(Then)c(since)h
Fl(n=)p Fs(\()p Fl(n)10 b Fs(+)h Fl(c)p Fs(\))k(with)h
Fl(c;)8 b(n)k(>)i Fs(0)h(increases)h(with)g Fl(n)p Fs(,)-75
565 y(w)o(e)f(ha)o(v)o(e)454 674 y Fl(P)483 681 y Fk(x)505
674 y Fs(\()p Fl(y)r Fs(\))41 b Fm(\024)902 643 y Fs(card\()p
Fl(T)1033 650 y Fj(+)1062 643 y Fs(\))o(card\()p Fl(S)1211
650 y Fk(h)1233 643 y Fs(\))p 688 664 777 2 v 688 705
a(card\()p Fl(T)819 712 y Fj(+)848 705 y Fs(\))o(card\()p
Fl(S)997 712 y Fk(h)1019 705 y Fs(\))10 b(+)g(card\()p
Fl(T)c Fs(\)card\()p Fl(S)1379 712 y Fk(n)1402 705 y
Fs(\))o Fl(=)p Fs(2)606 798 y Fm(\024)913 767 y Fs(card\()p
Fl(T)1044 774 y Fj(+)1073 767 y Fs(\)card\()p Fl(S)1223
774 y Fk(h)1245 767 y Fs(\))p 688 788 801 2 v 688 829
a(card\()p Fl(T)819 836 y Fj(+)848 829 y Fs(\))o(card\()p
Fl(S)997 836 y Fk(h)1019 829 y Fs(\))k(+)g(card\()p Fl(T)1223
836 y Fj(+)1252 829 y Fs(\)card\()p Fl(S)1402 836 y Fk(n)1425
829 y Fs(\))p Fl(=)p Fs(2)606 922 y(=)802 891 y(2card\()p
Fl(S)957 898 y Fk(h)979 891 y Fs(\))p 688 912 423 2 v
688 953 a(2card\()p Fl(S)843 960 y Fk(h)864 953 y Fs(\))g(+)h(card\()p
Fl(S)1070 960 y Fk(n)1093 953 y Fs(\))1143 922 y Fm(\024)28
b Fs(2)p Fl(P)6 b Fs(\()p Fl(y)r Fs(\))1988 1029 y Fd(2)-4
1160 y Fs(F)l(or)14 b(a)h(p)q(ositiv)o(e)h(in)o(teger)g
Fl(n)p Fs(,)f(w)o(e)g(de\014ne)h Fl(\015)s Fs(\()p Fl(n)p
Fs(\))11 b(=)i Fl(n)p Fs(\()p Fl(n=)p Fs(2\))8 b Fm(\001)g(\001)g(\001)
d Fs(1.)19 b(Notice)d(that)e Fl(\015)s Fs(\()p Fl(n)p
Fs(\))e Fl(>)h(n)1513 1143 y Fj(\(log)5 b Fk(n)p Fj(\))p
Fk(=)p Fj(2)1651 1160 y Fs(.)-75 1277 y Fn(Theorem)17
b(8.4.6)22 b Fr(Supp)n(ose)16 b Fl(r)h Fr(is)f(a)h(run,)f
Fl(y)i Fr(is)e(a)g(no)n(de)g(at)h(level)e Fl(l)e Fm(\025)g
Fs(2)j Fr(with)h Fl(q)h Fr(queries)e(fr)n(om)h Fl(r)g
Fr(at)f(or)h(b)n(elow)f Fl(y)r Fr(,)g(and)g Fl(x)-75
1333 y Fr(is)g(an)g(anc)n(estor)f(of)i Fl(y)r Fr(.)k(Then)15
b Fl(P)479 1340 y Fk(x)501 1333 y Fs(\()p Fl(y)r Fs(\))d
Fm(\024)h Fl(q)r(=\015)s Fs(\()p Fl(n=)p Fs(4\))h Fr(wher)n(e)j
Fl(n)12 b Fs(=)h(2)1055 1317 y Fk(l)1068 1333 y Fr(.)-75
1451 y Fn(Pro)q(of.)20 b Fs(W)l(e)15 b(pro)o(v)o(e)g(the)g(theorem)g(b)
o(y)g(induction)i(on)e Fl(l)q Fs(.)-4 1525 y(So,)g(\014x)h(a)f(run)h
Fl(r)g Fs(and)g(a)f(no)q(de)i Fl(y)g Fs(at)e(lev)o(el)i(2)e(with)h
Fl(q)i Fs(queries)e(from)f Fl(r)i Fs(at)e(or)g(b)q(elo)o(w)h
Fl(y)r Fs(.)21 b(If)16 b Fl(q)f Fs(=)f(0,)h Fl(y)i Fs(can)f(nev)o(er)g
(b)q(e)g(a)-75 1581 y(hit.)k(So,)15 b(certainly)h(the)g(probabilit)o(y)
g(that)f Fl(y)i Fs(is)e(a)g(hit)h(is)g(at)e(most)h Fl(q)i
Fs(as)d(desired.)-4 1656 y(Next,)i(w)o(e)g(p)q(erform)g(the)g(inductiv)
o(e)i(step.)24 b(So,)16 b(assume)g(the)g(theorem)g(holds)h(true)g(for)e
(an)o(y)h Fl(r)h Fs(and)g Fl(y)h Fs(at)e(lev)o(el)h(less)-75
1712 y(than)h Fl(l)h Fs(with)g Fl(l)g Fm(\025)f Fs(2.)30
b(Then,)19 b(\014x)g(a)f(run)h Fl(r)g Fs(and)g(a)f(no)q(de)h
Fl(y)i Fs(at)d(lev)o(el)h Fl(l)g Fs(with)g Fl(q)i Fs(queries)e(from)f
Fl(r)h Fs(at)f(or)g(b)q(elo)o(w)h Fl(y)r Fs(.)30 b(Let)-75
1769 y Fl(n)13 b Fs(=)g(2)36 1752 y Fk(l)49 1769 y Fs(.)19
b(W)l(e)14 b(will)i(sho)o(w)d(that)g Fl(P)6 b Fs(\()p
Fl(y)r Fs(\))13 b Fm(\024)664 1748 y Fk(q)p 612 1758
122 2 v 612 1785 a Fj(2)p Fk(\015)r Fj(\()p Fk(n=)p Fj(4\))739
1769 y Fs(,)h(and)g(then)g(the)g(theorem)g(will)h(follo)o(w)g(from)e
(Lemma)h(8.4.5.)k(So,)c(for)f(the)-75 1825 y(remainder)h(of)e(the)h
(pro)q(of,)f(all)i(probabilities)h(are)e(tak)o(en)f(o)o(v)o(er)g(the)h
(c)o(hoice)h(of)e(a)h(legal)h(oracle)f(at)f(and)h(b)q(elo)o(w)g
Fl(y)i Fs(uniformly)-75 1881 y(at)g(random)f(from)h(the)g(set)g(of)g
(all)h(those)f(legal)h(oracles)f(at)g(and)g(b)q(elo)o(w)h
Fl(y)h Fs(whic)o(h)f(agree)f(with)h Fl(r)q Fs(.)-4 1956
y(No)o(w,)j(supp)q(ose)h(that)e Fl(q)416 1939 y Fy(0)447
1956 y Fs(of)h(the)g Fl(q)i Fs(queries)f(are)f(actually)h(at)f
Fl(y)r Fs(.)31 b(Clearly)l(,)21 b(if)f(w)o(e)f(condition)h(on)f(there)h
(b)q(eing)g(no)-75 2012 y(hits)g(among)f(the)h(c)o(hildren)i(of)d
Fl(y)r Fs(,)h(then)g Fl(k)675 2019 y Fk(y)715 2012 y
Fs(will)i(b)q(e)e(c)o(hosen)g(uniformly)h(among)e(all)h
Fl(n)p Fs(-bit)h(strings,)f(and)g(hence)h(the)-75 2069
y(probabilit)o(y)c Fl(y)h Fs(is)f(a)f(hit)g(w)o(ould)h(b)q(e)g
Fl(q)574 2052 y Fy(0)585 2069 y Fl(=)p Fs(2)631 2052
y Fk(n)654 2069 y Fs(.)23 b(If)16 b(w)o(e)g(instead)h(condition)g(on)f
(there)g(b)q(eing)i(exactly)e Fl(c)g Fs(hits)g(among)g(the)g(2)1999
2052 y Fk(n)-75 2125 y Fs(c)o(hildren)h(of)f Fl(y)r Fs(,)f(then)h(the)f
(probabilit)o(y)i(that)e Fl(y)j Fs(is)e(a)f(hit)h(m)o(ust)f(b)q(e)h(at)
f(most)g Fl(q)1277 2109 y Fy(0)1288 2125 y Fl(=)p Fs(2)1334
2109 y Fk(n)p Fy(\000)p Fk(c)1400 2125 y Fs(.)21 b(Therefore)16
b(the)f(probabilit)o(y)i Fl(y)g Fs(is)-75 2181 y(a)d(hit)h(is)g(b)q
(ounded)h(ab)q(o)o(v)o(e)e(b)o(y)g(the)h(sum)f(of)g Fl(q)698
2165 y Fy(0)710 2181 y Fl(=)p Fs(2)756 2165 y Fk(n=)p
Fj(2)829 2181 y Fs(and)g(the)h(probabilit)o(y)h(that)d(at)h(least)h
Fl(n=)p Fs(2)f(of)g(the)h(c)o(hildren)h(of)e Fl(y)i Fs(are)-75
2238 y(hits.)-4 2312 y(No)o(w)g(consider)i(an)o(y)e(c)o(hild)j
Fl(z)g Fs(of)d Fl(y)r Fs(.)25 b(Applying)18 b(the)f(inductiv)o(e)i(h)o
(yp)q(othesis)f(with)f Fl(y)i Fs(and)e Fl(z)i Fs(taking)e(the)f(roles)i
(of)e Fl(x)-75 2369 y Fs(and)h Fl(y)r Fs(,)f(w)o(e)h(kno)o(w)f(that)g
(if)h Fl(r)g Fs(has)g Fl(q)541 2376 y Fk(z)578 2369 y
Fs(queries)g(at)f(and)h(b)q(elo)o(w)g Fl(z)r Fs(,)g(then)g
Fl(P)1196 2376 y Fk(y)1217 2369 y Fs(\()p Fl(z)r Fs(\))e
Fm(\024)g Fl(q)1361 2376 y Fk(z)1381 2369 y Fl(=\015)s
Fs(\()p Fl(n=)p Fs(8\).)22 b(Therefore)17 b(the)g Fr(exp)n(e)n(cte)n(d)
-75 2425 y Fs(n)o(um)o(b)q(er)f(of)g(hits)h(among)e(the)h(c)o(hildren)i
(of)e Fl(y)i Fs(is)e(at)g(most)f(\()p Fl(q)d Fm(\000)f
Fl(q)1060 2409 y Fy(0)1072 2425 y Fs(\))p Fl(=\015)s
Fs(\()p Fl(n=)p Fs(8\).)20 b(This)d(means)f(that)f(the)h(probabilit)o
(y)i(that)-75 2481 y(at)d(least)g Fl(n=)p Fs(2)g(of)g(the)g(c)o
(hildren)i(of)e Fl(y)i Fs(are)e(hits)g(is)h(at)f(most)771
2572 y(\()p Fl(q)d Fm(\000)f Fl(q)889 2555 y Fy(0)900
2572 y Fs(\))p 741 2592 207 2 v 741 2634 a Fl(\015)s
Fs(\()p Fl(n=)p Fs(8\))p Fl(n=)p Fs(2)981 2603 y(=)1054
2572 y(\()p Fl(q)h Fm(\000)e Fl(q)1171 2555 y Fy(0)1183
2572 y Fs(\))p 1049 2592 157 2 v 1049 2634 a(2)p Fl(\015)s
Fs(\()p Fl(n=)p Fs(4\))951 2779 y(51)p eop
%%Page: 52 52
52 51 bop -75 -26 a Fs(Therefore,)595 53 y Fl(P)6 b Fs(\()p
Fl(y)r Fs(\))27 b Fm(\024)808 22 y Fl(q)12 b Fm(\000)f
Fl(q)908 6 y Fy(0)p 786 42 157 2 v 786 84 a Fs(2)p Fl(\015)s
Fs(\()p Fl(n=)p Fs(4\))957 53 y(+)1032 22 y Fl(q)1054
6 y Fy(0)p 1008 42 82 2 v 1008 85 a Fs(2)1031 72 y Fk(n=)p
Fj(2)1122 53 y Fm(\024)1258 22 y Fl(q)p 1190 42 157 2
v 1190 84 a Fs(2)p Fl(\015)s Fs(\()p Fl(n=)p Fs(4\))-75
168 y(since)16 b(2)p Fl(\015)s Fs(\()p Fl(n=)p Fs(4\))11
b Fl(<)i Fs(2)277 152 y Fk(n=)p Fj(2)350 168 y Fs(for)i
Fl(n)e(>)g Fs(4.)1444 b Fd(2)-75 348 y Fn(Corollary)18
b(8.4.7)k Fr(F)m(or)17 b(any)h Fl(T)6 b Fs(\()p Fl(n)p
Fs(\))17 b Fr(which)h(is)f Fl(n)782 332 y Fk(o)p Fj(\(log)6
b Fk(n)p Fj(\))902 348 y Fr(,)18 b(r)n(elative)f(to)h(a)g(r)n(andom)g
(le)n(gal)e(or)n(acle)i Fl(O)q Fr(,)g(with)g(pr)n(ob)n(ability)f
Fs(1)p Fr(,)-75 405 y Fm(R)-36 412 y Fk(O)10 405 y Fr(is)e(not)i(c)n
(ontaine)n(d)e(in)h Fn(BPTime)7 b Fs(\()p Fl(T)f Fs(\()p
Fl(n)p Fs(\)\))p Fr(.)-75 529 y Fn(Pro)q(of.)20 b Fs(Fix)15
b Fl(T)6 b Fs(\()p Fl(n)p Fs(\))15 b(whic)o(h)h(is)g
Fl(n)482 512 y Fk(o)p Fj(\(log)5 b Fk(n)p Fj(\))601 529
y Fs(.)-4 603 y(W)l(e)13 b(will)h(sho)o(w)f(that)f(for)g(an)o(y)h
(probabilistic)i(TM)d Fl(M)5 b Fs(,)13 b(when)h(w)o(e)f(pic)o(k)g(a)g
(random)f(legal)i(oracle)f Fl(O)q Fs(,)g(with)h(probabilit)o(y)-75
660 y(1,)g Fl(M)24 643 y Fk(O)69 660 y Fs(either)i(fails)g(to)e(run)i
(in)g(time)f Fl(cn)635 643 y Fk(o)p Fj(\(log)5 b Fk(n)p
Fj(\))770 660 y Fs(or)14 b(it)i(fails)f(to)g(accept)g
Fm(R)1201 667 y Fk(O)1246 660 y Fs(with)g(error)f(probabilit)o(y)j(b)q
(ounded)f(b)o(y)f(1)p Fl(=)p Fs(3.)-75 716 y(Then)g(since)h(there)e
(are)h(a)f(coun)o(table)h(n)o(um)o(b)q(er)g(of)f(probabilistic)j(TMs)c
(and)i(the)g(in)o(tersection)g(of)f(a)g(coun)o(table)i(n)o(um)o(b)q(er)
-75 772 y(of)e(probabilit)o(y)i(1)f(ev)o(en)o(ts)f(still)i(has)f
(probabilit)o(y)h(1,)e(w)o(e)g(conclude)j(that)d(with)h(probabilit)o(y)
h(1,)e Fm(R)1609 779 y Fk(O)1653 772 y Fs(is)h(not)g(con)o(tained)g(in)
-75 829 y Fn(BPTime)8 b Fs(\()p Fl(n)169 812 y Fk(o)p
Fj(\(log)d Fk(n)p Fj(\))288 829 y Fs(\).)-4 903 y(W)l(e)19
b(pro)o(v)o(e)g(the)g(corollary)h(b)o(y)f(sho)o(wing)g(that,)h(for)f
(large)g(enough)h Fl(n)p Fs(,)g(the)f(probabilit)o(y)i(that)e
Fl(M)1722 887 y Fk(O)1771 903 y Fs(runs)g(in)i(time)-75
960 y(greater)d(than)h Fl(T)6 b Fs(\()p Fl(n)p Fs(\))18
b(or)g(has)h(error)f(greater)g(than)g(1)p Fl(=)p Fs(3)g(on)h(input)h(0)
1135 943 y Fk(n)1177 960 y Fs(is)f(at)f(least)h(1)p Fl(=)p
Fs(8)f(for)g(ev)o(ery)h(w)o(a)o(y)f(of)g(\014xing)i(the)-75
1016 y(oracle)14 b(answ)o(ers)f(for)g(trees)g(other)g(than)g(the)h
(tree)f(ro)q(oted)h(at)e(0)1002 999 y Fk(n)1026 1016
y Fs(.)19 b(The)14 b(probabilit)o(y)h(is)f(tak)o(en)f(o)o(v)o(er)f(the)
i(random)f(c)o(hoices)-75 1072 y(of)i(the)g(oracle)g(for)g(the)g(tree)g
(ro)q(oted)g(at)g(0)647 1056 y Fk(n)670 1072 y Fs(.)-4
1147 y(Fix)20 b(arbitrarily)g(a)g(legal)h(b)q(eha)o(vior)g(for)e
Fl(O)i Fs(on)f(all)h(trees)e(other)h(than)g(the)g(one)g(ro)q(oted)g(at)
f(0)1666 1130 y Fk(n)1689 1147 y Fs(.)35 b(Then)20 b(consider)-75
1203 y(pic)o(king)15 b(a)e(legal)i(b)q(eha)o(vior)f(for)f
Fl(O)i Fs(for)e(the)h(tree)f(ro)q(oted)h(at)f(0)976 1187
y Fk(n)1013 1203 y Fs(uniformly)h(at)f(random)h(and)f(run)h
Fl(M)1655 1187 y Fk(O)1699 1203 y Fs(on)g(input)g(0)1903
1187 y Fk(n)1927 1203 y Fs(.)19 b(W)l(e)-75 1260 y(can)d(classify)h
(runs)f(of)f Fl(M)370 1243 y Fk(O)416 1260 y Fs(on)h(input)h(0)625
1243 y Fk(n)664 1260 y Fs(based)f(on)g(the)g(run)g Fl(r)h
Fs(that)e(lists)i(the)f(queries)h(the)f(mac)o(hines)h(asks,)e(and)h
(the)-75 1316 y(answ)o(ers)e(it)g(receiv)o(es.)20 b(If)15
b(w)o(e)f(tak)o(e)f(all)i(probabilities)i(o)o(v)o(er)c(b)q(oth)i(the)f
(randomness)g(in)h Fl(M)k Fs(and)c(the)f(c)o(hoice)h(of)f(oracle)g
Fl(O)q Fs(,)-75 1372 y(then)i(the)f(probabilit)o(y)h
Fl(M)388 1356 y Fk(O)433 1372 y Fs(correctly)g(classi\014es)g(0)827
1356 y Fk(n)866 1372 y Fs(in)g(time)f Fl(T)6 b Fs(\()p
Fl(n)p Fs(\))15 b(is)743 1434 y Fi(X)764 1521 y Fk(r)810
1475 y Fl(P)6 b(r)q Fs([)p Fl(r)q Fs(])p Fl(P)g(r)q Fs([)p
Fl(cor)q(r)q(ect)14 b Fm(j)h Fl(r)q Fs(])-75 1609 y(where)f
Fl(P)6 b(r)q Fs([)p Fl(r)q Fs(])14 b(is)g(the)h(probabilit)o(y)g(of)f
(run)g Fl(r)q Fs(,)g(where)g Fl(P)6 b(r)q Fs([)p Fl(cor)q(r)q(ect)15
b Fm(j)g Fl(r)q Fs(])e(is)i(the)f(probabilit)o(y)h(the)g(answ)o(er)e
(is)i(correct)e(giv)o(en)-75 1666 y(run)20 b Fl(r)q Fs(,)h(and)f(where)
g Fl(r)g Fs(ranges)g(o)o(v)o(er)f(all)i(runs)f(with)g(at)f(most)g
Fl(T)6 b Fs(\()p Fl(n)p Fs(\))20 b(queries.)35 b(Theorem)19
b(8.4.6)g(tells)i(us)f(that)f(if)h(w)o(e)-75 1722 y(condition)15
b(on)f(an)o(y)f(run)h Fl(r)g Fs(with)g(few)o(er)g(than)724
1704 y Fj(1)p 715 1711 36 2 v 715 1738 a(12)756 1722
y Fl(\015)s Fs(\()p Fl(n=)p Fs(4\))d(queries,)k(then)f(the)g
(probabilit)o(y)h(0)1501 1706 y Fk(n)1538 1722 y Fs(is)f(a)f(hit)h(is)h
(less)f(than)f(1)p Fl(=)p Fs(12.)-75 1779 y(This)j(means)g(that)e(the)i
(probabilit)o(y)h(the)f(algorithm)f(correctly)h(classi\014es)h(0)1260
1762 y Fk(n)1283 1779 y Fs(,)e(conditioned)j(on)d(an)o(y)g(particular)h
(run)g Fl(r)-75 1835 y Fs(with)i(few)o(er)f(than)274
1817 y Fj(1)p 265 1824 V 265 1851 a(12)305 1835 y Fl(\015)s
Fs(\()p Fl(n=)p Fs(4\))f(queries,)i(is)g(at)e(most)h(7)p
Fl(=)p Fs(12.)25 b(Therefore,)17 b(for)g Fl(n)h Fs(large)f(enough)h
(that)e Fl(T)6 b Fs(\()p Fl(n)p Fs(\))17 b(is)h(less)g(than)-61
1874 y Fj(1)p -70 1881 V -70 1907 a(12)-30 1892 y Fl(\015)s
Fs(\()p Fl(n)p Fs(\),)12 b(the)i(probabilit)o(y)h Fl(M)442
1875 y Fk(O)485 1892 y Fs(correctly)f(classi\014es)g(0)875
1875 y Fk(n)912 1892 y Fs(in)g(time)g Fl(T)6 b Fs(\()p
Fl(n)p Fs(\))13 b(is)h(at)f(most)f(7/12.)19 b(So,)13
b(for)g(su\016cien)o(tly)i(large)e Fl(n)p Fs(,)-75 1948
y(when)k(w)o(e)e(c)o(ho)q(ose)i Fl(O)q Fs(,)e(then)i(with)f(probabilit)
o(y)i(at)d(least)h(1)p Fl(=)p Fs(8)f Fl(M)1061 1932 y
Fk(O)1107 1948 y Fs(either)i(fails)g(to)f(run)g(in)h(time)f
Fl(T)6 b Fs(\()p Fl(n)p Fs(\))16 b(or)f(has)h(success)-75
2005 y(probabilit)o(y)g(less)g(than)f(2)p Fl(=)p Fs(3)g(on)g(input)h(0)
638 1988 y Fk(n)661 2005 y Fs(.)1314 b Fd(2)-75 2222
y Ft(A)69 b(A)23 b(QTM)f(is)g(w)n(ell-formed)e(i\013)i(its)g(time)f(ev)
n(olution)h(is)g(unitary)-75 2341 y Fs(First,)14 b(w)o(e)h(note)g(that)
f(the)h(time)g(ev)o(olution)h(op)q(erator)e(of)g(a)h(QTM)g(alw)o(a)o
(ys)f(exists.)20 b(Note)14 b(that)h(this)g(is)g(true)g(ev)o(en)g(if)h
(the)-75 2398 y(QTM)f(is)h(not)f(w)o(ell-formed.)-75
2522 y Fn(Lemma)i(A.0.8)22 b Fr(If)15 b Fl(M)20 b Fr(is)14
b(a)i(QTM)e(with)i(time)f(evolution)g(op)n(er)n(ator)h
Fl(U)5 b Fr(,)15 b(then)g Fl(U)20 b Fr(has)15 b(an)g(adjoint)h(op)n(er)
n(ator)f Fl(U)1873 2505 y Fy(\003)1908 2522 y Fr(in)g(the)-75
2578 y(inner-pr)n(o)n(duct)h(sp)n(ac)n(e)g(of)g(sup)n(erp)n(ositions)f
(of)i(the)f(machine)h Fl(M)5 b Fr(.)951 2779 y Fs(52)p
eop
%%Page: 53 53
53 52 bop -75 -26 a Fn(Pro)q(of.)26 b Fs(Let)18 b Fl(M)23
b Fs(b)q(e)18 b(a)f(QTM)g(with)h(time)g(ev)o(olution)g(op)q(erator)f
Fl(U)5 b Fs(.)26 b(Then)18 b(the)g(adjoin)o(t)f(of)g
Fl(U)22 b Fs(is)c(the)g(op)q(erator)e Fl(U)1962 -42 y
Fy(0)1991 -26 y Fs(is)-75 31 y(the)h(op)q(erator)f(whose)g(matrix)h
(elemen)o(t)g(in)h(an)o(y)e(pair)h(of)f(dimensions)j
Fl(i;)8 b(j)17 b Fs(is)h(the)e(complex)i(conjugate)e(of)h(the)f(matrix)
-75 87 y(elemen)o(t)j(of)e Fl(U)23 b Fs(in)18 b(dimensions)i
Fl(j;)8 b(i)p Fs(.)26 b(The)18 b(op)q(erator)f Fl(U)908
71 y Fy(0)937 87 y Fs(de\014ned)j(in)e(this)g(fashion)h(still)g(maps)e
(all)i(sup)q(erp)q(ositions)h(to)-75 144 y(other)15 b(sup)q(erp)q
(ositions)h(\(=)f(\014nite)h(linear)g(com)o(binations)g(of)e
(con\014gurations\),)h(since)h(an)o(y)f(particular)g(con\014guration)g
(of)-75 200 y Fl(M)21 b Fs(can)16 b(b)q(e)g(reac)o(hed)g(with)g
(non-zero)g(w)o(eigh)o(t)g(from)f(only)h(a)f(\014nite)i(n)o(um)o(b)q
(er)f(of)f(other)h(con\014gurations.)21 b(It)16 b(is)g(also)g(easy)-75
257 y(to)f(see)g(that)g(for)f(an)o(y)h(sup)q(erp)q(ositions)i
Fl(\036;)8 b( )795 313 y Fm(h)p Fl(U)849 294 y Fy(0)860
313 y Fl(\036)p Fm(j)p Fl( )r Fm(i)k Fs(=)h Fm(h)p Fl(\036)p
Fm(j)p Fl(U)5 b( )r Fm(i)-75 396 y Fs(as)15 b(desired.)1856
b Fd(2)-4 527 y Fs(W)l(e)15 b(include)j(the)d(pro)q(ofs)g(of)g(the)g
(follo)o(wing)h(standard)f(facts)g(for)g(completeness.)21
b(W)l(e)16 b(will)h(use)e(them)h(in)g(the)f(pro)q(of)-75
583 y(of)g(the)g(theorem)g(b)q(elo)o(w.)-75 707 y Fn(F)l(act)j(A.0.9)j
Fr(If)c Fl(U)k Fr(is)16 b(a)h(line)n(ar)f(op)n(er)n(ator)h(on)f(an)h
(inner-pr)n(o)n(duct)f(sp)n(ac)n(e)g Fl(V)26 b Fr(and)17
b Fl(U)1391 691 y Fy(\003)1427 707 y Fr(exists,)f(then)h
Fl(U)k Fr(pr)n(eserves)16 b(norm)-75 764 y(i\013)g Fl(U)19
747 y Fy(\003)39 764 y Fl(U)h Fs(=)c Fl(I)t Fr(.)-75
888 y Fn(Pro)q(of.)24 b Fs(F)l(or)15 b(an)o(y)i Fl(x)d
Fm(2)h Fl(V)10 b Fs(,)16 b(the)h(square)f(of)g(the)h(norm)f(of)g
Fl(U)5 b(x)17 b Fs(is)g(\()p Fl(U)5 b(x;)j(U)d(x)p Fs(\))13
b(=)i(\()p Fl(x;)8 b(U)1413 871 y Fy(\003)1432 888 y
Fl(U)d(x)p Fs(\).)23 b(It)17 b(clearly)g(follo)o(ws)g(that)e(if)-75
944 y Fl(U)-39 928 y Fy(\003)-19 944 y Fl(U)k Fs(=)c
Fl(I)20 b Fs(then)c Fl(U)21 b Fs(preserv)o(es)c(norm.)22
b(F)l(or)16 b(the)g(con)o(v)o(erse,)g(let)h Fl(B)g Fs(=)d
Fl(U)1173 928 y Fy(\003)1193 944 y Fl(U)i Fm(\000)11
b Fl(I)t Fs(.)23 b(Since)17 b Fl(U)k Fs(preserv)o(es)c(norm,)e(for)h
(ev)o(ery)-75 1001 y Fl(x)f Fm(2)h Fl(V)9 b Fs(,)17 b(\()p
Fl(x;)8 b(U)179 984 y Fy(\003)198 1001 y Fl(U)d(x)p Fs(\))15
b(=)g(\()p Fl(x;)8 b(x)p Fs(\).)23 b(Therefore)17 b(for)f(ev)o(ery)h
Fl(x)e Fm(2)h Fl(V)9 b Fs(,)17 b(\()p Fl(x;)8 b(B)r(x)p
Fs(\))15 b(=)g(0.)24 b(It)17 b(follo)o(ws)g(that)f Fl(B)i
Fs(=)e(0)g(and)h(therefore)-75 1057 y Fl(U)-39 1040 y
Fy(\003)-19 1057 y Fl(U)g Fs(=)c Fl(I)t Fs(.)1874 b Fd(2)-4
1188 y Fs(This)15 b(further)g(implies)j(the)d(follo)o(wing)h(useful)g
(fact:)-75 1311 y Fn(F)l(act)i(A.0.10)k Fr(Supp)n(ose)16
b Fl(U)21 b Fr(is)16 b(an)g(line)n(ar)f(op)n(er)n(ator)i(in)f(an)g
(inner-pr)n(o)n(duct)g(sp)n(ac)n(e)g Fl(V)25 b Fr(and)17
b Fl(U)1555 1295 y Fy(\003)1591 1311 y Fr(exists.)j(Then)376
1413 y Fm(8)p Fl(x)12 b Fm(2)h Fl(V)42 b Fm(k)p Fl(U)5
b(x)p Fm(k)12 b Fs(=)h Fm(k)p Fl(x)p Fm(k)78 b($)g(8)p
Fl(x;)8 b(y)14 b Fm(2)f Fl(V)58 b Fs(\()p Fl(U)5 b(x;)j(U)d(y)r
Fs(\))11 b(=)i(\()p Fl(x;)8 b(y)r Fs(\))-75 1537 y Fn(Pro)q(of.)19
b Fs(Since)c Fm(k)p Fl(U)5 b(x)p Fm(k)12 b Fs(=)h Fm(k)p
Fl(x)p Fm(k)f($)i Fs(\()p Fl(U)5 b(x;)j(U)d(x)p Fs(\))11
b(=)i(\()p Fl(x;)8 b(x)p Fs(\),)k(one)i(direction)h(follo)o(ws)e(b)o(y)
h(substituting)h Fl(x)d Fs(=)h Fl(y)r Fs(.)19 b(F)l(or)14
b(the)f(other)-75 1594 y(direction,)20 b(if)f Fl(U)k
Fs(preserv)o(es)18 b(norm)g(then)g(b)o(y)g(fact)g(A.0.9,)f
Fl(U)987 1577 y Fy(\003)1007 1594 y Fl(U)23 b Fs(=)18
b Fl(I)t Fs(.)28 b(Therefore)18 b(\()p Fl(U)5 b(x;)j(U)d(y)r
Fs(\))16 b(=)i(\()p Fl(x;)8 b(U)1737 1577 y Fy(\003)1756
1594 y Fl(U)d(y)r Fs(\))17 b(=)h(\()p Fl(x;)8 b(y)r Fs(\).)-75
1650 y Fd(2)-4 1781 y Fs(W)l(e)13 b(need)h(to)f(establish)i(one)e(one)h
(additional)g(fact)f(ab)q(out)h(norm)f(preserving)h(op)q(erators,)e(b)q
(efore)i(w)o(e)f(can)g(pro)o(v)o(e)g(our)-75 1837 y(theorem:)-75
1961 y Fn(F)l(act)18 b(A.0.11)k Fr(L)n(et)c Fl(V)29 b
Fr(b)n(e)18 b(a)h(c)n(ountable)g(inner-pr)n(o)n(duct)g(sp)n(ac)n(e,)g
(and)g(let)g Fm(fj)p Fl(i)p Fm(i)n(g)1320 1968 y Fk(i)p
Fy(2)p Fk(I)1395 1961 y Fr(b)n(e)f(an)h(orthonormal)h(b)n(asis)e(for)h
Fl(V)10 b Fr(.)-75 2018 y(If)20 b Fl(U)25 b Fr(is)19
b(a)i(norm)f(pr)n(eserving)f(line)n(ar)g(op)n(er)n(ator)i(on)e
Fl(V)30 b Fr(and)20 b Fl(U)1043 2001 y Fy(\003)1083 2018
y Fr(exists,)g(then)g Fm(8)p Fl(i)g Fm(2)f Fl(I)24 b
Fm(k)p Fl(U)1544 2001 y Fy(\003)1563 2018 y Fm(j)p Fl(i)p
Fm(i)o(k)c(\024)g Fs(1)p Fr(.)32 b(Mor)n(e)n(over,)20
b(if)-75 2074 y Fm(8)p Fl(i)13 b Fm(2)f Fl(I)20 b Fm(k)p
Fl(U)120 2058 y Fy(\003)140 2074 y Fm(j)p Fl(i)p Fm(i)o(k)12
b Fs(=)h(1)j Fr(then)g Fl(U)21 b Fr(is)16 b(unitary.)-75
2198 y Fn(Pro)q(of.)36 b Fs(Since)22 b Fl(U)k Fs(preserv)o(es)20
b(norm,)h Fm(k)p Fl(U)5 b(U)717 2181 y Fy(\003)737 2198
y Fm(j)p Fl(i)p Fm(i)o(k)21 b Fs(=)h Fm(k)p Fl(U)943
2181 y Fy(\003)963 2198 y Fm(j)p Fl(i)p Fm(i)o(k)o Fs(.)36
b(But)21 b(the)g(pro)s(jection)f(of)h Fl(U)5 b(U)1611
2181 y Fy(\003)1630 2198 y Fm(j)p Fl(i)p Fm(i)20 b Fs(on)g
Fm(j)p Fl(i)p Fm(i)g Fs(has)g(norm)-75 2254 y Fm(jh)p
Fl(i)p Fm(j)o Fl(U)5 b(U)56 2238 y Fy(\003)75 2254 y
Fm(j)p Fl(i)p Fm(i)o(j)13 b Fs(=)f Fm(k)p Fl(U)253 2238
y Fy(\003)273 2254 y Fm(j)p Fl(i)p Fm(i)o(k)342 2233
y Fj(2)361 2254 y Fs(.)20 b(Therefore)15 b Fm(k)p Fl(U)659
2238 y Fy(\003)679 2254 y Fm(j)p Fl(i)p Fm(i)o(k)d(\025)h(k)p
Fl(U)867 2238 y Fy(\003)886 2254 y Fm(j)p Fl(i)p Fm(i)o(k)955
2233 y Fj(2)975 2254 y Fs(,)i(and)g(therefore)g Fm(k)p
Fl(U)1341 2238 y Fy(\003)1360 2254 y Fm(j)p Fl(i)p Fm(i)o(k)e(\024)g
Fs(1.)-4 2329 y(Moreo)o(v)o(er,)18 b(if)j Fm(k)p Fl(U)319
2312 y Fy(\003)338 2329 y Fm(j)p Fl(i)p Fm(i)o(k)f Fs(=)g(1,)g(then)g
(since)h Fl(U)j Fs(is)c(norm)g(preserving,)h Fm(k)p Fl(U)5
b(U)1323 2312 y Fy(\003)1342 2329 y Fm(j)p Fl(i)p Fm(i)o(k)20
b Fs(=)g(1.)33 b(On)20 b(the)g(other)f(hand)h(the)-75
2385 y(pro)s(jection)c(of)g Fl(U)5 b(U)267 2369 y Fy(\003)287
2385 y Fm(j)p Fl(i)p Fm(i)15 b Fs(on)h Fm(j)p Fl(i)p
Fm(i)g Fs(has)g(norm)g Fm(k)p Fl(U)737 2369 y Fy(\003)756
2385 y Fm(j)p Fl(i)p Fm(i)o(k)825 2364 y Fj(2)859 2385
y Fs(=)f(1.)23 b(It)17 b(follo)o(ws)f(that)g(for)g Fl(j)h
Fm(6)p Fs(=)e Fl(i)p Fs(,)g(the)i(pro)s(jection)f(of)g
Fl(U)5 b(U)1892 2369 y Fy(\003)1912 2385 y Fm(j)p Fl(i)p
Fm(i)15 b Fs(on)-75 2442 y Fm(j)p Fl(j)s Fm(i)f Fs(m)o(ust)g(ha)o(v)o
(e)h(norm)g(0.)20 b(Th)o(us)15 b Fm(j)o(h)p Fl(j)s Fm(j)o
Fl(U)5 b(U)635 2425 y Fy(\003)655 2442 y Fm(j)p Fl(i)p
Fm(i)o(j)12 b Fs(=)h(0.)19 b(It)d(follo)o(ws)f(that)f
Fl(U)5 b(U)1198 2425 y Fy(\003)1231 2442 y Fs(=)13 b
Fl(I)t Fs(.)672 b Fd(2)-4 2572 y Fs(If)12 b Fl(V)22 b
Fs(is)13 b(\014nite)g(dimensional,)i(then)d Fl(U)640
2556 y Fy(\003)660 2572 y Fl(U)18 b Fs(=)13 b Fl(I)i
Fs(implies)g Fl(U)5 b(U)1016 2556 y Fy(\003)1048 2572
y Fs(=)13 b Fl(I)t Fs(,)f(and)h(therefore)f(an)g(op)q(erator)f(is)i
(norm)f(preserving)-75 2629 y(if)18 b(and)g(only)g(if)g(it)g(is)g
(unitary)l(.)27 b(Ho)o(w)o(ev)o(er,)17 b(if)h Fm(H)h
Fs(is)f(in\014nite)h(dimensional,)h(then)e Fl(U)1395
2612 y Fy(\003)1415 2629 y Fl(U)j Fs(=)c Fl(I)k Fs(do)q(es)d(not)f
(imply)i Fl(U)5 b(U)1950 2612 y Fy(\003)1987 2629 y Fs(=)951
2779 y(53)p eop
%%Page: 54 54
54 53 bop -75 -26 a Fl(I)t Fs(.)-38 -42 y Fj(6)-19 -26
y Fs(.)27 b(Nev)o(ertheless,)18 b(the)g(time)g(ev)o(olution)g(op)q
(erators)e(of)h(QTMs)h(ha)o(v)o(e)f(a)g(sp)q(ecial)i(structure,)f(and)f
(in)i(fact)e(these)g(t)o(w)o(o)-75 31 y(conditions)f(are)f(equiv)m
(alen)o(t)i(for)e(the)g(time)h(ev)o(olution)g(op)q(erator)e(of)h(a)g
(QTM.)-75 133 y Fn(Theorem)i(A.0.12)22 b Fr(A)16 b(QTM)f(is)h(wel)r
(l-forme)n(d)g(i\013)g(its)g(time)h(evolution)f(op)n(er)n(ator)h(is)f
(unitary.)-75 234 y Fn(Pro)q(of.)34 b Fs(Let)20 b Fl(U)25
b Fs(b)q(e)c(the)f(norm)g(preserving)g(time)h(ev)o(olution)f(op)q
(erator)f(of)h(a)g(w)o(ell-formed)h(QTM)e Fl(M)26 b Fs(=)21
b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\).)-75 291 y(Consider)14
b(the)g(standard)f(orthonormal)g(basis)h(for)f(the)g(sup)q(erp)q
(ositions)j(of)d Fl(M)19 b Fs(giv)o(en)14 b(b)o(y)f(the)h(set)f(of)g(v)
o(ectors)g Fm(j)p Fl(c)p Fm(i)o Fs(,)h(where)-75 347
y Fl(c)f Fs(ranges)f(o)o(v)o(er)g(all)i(con\014gurations)f(of)g
Fl(M)18 b Fs(\(as)12 b(alw)o(a)o(ys,)h Fm(j)p Fl(c)p
Fm(i)f Fs(is)h(the)g(sup)q(erp)q(osition)i(with)e(amplitude)i(1)d(for)h
(con\014guration)-75 404 y Fl(c)k Fs(and)h(0)f(elsewhere\).)28
b(W)l(e)17 b(ma)o(y)g(express)h(the)g(action)f(of)g Fl(U)23
b Fs(with)18 b(resp)q(ect)g(to)f(this)h(standard)f(basis)h(b)o(y)f(a)g
(coun)o(table)-75 460 y(dimensional)e(matrix)d(whose)g
Fl(c;)c(c)510 444 y Fy(0)p Fk(th)566 460 y Fs(en)o(try)k
Fl(u)708 468 y Fk(c;c)748 458 y Fq(0)774 460 y Fs(=)h
Fm(h)p Fl(c)860 444 y Fy(0)871 460 y Fm(j)p Fl(U)5 b
Fm(j)p Fl(c)p Fm(i)o Fs(.)19 b(This)13 b(matrix)f(has)g(some)h(sp)q
(ecial)h(prop)q(erties.)20 b(First,)12 b(eac)o(h)-75
517 y(ro)o(w)g(and)g(column)i(of)e(the)h(matrix)f(has)g(only)i(a)e
(\014nite)h(n)o(um)o(b)q(er)g(of)g(non-zero)f(en)o(tries.)20
b(Secondly)l(,)14 b(there)f(are)f(only)h(\014nitely)-75
573 y(man)o(y)k(di\013eren)o(t)g(t)o(yp)q(es)g(of)g(ro)o(ws,)f(where)h
(t)o(w)o(o)f(ro)o(ws)g(are)h(of)g(the)g(same)g(t)o(yp)q(e)g(if)g(their)
h(en)o(tries)f(are)g(just)g(p)q(erm)o(utations)-75 630
y(of)g(eac)o(h)g(other.)25 b(W)l(e)17 b(shall)i(sho)o(w)d(that)h(eac)o
(h)g(ro)o(w)f(of)h(the)g(matrix)g(has)g(norm)g(1,)f(and)i(therefore)f
(b)o(y)g(the)g(F)l(act)f(A.0.11)-75 686 y(ab)q(o)o(v)o(e)i
Fl(U)23 b Fs(is)c(unitary)l(.)30 b(T)l(o)18 b(do)g(so)g(w)o(e)g(will)i
(iden)o(tify)g(a)e(set)g(of)g Fl(n)h Fs(columns)g(of)f(the)g(matrix)g
(\(for)g(arbitrarily)h(large)f Fl(n)p Fs(\))-75 742 y(and)e(restrict)f
(atten)o(tion)g(to)f(the)i(\014nite)g(matrix)f(consisting)h(of)f(all)i
(the)e(c)o(hosen)h(ro)o(ws)e(and)i(all)g(columns)g(with)g(non-zero)-75
799 y(en)o(tries)f(in)g(these)g(ro)o(ws.)j(Let)d(this)g(matrix)f(b)q(e)
h(the)f Fl(m)9 b Fm(\002)g Fl(n)14 b Fs(matrix)g Fl(B)r
Fs(.)21 b(By)14 b(construction,)h Fl(B)i Fs(satis\014es)e(t)o(w)o(o)e
(prop)q(erties:)-75 855 y(1\))h(it)g(is)h(almost)f(square;)g
Fl(m=n)f Fm(\024)g Fs(1)8 b(+)h Fl(\017)14 b Fs(for)g(arbitrarily)h
(small)g Fl(\017)p Fs(.)20 b(2\))14 b(There)g(is)h(a)f(constan)o(t)g
Fl(a)g Fs(suc)o(h)h(that)e(eac)o(h)i(distinct)-75 912
y(ro)o(w)f(t)o(yp)q(e)i(of)e(the)i(in\014nite)h(matrix)d(o)q(ccurs)i
(at)f(least)g Fl(m=a)g Fs(times)g(among)g(the)g(ro)o(ws)f(of)h
Fl(B)r Fs(.)-4 986 y(No)o(w)k(the)i(sum)f(of)g(the)g(squared)h(norms)e
(of)h(the)h(ro)o(ws)e(of)h Fl(B)j Fs(is)e(equal)g(to)e(the)i(sum)f(of)g
(the)g(squared)h(norms)e(of)-75 1042 y(the)f(columns.)28
b(The)18 b(latter)f(quan)o(tit)o(y)g(is)h(just)g Fl(n)g
Fs(\(since)g(the)g(columns)g(of)f(the)h(in\014nite)i(matrix)d(are)g
(orthonormal)g(b)o(y)-75 1099 y(F)l(act)c(A.0.9)f(ab)q(o)o(v)o(e\).)18
b(If)c(w)o(e)e(assume)i(that)e(some)h(ro)o(w)f(of)h(the)g(in\014nite)i
(matrix)e(has)g(norm)g(1)6 b Fm(\000)g Fl(\016)15 b Fs(for)e
Fl(\016)h(>)f Fs(0,)g(then)h(w)o(e)f(can)-75 1155 y(c)o(ho)q(ose)j
Fl(n)g Fs(su\016cien)o(tly)i(large)e(and)g Fl(\017)h
Fs(su\016cien)o(tly)g(small)g(so)f(that)f(the)h(sum)g(of)g(the)g
(squared)g(norms)g(of)g(the)g(ro)o(ws)f(is)i(at)-75 1212
y(most)12 b Fl(m)p Fs(\(1)5 b Fm(\000)g Fs(1)p Fl(=a)p
Fs(\))g(+)g Fl(m=a)p Fs(\(1)g Fm(\000)g Fl(\016)r Fs(\))11
b Fm(\024)i Fl(m)5 b Fm(\000)g Fl(m\016)r(=a)13 b Fm(\024)g
Fl(n)5 b Fs(+)g Fl(n\017)g Fm(\000)g Fl(n\016)r(=a)15
b(<)e(n)p Fs(.)19 b(This)13 b(giv)o(es)g(the)g(required)h(con)o
(tradiction,)f(and)-75 1268 y(therefore)i(all)h(ro)o(ws)e(of)h(the)g
(in\014nite)i(matrix)e(ha)o(v)o(e)g(norm)g(1)f(and)i(therefore)f(b)o(y)
g(the)g(F)l(act)g(A.0.11)e(ab)q(o)o(v)o(e)i Fl(U)20 b
Fs(is)c(unitary)l(.)-4 1342 y(T)l(o)e(construct)g(the)g(\014nite)i
(matrix)e Fl(B)j Fs(let)e Fl(k)e(>)g Fs(2)i(and)f(\014x)h(some)f(con)o
(tiguous)g(set)g(of)g Fl(k)i Fs(cells)g(on)e(the)h(tap)q(e.)k(Consider)
-75 1399 y(the)f(set)f(of)h(all)g(con\014gurations)g
Fl(S)i Fs(suc)o(h)e(that)f(the)h(tap)q(e)g(head)g(is)g(lo)q(cated)h
(within)g(these)f Fl(k)h Fs(cells)g(and)f(suc)o(h)g(that)f(the)-75
1455 y(tap)q(e)22 b(is)g(blank)h(outside)g(of)e(these)i
Fl(k)g Fs(cells.)41 b(It)22 b(is)h(easy)e(to)h(see)g(that)f(the)h(n)o
(um)o(b)q(er)h(of)e(suc)o(h)h(con\014gurations)g Fl(n)j
Fs(=)-75 1512 y Fl(k)18 b Fs(card\(\006\))121 1491 y
Fk(k)160 1512 y Fs(card\()p Fl(Q)p Fs(\))o(.)26 b(The)17
b(columns)h(indexed)h(b)o(y)e(con\014gurations)g(in)h
Fl(S)i Fs(are)d(used)g(to)g(de\014ne)h(the)f(\014nite)h(matrix)f
Fl(B)-75 1568 y Fs(referred)f(to)f(ab)q(o)o(v)o(e.)21
b(The)16 b(non-zero)g(en)o(tries)g(in)g(these)g(columns)h(are)e
(restricted)h(to)f(ro)o(ws)g(indexed)i(b)o(y)f(con\014gurations)-75
1625 y(in)i Fl(S)h Fs(together)d(with)h(ro)o(ws)f(indexed)j(b)o(y)d
(con\014gurations)h(where)h(the)f(tap)q(e)f(head)i(is)f(in)h(the)f
(cell)h(immediately)h(to)d(the)-75 1681 y(left)22 b(or)e(righ)o(t)h(of)
g(the)h Fl(k)g Fs(sp)q(ecial)h(cells,)h(and)d(suc)o(h)h(that)f(the)g
(tap)q(e)g(is)h(blank)g(outside)g(of)f(these)g Fl(k)16
b Fs(+)e(1)21 b(cells.)40 b(The)-75 1738 y(n)o(um)o(b)q(er)17
b(of)g(these)g(additional)h(con\014gurations)f(o)o(v)o(er)f(and)h(ab)q
(o)o(v)o(e)f Fl(S)k Fs(is)d(at)f(most)g(2)h(card\(\006\))1553
1717 y Fk(k)q Fj(+1)1636 1738 y Fs(card\()p Fl(Q)p Fs(\))o(.)25
b(Therefore)-75 1794 y Fl(m)13 b Fs(=)g Fl(n)p Fs(\(1)c(+)i(2)p
Fl(=k)q Fs(card)o(\(\006\))o(\).)20 b(F)l(or)15 b(an)o(y)f
Fl(\017)f(>)g Fs(0,)i(w)o(e)g(can)g(c)o(ho)q(ose)g Fl(k)i
Fs(large)e(enough)g(suc)o(h)h(that)e Fl(m)f Fm(\024)g
Fl(n)p Fs(\(1)d(+)g Fl(\017)p Fs(\).)-4 1868 y(Recall)15
b(that)d(a)h(ro)o(w)g(of)g(the)g(in\014nite)i(matrix)e(\(corresp)q
(onding)h(to)f(the)h(op)q(erator)e Fl(U)5 b Fs(\))13
b(is)h(indexed)h(b)o(y)e(con\014gurations.)-75 1925 y(W)l(e)i(sa)o(y)f
(that)g(a)h(con\014guration)g Fl(c)f Fs(is)i(of)e(t)o(yp)q(e)h
Fl(q)r(;)8 b(\033)794 1932 y Fj(1)813 1925 y Fl(;)g(\033)860
1932 y Fj(2)879 1925 y Fl(;)g(\033)926 1932 y Fj(3)960
1925 y Fs(if)15 b Fl(c)g Fs(is)g(in)h(state)e Fl(q)g
Fm(2)f Fl(Q)i Fs(and)g(the)g(three)g(adjacen)o(t)f(tap)q(e)h(cells)-75
1981 y(cen)o(tered)i(ab)q(out)g(the)g(tap)q(e)g(head)h(con)o(tain)f
(the)g(three)g(sym)o(b)q(ols)g Fl(\033)1095 1988 y Fj(1)1115
1981 y Fl(;)8 b(\033)1162 1988 y Fj(2)1181 1981 y Fl(;)g(\033)1228
1988 y Fj(3)1262 1981 y Fm(2)16 b Fs(\006.)25 b(The)18
b(en)o(tries)f(of)g(a)f(ro)o(w)g(indexed)j(b)o(y)-75
2038 y Fl(c)f Fs(m)o(ust)g(b)q(e)g(a)g(p)q(erm)o(utation)h(of)e(the)i
(en)o(tries)f(of)g(a)g(ro)o(w)f(indexed)j(b)o(y)f(an)o(y)f
(con\014guration)g Fl(c)1543 2021 y Fy(0)1572 2038 y
Fs(of)g(the)h(same)f(t)o(yp)q(e)g(as)g Fl(c)p Fs(.)-75
2094 y(This)c(is)h(b)q(ecause)f(a)g(transition)g(of)f(the)h(QTM)f(M)g
(dep)q(ends)j(only)e(on)g(the)f(state)g(of)h(M)f(and)h(the)g(sym)o(b)q
(ol)g(under)g(the)g(tap)q(e)-75 2151 y(head,)i(and)f(since)i(the)e(tap)
q(e)h(head)g(mo)o(v)o(es)e(to)h(an)g(adjacen)o(t)h(cell)h(during)f(a)f
(transition.)21 b(Moreo)o(v)o(er,)14 b(an)o(y)h(con\014guration)-75
2207 y Fl(d)g Fs(that)g(yields)h(con\014guration)g Fl(c)f
Fs(with)h(non-zero)f(amplitude)i(as)e(a)g(result)h(of)f(a)g(single)h
(step)g(m)o(ust)e(ha)o(v)o(e)h(tap)q(e)h(con)o(ten)o(ts)-75
2263 y(iden)o(tical)k(to)d(those)g(of)g Fl(c)g Fs(in)i(all)g(but)e
(these)h(three)g(cells.)29 b(It)17 b(follo)o(ws)h(that)f(there)h(are)f
(only)h(a)g(\014nite)g(n)o(um)o(b)q(er)g(of)g(suc)o(h)-75
2320 y(con\014gurations)f Fl(d)p Fs(,)g(and)h(the)f(ro)o(w)g(indexed)i
(b)o(y)e Fl(c)g Fs(can)g(ha)o(v)o(e)g(only)h(a)f(\014nite)h(n)o(um)o(b)
q(er)g(of)e(non-zero)i(en)o(tries.)26 b(A)18 b(similar)-75
2376 y(argumen)o(t)c(sho)o(ws)h(that)f(eac)o(h)i(column)g(has)f(only)h
(a)f(\014nite)h(n)o(um)o(b)q(er)f(of)g(non-zero)g(en)o(tries.)-4
2450 y(No)o(w)23 b(for)g(giv)o(en)i Fl(q)r(;)8 b(\033)383
2457 y Fj(1)402 2450 y Fl(;)g(\033)449 2457 y Fj(2)468
2450 y Fl(;)g(\033)515 2457 y Fj(3)557 2450 y Fs(consider)25
b(the)f(ro)o(ws)f(of)h(the)g(\014nite)h(matrix)f Fl(B)j
Fs(indexed)e(b)o(y)f(con\014gurations)g(of)-75 2507 y(t)o(yp)q(e)d
Fl(q)r(;)8 b(\033)102 2514 y Fj(1)121 2507 y Fl(;)g(\033)168
2514 y Fj(2)187 2507 y Fl(;)g(\033)234 2514 y Fj(3)253
2507 y Fs(,)22 b(and)g(suc)o(h)f(that)g(the)g(tap)q(e)g(head)h(is)g(lo)
q(cated)f(at)g(one)g(of)g(the)h Fl(k)15 b Fm(\000)f Fs(2)21
b(non-b)q(order)h(cells.)39 b(Then)p -75 2540 839 2 v
-23 2567 a Fg(6)-6 2583 y Fp(Consider)16 b(for)f(example)h(the)f(space)
g(of)f(\014nite)i(complex)g(linear)h(com)o(binations)g(of)e(p)q(ositiv)
o(e)i(in)o(tegers)f(and)f(the)g(linear)h(op)q(erator)g(whic)o(h)-75
2629 y(maps)d Fe(j)p Ff(i)p Fe(i)g Fp(to)g Fe(j)p Ff(i)8
b Fp(+)h(1)p Fe(i)p Fp(.)951 2779 y Fs(54)p eop
%%Page: 55 55
55 54 bop -75 -26 a Fm(j)p Fl(T)6 b Fm(j)12 b Fs(=)h(\()p
Fl(k)8 b Fm(\000)g Fs(2\)card)o(\(\006\))332 -47 y Fk(k)q
Fy(\000)p Fj(3)398 -26 y Fs(.)19 b(Eac)o(h)14 b(ro)o(w)f(of)h
Fl(B)i Fs(indexed)g(b)o(y)e(a)f(con\014guration)h Fl(c)f
Fm(2)g Fl(T)19 b Fs(has)14 b(the)g(prop)q(ert)o(y)g(that)f(if)h
Fl(d)g Fs(is)g(an)o(y)-75 31 y(con\014guration)f(that)f(yields)i
Fl(c)e Fs(with)h(non-zero)g(amplitude)h(in)g(a)e(single)i(step,)f(then)
g Fl(d)f Fm(2)h Fl(S)s Fs(.)18 b(Therefore)13 b(the)g(ro)o(w)e(indexed)
-75 87 y(b)o(y)17 b Fl(c)f Fs(in)h(the)g(\014nite)h(matrix)e
Fl(B)j Fs(has)e(the)g(same)f(non-zero)h(en)o(tries)g(as)f(the)h(ro)o(w)
f(indexed)i(b)o(y)f Fl(c)f Fs(in)h(the)g(in\014nite)i(matrix.)-75
144 y(Therefore)14 b(it)f(mak)o(es)h(sense)g(to)f(sa)o(y)g(that)g(ro)o
(w)f Fl(c)i Fs(of)f Fl(B)j Fs(is)f(of)e(the)h(same)f(t)o(yp)q(e)h(as)f
(ro)o(w)g Fl(c)g Fs(of)g(the)h(in\014nite)i(matrix.)j(Finally)l(,)-75
200 y(the)d(ro)o(ws)e(of)i(eac)o(h)g(t)o(yp)q(e)f(constitute)h(a)g
(fraction)f(at)g(least)h Fm(j)p Fl(T)6 b Fm(j)p Fl(=m)14
b Fs(of)i(all)g(ro)o(ws)f(of)g Fl(B)r Fs(.)22 b(Substituting)17
b(the)f(b)q(ounds)h(from)-75 276 y(ab)q(o)o(v)o(e,)e(w)o(e)h(get)f
(that)g(this)h(fraction)g(is)g(at)f(least)945 254 y Fj(\()p
Fk(k)q Fy(\000)p Fj(2\))p Fs(card)p Fj(\(\006\))1176
233 y Fb(k)q Fq(\000)p Fg(3)p 782 266 615 2 v 782 306
a Fk(k)i Fs(card)p Fj(\(\006\))956 285 y Fb(k)990 306
y Fs(card)p Fj(\()p Fk(Q)p Fj(\))o(\(1+2)p Fk(=k)q Fs(card)o
Fj(\(\006\)\))1402 276 y Fs(.)22 b(Since)17 b Fl(k)e
Fm(\025)e Fs(4,)j(this)g(is)g(at)f(least)1999 258 y Fj(1)p
1998 265 19 2 v 1998 292 a Fk(a)-75 361 y Fs(for)i(constan)o(t)f
Fl(a)g Fs(=)h(2card\(\006\))451 340 y Fj(3)470 361 y
Fs(card\()p Fl(Q)p Fs(\)\(1)11 b(+)h(1)p Fl(=)p Fs(2card)o(\(\006\))o
(\).)26 b(This)18 b(establishes)g(all)h(the)e(prop)q(erties)h(of)f(the)
g(matrix)g Fl(B)-75 417 y Fs(used)f(in)g(the)f(pro)q(of)g(ab)q(o)o(v)o
(e.)1582 b Fd(2)-75 635 y Ft(B)69 b(Rev)n(ersible)20
b(TMs)j(are)g(as)h(p)r(o)n(w)n(erful)e(as)h(deterministi)o(c)d(TMs)-75
754 y Fs(In)c(this)f(app)q(endix,)i(w)o(e)e(pro)o(v)o(e)g(the)g(Sync)o
(hronization)h(Theorem)f(of)g Fm(x)p Fs(4.1.)-4 828 y(W)l(e)i(b)q(egin)
i(with)f(a)f(few)h(simple)h(facts)e(ab)q(out)g(rev)o(ersible)i(TMs.)26
b(W)l(e)18 b(giv)o(e)g(necessary)g(and)f(su\016cien)o(t)i(conditions)
-75 884 y(for)13 b(a)h(deterministic)i(TM)d(to)h(b)q(e)g(rev)o
(ersible,)i(and)e(w)o(e)g(sho)o(w)f(that,)g(just)h(as)g(for)f(QTMs,)h
(a)f(partially)i(de\014ned)h(rev)o(ersible)-75 941 y(TM)d(can)h(alw)o
(a)o(ys)f(b)q(e)i(completed)g(to)e(giv)o(e)h(a)g(w)o(ell-formed)g(rev)o
(ersible)i(TM.)c(W)l(e)i(also)g(giv)o(e,)g(as)g(an)f(aside,)i(an)f
(easy)f(pro)q(of)-75 997 y(that)h(rev)o(ersible)j(TMs)e(can)g
(e\016cien)o(tly)h(sim)o(ulate)g(rev)o(ersible,)g(generalized)h(TMs.)
-75 1120 y Fn(Theorem)g(B.0.13)22 b Fr(A)16 b(TM)g(or)h(gener)n(alize)n
(d)d(TM)i Fl(M)21 b Fr(is)16 b(r)n(eversible)f(i\013)h(the)g(fol)r
(lowing)g(two)h(c)n(onditions)e(b)n(oth)i(hold)-21 1230
y(1.)23 b(Each)18 b(state)h(of)f Fl(M)24 b Fr(c)n(an)18
b(b)n(e)g(enter)n(e)n(d)f(while)h(moving)h(in)f(only)f(one)i(dir)n(e)n
(ction.)26 b(In)18 b(other)h(wor)n(ds,)g(if)f Fl(\016)r
Fs(\()p Fl(p)1867 1237 y Fj(1)1886 1230 y Fl(;)8 b(\033)1933
1237 y Fj(1)1952 1230 y Fs(\))17 b(=)39 1287 y(\()p Fl(\034)77
1294 y Fj(1)96 1287 y Fl(;)8 b(q)r(;)g(d)184 1294 y Fj(1)202
1287 y Fs(\))16 b Fr(and)g Fl(\016)r Fs(\()p Fl(p)387
1294 y Fj(2)406 1287 y Fl(;)8 b(\033)453 1294 y Fj(2)472
1287 y Fs(\))k(=)h(\()p Fl(\034)588 1294 y Fj(2)607 1287
y Fl(;)8 b(q)r(;)g(d)695 1294 y Fj(2)713 1287 y Fs(\))16
b Fr(then)g Fl(d)872 1294 y Fj(1)904 1287 y Fs(=)d Fl(d)976
1294 y Fj(2)996 1287 y Fr(.)-21 1380 y(2.)23 b(The)16
b(tr)n(ansition)f(function)h Fl(\016)i Fr(is)e(one-to-one)g(when)g(dir)
n(e)n(ction)g(is)g(ignor)n(e)n(d.)-75 1503 y Fn(Pro)q(of.)k
Fs(First)15 b(w)o(e)f(sho)o(w)h(that)g(these)g(t)o(w)o(o)f(conditions)i
(imply)h(rev)o(ersibilit)o(y)l(.)-4 1577 y(Supp)q(ose)d
Fl(M)k Fs(=)13 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))j(is)j(a)f(TM)g
(or)g(generalized)i(TM)e(satisfying)g(these)h(t)o(w)o(o)e(conditions.)
21 b(Then,)14 b(the)f(follo)o(wing)-75 1633 y(pro)q(cedure)j(lets)g(us)
f(tak)o(e)g(an)o(y)f(con\014guration)i(of)f Fl(M)20 b
Fs(and)15 b(compute)h(its)f(predecessor)h(if)f(it)h(has)f(one.)20
b(First,)15 b(since)h(eac)o(h)-75 1690 y(state)d(can)g(b)q(e)h(en)o
(tered)g(while)h(mo)o(ving)e(in)h(only)g(one)f(direction,)i(the)f
(state)e(of)h(the)g(con\014guration)h(tells)g(us)g(in)g(whic)o(h)g
(cell)-75 1746 y(the)j(tap)q(e)h(head)f(m)o(ust)g(ha)o(v)o(e)g(b)q(een)
h(in)g(the)f(previous)h(con\014guration.)26 b(Lo)q(oking)18
b(at)f(this)g(cell,)i(w)o(e)e(can)h(see)f(what)g(tap)q(e)-75
1803 y(sym)o(b)q(ol)e(w)o(as)f(written)g(in)i(the)e(last)h(step.)20
b(Then,)14 b(since)i Fl(\016)h Fs(is)e(one-to-one)f(w)o(e)h(kno)o(w)f
(the)g(up)q(date)h(rule,)h(if)f(an)o(y)l(,)f(that)g(w)o(as)-75
1859 y(used)i(on)f(the)g(previous)h(step,)f(allo)o(wing)h(us)f(to)g
(reconstruct)g(the)g(previous)h(con\014guration.)-4 1933
y(Next,)i(w)o(e)h(sho)o(w)f(that)g(the)g(\014rst)g(prop)q(ert)o(y)h(is)
g(necessary)f(for)g(rev)o(ersibilit)o(y)l(.)32 b(So,)19
b(for)f(example,)i(consider)f(a)g(TM)-75 1990 y(or)d(generalized)i(TM)e
Fl(M)k Fs(=)15 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))14
b(suc)o(h)i(that)g Fl(\016)r Fs(\()p Fl(p)872 1997 y
Fj(1)891 1990 y Fl(;)8 b(\033)938 1997 y Fj(1)957 1990
y Fs(\))14 b(=)i(\()p Fl(\034)1078 1997 y Fj(1)1097 1990
y Fl(;)8 b(q)r(;)g(L)p Fs(\))14 b(and)j Fl(\016)r Fs(\()p
Fl(p)1377 1997 y Fj(2)1396 1990 y Fl(;)8 b(\033)1443
1997 y Fj(2)1462 1990 y Fs(\))14 b(=)h(\()p Fl(\034)1582
1997 y Fj(2)1601 1990 y Fl(;)8 b(q)r(;)g(R)p Fs(\).)22
b(Then,)17 b(w)o(e)f(can)-75 2046 y(easily)e(construct)f(t)o(w)o(o)f
(con\014gurations)i(whic)o(h)g(lead)g(to)f(the)g(same)h(next)f
(con\014guration:)19 b(Let)14 b Fr(c)1580 2053 y Fa(1)1618
2046 y Fs(b)q(e)g(an)o(y)f(con\014guration)-75 2103 y(where)j(the)f
(mac)o(hine)h(is)g(in)g(state)f Fl(p)547 2110 y Fj(1)582
2103 y Fs(reading)h(a)f Fl(\033)808 2110 y Fj(1)843 2103
y Fs(and)g(where)h(the)f(sym)o(b)q(ol)h(t)o(w)o(o)e(cells)j(to)e(the)g
(left)h(of)f(the)g(tap)q(e)h(head)-75 2159 y(is)j(a)g
Fl(\034)36 2166 y Fj(2)55 2159 y Fs(,)g(and)g(let)g Fr(c)269
2166 y Fa(2)313 2159 y Fs(b)q(e)g(iden)o(tical)h(to)e
Fr(c)644 2166 y Fa(1)688 2159 y Fs(except)h(that)f(the)h
Fl(\033)1044 2166 y Fj(1)1082 2159 y Fs(and)g Fl(\034)1194
2166 y Fj(2)1232 2159 y Fs(are)f(c)o(hanged)h(to)f Fl(\034)1569
2166 y Fj(1)1608 2159 y Fs(and)h Fl(\033)1726 2166 y
Fj(2)1745 2159 y Fs(,)g(the)g(mac)o(hine)-75 2216 y(is)h(in)f(state)g
Fl(p)170 2223 y Fj(2)189 2216 y Fs(,)h(and)f(the)g(tap)q(e)g(head)g(is)
h(t)o(w)o(o)e(cells)i(further)f(left.)32 b(Therefore)19
b Fl(M)24 b Fs(is)19 b(not)g(rev)o(ersible.)32 b(Since)21
b(similar)-75 2272 y(argumen)o(ts)15 b(apply)h(for)f(eac)o(h)h(pair)g
(of)g(distinct)h(directions,)f(the)g(\014rst)f(condition)i(in)g(the)f
(theorem)f(m)o(ust)g(b)q(e)i(necessary)-75 2329 y(for)e(rev)o
(ersibilit)o(y)l(.)-4 2403 y(Finally)l(,)d(w)o(e)e(sho)o(w)g(that)g
(the)h(second)g(condition)g(is)g(also)g(necessary)f(for)g(rev)o
(ersibilit)o(y)l(.)21 b(Supp)q(ose)11 b(that)f Fl(M)18
b Fs(=)13 b(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))-75 2459
y(is)14 b(a)f(TM)g(or)g(generalized)i(TM)e(with)h Fl(\016)r
Fs(\()p Fl(p)633 2466 y Fj(1)652 2459 y Fl(;)8 b(\033)699
2466 y Fj(1)718 2459 y Fs(\))k(=)h Fl(\016)r Fs(\()p
Fl(p)859 2466 y Fj(2)879 2459 y Fl(;)8 b(\033)926 2466
y Fj(2)944 2459 y Fs(\).)19 b(Then,)14 b(an)o(y)f(pair)h(of)f
(con\014gurations)h(whic)o(h)g(di\013er)g(only)g(in)-75
2516 y(the)h(state)f(and)h(sym)o(b)q(ol)g(under)g(the)g(tap)q(e)g
(head,)g(where)g(one)g(has)g(\()p Fl(p)1122 2523 y Fj(1)1141
2516 y Fl(;)8 b(\033)1188 2523 y Fj(1)1207 2516 y Fs(\))14
b(and)h(the)g(other)f(\()p Fl(p)1564 2523 y Fj(2)1584
2516 y Fl(;)8 b(\033)1631 2523 y Fj(2)1650 2516 y Fs(\),)14
b(lead)h(to)f(the)h(same)-75 2572 y(next)g(con\014guration,)g(and)h
(again)f Fl(M)20 b Fs(is)c(not)f(rev)o(ersible.)1073
b Fd(2)951 2779 y Fs(55)p eop
%%Page: 56 56
56 55 bop -75 -26 a Fn(Corollary)18 b(B.0.14)k Fr(If)16
b Fl(M)21 b Fr(is)16 b(a)g(r)n(eversible)f(TM)h(then)g(every)g(c)n
(on\014gur)n(ation)f(of)i Fl(M)k Fr(has)16 b(exactly)h(one)f(pr)n(e)n
(de)n(c)n(essor.)-75 98 y Fn(Pro)q(of.)23 b Fs(Let)16
b Fl(M)j Fs(=)c(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))13
b(b)q(e)k(a)f(rev)o(ersible)h(TM.)f(By)g(the)g(de\014nition)i(of)e(rev)
o(ersibilit)o(y)l(,)i(eac)o(h)e(con\014guration)g(of)g
Fl(M)-75 155 y Fs(has)f(at)g(most)f(one)h(predecessor.)-4
229 y(So,)h(let)i Fl(c)e Fs(b)q(e)i(a)e(con\014guration)i(of)e
Fl(M)22 b Fs(in)c(state)e Fl(q)r Fs(.)25 b(Theorem)16
b(B.0.13)g(tells)i(us)f(that)f Fl(M)22 b Fs(can)17 b(en)o(ter)g(state)f
Fl(q)i Fs(while)-75 285 y(mo)o(ving)d(its)g(tap)q(e)h(head)f(in)h(only)
g(one)f(direction)h Fl(d)807 292 y Fk(q)826 285 y Fs(.)k(Since)c
(Theorem)f(B.0.13)f(tells)i(us)f(that,)g(ignoring)g(direction,)h
Fl(\016)h Fs(is)-75 342 y(one-to-one,)e(taking)f(the)h(in)o(v)o(erse)h
(of)e Fl(\016)j Fs(on)e(the)g(state)f Fl(q)i Fs(and)f(the)g(sym)o(b)q
(ol)h(in)f(direction)1475 330 y(\026)1467 342 y Fl(d)1491
349 y Fk(q)1525 342 y Fs(tells)h(us)f(ho)o(w)f(to)g(transform)-75
398 y Fl(c)h Fs(in)o(to)g(its)g(predecessor.)1635 b Fd(2)-75
579 y Fn(Corollary)18 b(B.0.15)k Fr(If)15 b Fl(\016)i
Fr(is)e(a)g(p)n(artial)h(function)f(fr)n(om)h Fl(Q)23
b Fm(\002)h Fs(\006)15 b Fr(to)h Fs(\006)8 b Fm(\002)g
Fl(Q)g Fm(\002)h(f)p Fl(L;)f(R)p Fm(g)13 b Fr(satisfying)i(the)g(two)h
(c)n(onditions)-75 635 y(of)g(The)n(or)n(em)g(B.0.13)h(then)f
Fl(\016)i Fr(c)n(an)e(b)n(e)g(extende)n(d)g(to)g(a)h(total)f(function)g
(that)h(stil)r(l)e(satis\014es)g(The)n(or)n(em)h(B.0.13.)-75
759 y Fn(Pro)q(of.)32 b Fs(Supp)q(ose)21 b Fl(\016)g
Fs(is)f(a)f(partial)h(function)g(from)f Fl(Q)12 b Fm(\002)i
Fs(\006)19 b(to)g(\006)12 b Fm(\002)i Fl(Q)e Fm(\002)i(f)p
Fl(L;)8 b(R)p Fm(g)18 b Fs(that)g(satis\014es)i(the)f(prop)q(erties)h
(of)-75 816 y(Theorem)c(B.0.13.)k(Then,)c(for)g(eac)o(h)g
Fl(q)f Fm(2)f Fl(Q)i Fs(let)g Fl(d)805 823 y Fk(q)840
816 y Fs(b)q(e)g(the)g(one)g(direction,)h(if)g(an)o(y)l(,)e(in)i(whic)o
(h)g Fl(q)g Fs(can)f(b)q(e)h(en)o(tered,)f(and)-75 872
y(let)g Fl(d)15 879 y Fk(q)49 872 y Fs(b)q(e)h(\(arbitrarily\))e
Fl(L)h Fs(otherwise.)21 b(Then)16 b(w)o(e)f(can)h(\014ll)h(in)f
(unde\014ned)i(v)m(alues)e(of)g Fl(\016)h Fs(with)f(as)f(y)o(et)g(un)o
(used)i(triples)f(of)-75 928 y(the)i(form)e(\()p Fl(\034)s(;)8
b(q)r(;)g(d)244 935 y Fk(q)260 928 y Fs(\))17 b(so)g(as)g(to)g(main)o
(tain)h(the)g(conditions)g(of)f(Theorem)h(B.0.13.)25
b(Since)19 b(there)e(are)g(card\(\006\))g(card\()p Fl(Q)p
Fs(\))-75 985 y(suc)o(h)f(triples)g(there)f(will)i(b)q(e)f(exactly)f
(enough)h(to)e(fully)j(de\014ne)f Fl(\016)r Fs(.)919
b Fd(2)-75 1165 y Fn(Theorem)17 b(B.0.16)22 b Fr(If)c
Fl(M)23 b Fr(is)17 b(a)h(gener)n(alize)n(d)e(r)n(eversible)h(TM,)g
(then)h(ther)n(e)g(is)f(a)h(r)n(eversible)f(TM)g Fl(M)1714
1149 y Fy(0)1744 1165 y Fr(that)h(simulates)-75 1222
y Fl(M)j Fr(with)c(slowdown)f(at)h(most)f(2.)-75 1346
y Fn(Pro)q(of.)k Fs(The)c(idea)g(is)g(to)f(replace)h(an)o(y)f
(transition)h(that)f(has)g(the)h(tap)q(e)f(head)h(stand)f(still)i(with)
f(t)o(w)o(o)e(transitions.)21 b(The)-75 1402 y(\014rst)15
b(up)q(dates)g(the)g(tap)q(e)g(and)g(mo)o(v)o(es)f(to)h(the)g(righ)o
(t,)f(remem)o(b)q(ering)i(whic)o(h)g(state)e(it)h(should)h(en)o(ter.)j
(The)d(second)f(steps)-75 1459 y(bac)o(k)g(to)g(the)g(left)g(and)h(en)o
(ters)f(the)g(desired)h(state.)-4 1533 y(So,)g(if)i Fl(M)i
Fs(=)c(\(\006)p Fl(;)8 b(Q;)g(\016)r Fs(\))14 b(is)j(a)g(generalized)h
(rev)o(ersible)g(TM)f(then)g(w)o(e)f(let)i Fl(M)1324
1516 y Fy(0)1352 1533 y Fs(b)q(e)g(iden)o(tical)g(to)e
Fl(M)22 b Fs(except)17 b(that)g(for)-75 1589 y(eac)o(h)e(state)f
Fl(q)j Fs(with)f(a)e(transition)i(of)e(the)h(form)g Fl(\016)r
Fs(\()p Fl(p;)8 b(\033)r Fs(\))i(=)j(\()p Fl(\034)s(;)8
b(q)r(;)g(N)d Fs(\))12 b(w)o(e)j(add)g(a)g(new)g(state)f
Fl(q)1545 1573 y Fy(0)1572 1589 y Fs(and)h(w)o(e)g(also)g(add)g(a)g
(new)-75 1646 y(transition)g(rule)h Fl(\016)r Fs(\()p
Fl(q)285 1629 y Fy(0)296 1646 y Fl(;)8 b(\033)r Fs(\))j(=)i
Fl(\033)o(;)8 b(q)r(;)g(L)13 b Fs(for)i(eac)o(h)g Fl(\033)f
Fm(2)f Fs(\006.)19 b(Finally)l(,)e(w)o(e)d(replace)i(eac)o(h)f
(transition)h Fl(\016)r Fs(\()p Fl(p;)8 b(\033)r Fs(\))i(=)j(\()p
Fl(\034)s(;)8 b(q)r(;)g(N)d Fs(\))12 b(with)-75 1702
y(the)j(transition)h Fl(\016)r Fs(\()p Fl(p;)8 b(\033)r
Fs(\))i(=)j(\()p Fl(\034)s(;)8 b(q)483 1686 y Fy(0)493
1702 y Fl(;)g(R)p Fs(\).)19 b(Clearly)d Fl(M)806 1686
y Fy(0)833 1702 y Fs(sim)o(ulates)f Fl(M)21 b Fs(with)15
b(slo)o(wdo)o(wn)g(b)o(y)g(a)g(factor)f(of)h(at)f(most)h(2.)-4
1776 y(T)l(o)f(complete)i(the)g(pro)q(of,)e(w)o(e)h(need)h(to)f(sho)o
(w)f(that)h Fl(M)953 1760 y Fy(0)980 1776 y Fs(is)g(also)g(rev)o
(ersible.)-4 1851 y(So,)h(consider)h(a)f(con\014guration)h
Fr(c)h Fs(of)e Fl(M)708 1834 y Fy(0)720 1851 y Fs(.)23
b(W)l(e)17 b(need)g(to)f(sho)o(w)g(that)f Fr(c)k Fs(has)d(at)g(most)g
(one)g(predecessor.)24 b(If)16 b Fr(c)j Fs(is)e(in)-75
1907 y(state)f Fl(q)h Fm(2)e Fl(Q)i Fs(and)f Fl(M)22
b Fs(en)o(ters)16 b Fl(q)j Fs(mo)o(ving)d(left)h(or)g(righ)o(t,)f(then)
h(the)g(transitions)g(in)o(to)f Fl(q)j Fs(in)e Fl(M)1571
1891 y Fy(0)1599 1907 y Fs(are)g(iden)o(tical)h(to)e(those)-75
1964 y(in)g Fl(M)21 b Fs(and)15 b(therefore)g(since)i
Fl(M)k Fs(is)15 b(rev)o(ersible,)i Fr(c)h Fs(has)d(at)g(most)f(one)i
(predecessor)g(in)g Fl(M)1474 1947 y Fy(0)1486 1964 y
Fs(.)k(Similarly)l(,)e(if)e Fr(c)i Fs(is)e(in)g(one)f(of)-75
2020 y(the)g(new)f(states)g Fl(q)246 2003 y Fy(0)272
2020 y Fs(then)h(the)g(transitions)f(in)o(to)h Fl(q)791
2003 y Fy(0)817 2020 y Fs(in)g Fl(M)918 2003 y Fy(0)945
2020 y Fs(are)f(exactly)h(the)f(same)h(as)f(those)g(in)o(to)h
Fl(q)h Fs(in)f Fl(M)5 b Fs(,)15 b(except)g(that)-75 2076
y(the)i(tap)q(e)g(head)h(mo)o(v)o(es)e(righ)o(t)h(instead)g(of)g(sta)o
(ying)f(still.)27 b(So,)17 b(again)g(the)g(rev)o(ersibilit)o(y)i(of)e
Fl(M)22 b Fs(implies)d(that)d Fr(c)k Fs(has)d(at)-75
2133 y(most)f(one)h(predecessor.)25 b(Finally)l(,)19
b(supp)q(ose)f Fr(c)h Fs(is)e(in)h(state)e Fl(q)h Fm(2)f
Fl(Q)h Fs(where)g Fl(M)22 b Fs(en)o(ters)16 b Fl(q)j
Fs(while)f(standing)g(still.)26 b(Then,)-75 2189 y(Theorem)12
b(B.0.13)f(tells)i(us)g(that)e(all)i(transitions)g(in)g
Fl(M)k Fs(that)12 b(en)o(ter)g Fl(q)i Fs(ha)o(v)o(e)e(direction)h
Fl(N)5 b Fs(.)19 b(Therefore,)12 b(all)h(of)f(them)g(ha)o(v)o(e)-75
2246 y(b)q(een)19 b(remo)o(v)o(ed,)e(and)g(the)h(only)g(transitions)g
(en)o(tering)f Fl(q)j Fs(in)e Fl(M)1053 2229 y Fy(0)1082
2246 y Fs(are)f(the)h(new)f(ones)h(of)f(the)h(form)e
Fl(\016)r Fs(\()p Fl(q)1746 2229 y Fy(0)1757 2246 y Fl(;)8
b(\033)r Fs(\))15 b(=)i Fl(\033)o(;)8 b(q)r(;)g(L)p Fs(.)-75
2302 y(Again,)15 b(this)h(means)f(that)f Fr(c)k Fs(can)d(ha)o(v)o(e)g
(only)h(one)f(predecessor.)944 b Fd(2)-4 2433 y Fs(W)l(e)16
b(will)i(pro)o(v)o(e)d(the)i(Sync)o(hronization)g(Theorem)f(in)h(the)f
(follo)o(wing)h(w)o(a)o(y)l(.)22 b(Using)17 b(ideas)g(from)e(the)i
(constructions)-75 2489 y(of)c(Bennett)i([7)o(])f(and)g(Morita)f
(et.al.)g([33)o(],)g(w)o(e)h(will)h(sho)o(w)f(that)f(giv)o(en)h(an)o(y)
g(deterministic)i(TM)d Fl(M)19 b Fs(there)14 b(is)g(a)g(rev)o(ersible)
-75 2546 y(m)o(ulti-trac)o(k)h(TM)f(whic)o(h)i(on)f(input)g
Fl(x)g Fs(pro)q(duces)h(output)e Fl(x)p Fs(;)8 b Fl(M)d
Fs(\()p Fl(x)p Fs(\),)14 b(and)h(whose)f(running)i(time)f(dep)q(ends)i
(only)e(on)g(the)-75 2602 y(sequence)e(of)f(head)g(mo)o(v)o(emen)o(ts)f
(of)g Fl(M)17 b Fs(on)12 b(input)h Fl(x)p Fs(.)19 b(Then,)13
b(since)g(an)o(y)f(deterministic)h(computation)f(can)g(b)q(e)h(sim)o
(ulated)951 2779 y(56)p eop
%%Page: 57 57
57 56 bop -75 -26 a Fs(e\016cien)o(tly)19 b(b)o(y)e(an)g(\\oblivious")i
(mac)o(hine)f(whose)f(head)h(mo)o(v)o(emen)o(ts)e(dep)q(end)j(only)f
(on)g(the)f(length)h(of)f(its)h(input,)g(w)o(e)-75 31
y(will)f(b)q(e)f(able)g(to)e(construct)h(the)g(desired)i(\\sync)o
(hronized")f(rev)o(ersible)g(TM.)-4 105 y(The)11 b(idea)g(of)f
(Bennett's)h(sim)o(ulation)h(is)f(to)f(run)h(the)g(target)e(mac)o
(hine,)j(k)o(eeping)g(a)e(history)h(to)f(main)o(tain)h(rev)o(ersibilit)
o(y)l(.)-75 161 y(Then)19 b(the)g(output)f(can)h(b)q(e)h(copied)g(and)f
(the)f(sim)o(ulation)i(run)f(bac)o(kw)o(ards)f(so)g(that)g(the)h
(history)g(is)g(exactly)g(erased)-75 218 y(while)e(the)f(input)h(is)g
(reco)o(v)o(ered.)22 b(Since)17 b(the)f(target)f(tap)q(e)h(head)g(mo)o
(v)o(es)g(bac)o(k)f(and)i(forth,)e(while)i(the)f(history)g(steadily)-75
274 y(gro)o(ws,)e(Bennett)h(uses)h(a)e(m)o(ulti-tap)q(e)j(TM)d(for)h
(the)g(sim)o(ulation.)-4 348 y(The)e(idea)i(of)e(Morita)g(et.al.'s)f
(sim)o(ulation)j(is)f(to)f(use)h(a)g(sim)o(ulation)g(tap)q(e)g(with)g
(sev)o(eral)g(trac)o(ks,)e(some)i(of)f(whic)o(h)h(are)-75
405 y(used)f(to)f(sim)o(ulate)i(the)f(tap)q(e)f(of)h(the)g(desired)h
(mac)o(hine,)f(and)g(some)g(of)f(whic)o(h)h(are)g(used)g(to)f(k)o(eep)h
(the)g(history)l(.)19 b(Pro)o(vided)-75 461 y(that)12
b(the)h(mac)o(hine)h(can)f(mo)o(v)o(e)f(rev)o(ersibly)i(b)q(et)o(w)o
(een)g(the)f(curren)o(t)g(head)g(p)q(osition)h(of)f(the)g(target)e(mac)
o(hine)j(and)f(the)g(end)-75 518 y(of)j(the)g(history)l(,)g(it)g(can)g
(carry)g(out)f(Bennett's)h(sim)o(ulation)h(with)f(a)g(quadratic)g(slo)o
(wdo)o(wn.)22 b(Morita)15 b(et.al.)23 b(w)o(ork)15 b(with)-75
574 y(TMs)e(with)h(one-w)o(a)o(y)f(in\014nite)j(tap)q(es)e(so)f(that)g
(the)h(sim)o(ulating)h(mac)o(hine)f(can)g(mo)o(v)o(e)f(b)q(et)o(w)o
(een)h(the)g(sim)o(ulation)h(and)f(the)-75 631 y(history)f(b)o(y)g(mo)o
(ving)g(left)h(to)e(the)h(end)h(of)f(the)g(tap)q(e)g(and)g(then)h
(searc)o(hing)f(bac)o(k)g(to)o(w)o(ards)f(the)h(righ)o(t.)19
b(In)13 b(our)g(sim)o(ulation,)-75 687 y(w)o(e)j(write)h(do)o(wn)f
(history)h(for)f(ev)o(ery)g(step)h(the)f(target)g(mac)o(hine)h(tak)o
(es,)f(rather)g(than)g(just)g(the)h(non-rev)o(ersible)h(steps.)-75
744 y(This)13 b(means)f(that)g(the)g(end)h(of)f(the)g(history)h(will)h
(alw)o(a)o(ys)d(b)q(e)i(further)f(righ)o(t)h(than)f(the)g(sim)o
(ulation,)i(allo)o(wing)f(us)f(to)g(w)o(ork)-75 800 y(with)k(t)o(w)o
(o-w)o(a)o(y)e(in\014nite)k(tap)q(es.)k(Also,)15 b(w)o(e)h(use)g(rev)o
(ersible)h(TMs)f(that)f(can)h(only)g(mo)o(v)o(e)f(their)i(head)f(in)h
(the)f(directions)-75 857 y Fm(f)p Fl(L;)8 b(R)p Fm(g)14
b Fs(rather)g(than)h(the)h(generalized)h(rev)o(ersible)f(TMs)f(used)g
(b)o(y)h(Bennett)f(and)h(Morita)e(et.al.)-75 980 y Fn(De\014nition)19
b(B.0.17)j Fr(A)17 b(deterministic)g(TM)f(is)h Fs(oblivious)h
Fr(if)f(its)g(running)f(time)h(and)g(the)g(p)n(osition)g(of)g(its)g
(tap)n(e)g(he)n(ad)-75 1037 y(at)g(e)n(ach)f(time)g(step)g(dep)n(end)g
(only)g(on)g(the)h(length)e(of)i(its)e(input.)-4 1161
y Fs(In)d(carrying)f(out)g(our)g(single)i(tap)q(e)e(Bennett)h
(constructions)g(w)o(e)f(will)i(\014nd)f(it)f(useful)i(to)d(\014rst)h
(build)j(simple)f(rev)o(ersible)-75 1217 y(TMs)i(to)g(cop)o(y)h(a)f
(string)h(from)f(one)h(trac)o(k)f(to)g(another)g(and)h(to)f(exc)o
(hange)h(the)g(strings)f(on)h(t)o(w)o(o)e(trac)o(ks.)21
b(W)l(e)16 b(will)h(cop)o(y)-75 1274 y(strings)22 b(delimited)j(b)o(y)d
(blanks)h(in)g(the)f(single)i(tap)q(e)e(Bennett)h(construction,)h(but)e
(will)i(cop)o(y)f(strings)f(with)g(other)-75 1330 y(delimiters)17
b(in)f(a)f(later)g(section.)-75 1454 y Fn(Lemma)i(B.0.18)23
b Fr(F)m(or)16 b(any)g(alphab)n(et)h Fs(\006)p Fr(,)f(ther)n(e)g(is)g
(a)h(normal)f(form,)h(r)n(eversible)e(TM)h Fl(M)21 b
Fr(with)c(alphab)n(et)g Fs(\006)10 b Fm(\002)g Fs(\006)17
b Fr(with)-75 1511 y(the)f(fol)r(lowing)g(pr)n(op)n(erty.)21
b(When)16 b(run)g(on)g(input)g Fl(x)p Fs(;)8 b Fl(y)17
b(M)k Fr(runs)16 b(for)g Fs(2)8 b(max)o(\()p Fm(j)p Fl(x)p
Fm(j)o Fl(;)g Fm(j)p Fl(y)r Fm(j)o Fs(\))h(+)h(4)15 b
Fr(steps,)h(r)n(eturns)f(the)i(tap)n(e)f(he)n(ad)-75
1567 y(to)h(the)f(start)h(c)n(el)r(l,)e(and)h(outputs)h
Fl(y)r Fs(;)8 b Fl(x)p Fr(.)-75 1691 y Fn(Pro)q(of.)20
b Fs(W)l(e)15 b(let)h Fl(M)k Fs(ha)o(v)o(e)15 b(alphab)q(et)h(\006)10
b Fm(\002)g Fs(\006,)15 b(state)f(set)h Fm(f)p Fl(q)962
1698 y Fj(0)982 1691 y Fl(;)8 b(q)1023 1698 y Fj(1)1042
1691 y Fl(;)g(q)1083 1698 y Fj(2)1102 1691 y Fl(;)g(q)1143
1698 y Fj(3)1162 1691 y Fl(;)g(q)1203 1698 y Fk(f)1226
1691 y Fm(g)p Fs(,)14 b(and)i(transition)f(function)h(de\014ned)h(b)o
(y)p 716 1826 2 57 v 796 1809 a(\(#)p Fl(;)8 b Fs(#\))99
b(other)15 b(\()p Fl(\033)1191 1816 y Fj(1)1211 1809
y Fl(;)8 b(\033)1258 1816 y Fj(2)1276 1809 y Fs(\))p
632 1828 683 2 v 654 1867 a Fl(q)674 1874 y Fj(0)p 716
1884 2 57 v 741 1867 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)915
1874 y Fj(1)932 1867 y Fl(;)g(L)48 b Fs(\()p Fl(\033)1076
1874 y Fj(1)1096 1867 y Fl(;)8 b(\033)1143 1874 y Fj(2)1161
1867 y Fs(\))p Fl(;)g(q)1220 1874 y Fj(1)1239 1867 y
Fl(;)g(L)654 1924 y(q)674 1931 y Fj(1)p 716 1941 V 739
1924 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)913 1931 y Fj(2)930
1924 y Fl(;)g(R)654 1980 y(q)674 1987 y Fj(2)p 716 1997
V 741 1980 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)915 1987
y Fj(3)932 1980 y Fl(;)g(L)46 b Fs(\()p Fl(\033)1074
1987 y Fj(2)1094 1980 y Fl(;)8 b(\033)1141 1987 y Fj(1)1159
1980 y Fs(\))p Fl(;)g(q)1218 1987 y Fj(2)1237 1980 y
Fl(;)g(R)654 2037 y(q)674 2044 y Fj(3)p 716 2053 V 737
2037 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)911 2044 y Fk(f)932
2037 y Fl(;)g(R)44 b Fs(\()p Fl(\033)1076 2044 y Fj(1)1096
2037 y Fl(;)8 b(\033)1143 2044 y Fj(2)1161 2037 y Fs(\))p
Fl(;)g(q)1220 2044 y Fj(3)1239 2037 y Fl(;)g(L)653 2093
y(q)673 2100 y Fk(f)p 716 2110 V 739 2093 a Fs(\(#)p
Fl(;)g Fs(#\))p Fl(;)g(q)913 2100 y Fj(0)930 2093 y Fl(;)g(R)44
b Fs(\()p Fl(\033)1074 2100 y Fj(1)1094 2093 y Fl(;)8
b(\033)1141 2100 y Fj(2)1159 2093 y Fs(\))p Fl(;)g(q)1218
2100 y Fj(0)1237 2093 y Fl(;)g(R)-4 2190 y Fs(Since)18
b(eac)o(h)f(state)f(in)i Fl(M)k Fs(can)17 b(b)q(e)h(en)o(tered)f(in)h
(only)f(one)g(direction,)i(and)e(its)g(transition)g(function)h(is)f
(one-to-one,)-75 2247 y Fl(M)i Fs(is)c(rev)o(ersible.)21
b(Also,)14 b(it)g(can)g(b)q(e)h(v)o(eri\014ed)g(that)f
Fl(M)19 b Fs(p)q(erforms)14 b(the)g(desired)h(computation)f(in)h(the)f
(stated)g(n)o(um)o(b)q(er)g(of)-75 2303 y(steps.)1951
b Fd(2)-75 2484 y Fn(Lemma)17 b(B.0.19)23 b Fr(F)m(or)16
b(any)g(alphab)n(et)h Fs(\006)p Fr(,)f(ther)n(e)g(is)g(a)h(normal)f
(form,)h(r)n(eversible)e(TM)h Fl(M)21 b Fr(with)c(alphab)n(et)g
Fs(\006)10 b Fm(\002)g Fs(\006)17 b Fr(with)-75 2540
y(the)e(fol)r(lowing)g(pr)n(op)n(erty.)21 b(When)15 b(run)g(on)g(input)
g Fl(x)p Fr(,)g Fl(M)20 b Fr(outputs)c Fl(x)p Fs(;)8
b Fl(x)p Fr(,)14 b(and)h(when)g(run)g(on)g(input)g Fl(x)p
Fs(;)8 b Fl(x)14 b Fr(it)h(outputs)i Fl(x)p Fr(.)j(In)-75
2597 y(either)d(c)n(ase,)e Fl(M)21 b Fr(runs)16 b(for)h
Fs(2)p Fm(j)p Fl(x)p Fm(j)9 b Fs(+)h(4)16 b Fr(steps)g(and)g(le)n(aves)
f(the)i(tap)n(e)f(he)n(ad)h(b)n(ack)f(in)g(the)g(start)h(c)n(el)r(l.)
951 2779 y Fs(57)p eop
%%Page: 58 58
58 57 bop -75 -26 a Fn(Pro)q(of.)19 b Fs(W)l(e)c(let)g
Fl(M)20 b Fs(ha)o(v)o(e)14 b(alphab)q(et)i(\006)8 b Fm(\002)i
Fs(\006,)k(state)f(set)i Fm(f)p Fl(q)955 -19 y Fj(0)974
-26 y Fl(;)8 b(q)1015 -19 y Fj(1)1035 -26 y Fl(;)g(q)1076
-19 y Fj(2)1095 -26 y Fl(;)g(q)1136 -19 y Fj(3)1155 -26
y Fl(;)g(q)1196 -19 y Fk(f)1218 -26 y Fm(g)p Fs(,)14
b(and)h(transition)g(function)g(de\014ned)h(b)o(y)f(the)-75
31 y(follo)o(wing)h(where)f(eac)o(h)h(transition)f(is)h(duplicated)h
(for)e(eac)o(h)g(non-blank)h Fl(\033)e Fm(2)f Fs(\006)p
594 165 2 57 v 675 149 a(\(#)p Fl(;)8 b Fs(#\))156 b(\()p
Fl(\033)o(;)8 b Fs(#\))161 b(\()p Fl(\033)o(;)8 b(\033)r
Fs(\))p 510 167 927 2 v 533 207 a Fl(q)553 214 y Fj(0)p
594 224 2 57 v 619 207 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)793
214 y Fj(1)811 207 y Fl(;)g(L)46 b Fs(\()p Fl(\033)o(;)8
b Fs(#\))p Fl(;)g(q)1070 214 y Fj(1)1087 207 y Fl(;)g(L)50
b Fs(\()p Fl(\033)o(;)8 b(\033)r Fs(\))p Fl(;)g(q)1340
214 y Fj(1)1358 207 y Fl(;)g(L)533 263 y(q)553 270 y
Fj(1)p 594 280 V 617 263 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)791
270 y Fj(2)809 263 y Fl(;)g(R)533 320 y(q)553 327 y Fj(2)p
594 337 V 619 320 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)793
327 y Fj(3)811 320 y Fl(;)g(L)49 b Fs(\()p Fl(\033)o(;)8
b(\033)r Fs(\))p Fl(;)g(q)1063 327 y Fj(2)1080 320 y
Fl(;)g(R)46 b Fs(\()p Fl(\033)o(;)8 b Fs(#\))p Fl(;)g(q)1343
327 y Fj(2)1361 320 y Fl(;)g(R)533 376 y(q)553 383 y
Fj(3)p 594 393 V 616 376 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)790
383 y Fk(f)810 376 y Fl(;)g(R)43 b Fs(\()p Fl(\033)o(;)8
b Fs(#\))p Fl(;)g(q)1070 383 y Fj(3)1087 376 y Fl(;)g(L)50
b Fs(\()p Fl(\033)o(;)8 b(\033)r Fs(\))p Fl(;)g(q)1340
383 y Fj(3)1358 376 y Fl(;)g(L)531 432 y(q)551 439 y
Fk(f)p 594 449 V 617 432 a Fs(\(#)p Fl(;)g Fs(#\))p Fl(;)g(q)791
439 y Fj(0)809 432 y Fl(;)g(R)42 b Fs(\()p Fl(\033)o(;)8
b Fs(#\))p Fl(;)g(q)1068 439 y Fj(0)1085 432 y Fl(;)g(R)46
b Fs(\()p Fl(\033)o(;)8 b(\033)r Fs(\))p Fl(;)g(q)1338
439 y Fj(0)1356 432 y Fl(;)g(R)-4 526 y Fs(Since)18 b(eac)o(h)f(state)f
(in)i Fl(M)k Fs(can)17 b(b)q(e)h(en)o(tered)f(in)h(only)f(one)g
(direction,)i(and)e(its)g(transition)g(function)h(is)f(one-to-one,)-75
582 y Fl(M)j Fs(can)15 b(b)q(e)h(extended)g(to)e(a)h(rev)o(ersible)h
(TM.)e(Also,)h(it)g(can)g(b)q(e)h(v)o(eri\014ed)g(that)e
Fl(M)20 b Fs(p)q(erforms)15 b(the)g(desired)h(computation)-75
639 y(in)g(the)f(stated)g(n)o(um)o(b)q(er)g(of)g(steps.)1466
b Fd(2)-75 810 y Fn(Theorem)17 b(B.0.20)22 b Fr(L)n(et)16
b Fl(M)21 b Fr(b)n(e)16 b(an)h(oblivious)f(deterministic)g(TM)f(which)i
(on)f(any)h(input)f Fl(x)h Fr(pr)n(o)n(duc)n(es)f(output)i
Fl(M)5 b Fs(\()p Fl(x)p Fs(\))p Fr(,)-75 866 y(with)19
b(no)g(emb)n(e)n(dde)n(d)f(blanks,)g(with)i(its)e(tap)n(e)h(he)n(ad)g
(b)n(ack)f(in)h(the)g(start)g(c)n(el)r(l,)f(and)h(with)g
Fl(M)5 b Fs(\()p Fl(x)p Fs(\))18 b Fr(b)n(e)n(ginning)f(in)h(the)h
(start)-75 922 y(c)n(el)r(l.)j(Then)17 b(ther)n(e)g(is)f(a)i(r)n
(eversible)d(TM)i Fl(M)692 906 y Fy(0)721 922 y Fr(which)g(on)g(input)g
Fl(x)g Fr(pr)n(o)n(duc)n(es)g(output)i Fl(x)p Fs(;)8
b Fl(M)d Fs(\()p Fl(x)p Fs(\))15 b Fr(and)i(on)g(input)g
Fl(x)p Fs(;)8 b Fl(M)d Fs(\()p Fl(x)p Fs(\))p Fr(,)-75
979 y(pr)n(o)n(duc)n(es)17 b(output)i Fl(x)p Fr(.)24
b(In)17 b(b)n(oth)g(c)n(ases,)g Fl(M)655 962 y Fy(0)684
979 y Fr(halts)g(with)h(its)f(tap)n(e)g(he)n(ad)h(b)n(ack)f(in)g(the)g
(start)h(c)n(el)r(l,)e(and)i(takes)f(time)g(which)-75
1035 y(dep)n(ends)d(only)f(on)h(the)h(lengths)e(of)h
Fl(x)g Fr(and)h Fl(M)5 b Fs(\()p Fl(x)p Fs(\))p Fr(,)14
b(and)g(which)h(is)e(b)n(ounde)n(d)h(by)h(a)f(quadr)n(atic)h(p)n
(olynomial)f(in)f(the)i(running)-75 1092 y(time)h(of)h
Fl(M)k Fr(on)16 b(input)h Fl(x)p Fr(.)-75 1206 y Fn(Pro)q(of.)i
Fs(Let)c Fl(M)j Fs(=)13 b(\(\006)p Fl(;)8 b(Q;)g(\016)r
Fs(\))j(b)q(e)k(an)g(oblivious)h(deterministic)g(TM)e(as)g(stated)f(in)
j(the)e(theorem)g(and)h(let)f Fl(q)1800 1213 y Fj(0)1820
1206 y Fl(;)8 b(q)1861 1213 y Fk(f)1898 1206 y Fs(b)q(e)15
b(the)-75 1263 y(initial)i(and)f(\014nal)g(states)e(of)h
Fl(M)5 b Fs(.)-4 1337 y(The)15 b(sim)o(ulation)h(will)h(run)f(in)g
(three)f(stages.)-19 1442 y(1.)22 b Fl(M)88 1425 y Fy(0)114
1442 y Fs(will)17 b(sim)o(ulate)f Fl(M)k Fs(main)o(taining)d(a)e
(history)g(to)f(mak)o(e)h(the)g(sim)o(ulation)h(rev)o(ersible.)-19
1533 y(2.)22 b Fl(M)88 1516 y Fy(0)114 1533 y Fs(will)17
b(cop)o(y)e(its)h(\014rst)f(trac)o(k,)f(as)g(sho)o(wn)h(in)h(Lemma)f
(B.0.19.)-19 1624 y(3.)22 b Fl(M)88 1607 y Fy(0)114 1624
y Fs(runs)16 b(the)f(rev)o(erse)g(of)g(the)g(sim)o(ulation)h(of)f
Fl(M)20 b Fs(erasing)c(the)f(history)g(while)i(restoring)e(the)g
(input.)-4 1729 y(W)l(e)i(will)j(construct)d(a)g(normal)h(form)f(rev)o
(ersible)i(TM)e(for)g(eac)o(h)h(of)f(the)h(three)f(stages,)g(and)h
(then)g(do)o(v)o(etail)g(them)-75 1785 y(together.)-4
1859 y(Eac)o(h)d(of)g(our)g(mac)o(hines)h(will)h(b)q(e)f(a)f(four-trac)
o(k)g(TM)g(with)g(the)h(same)f(alphab)q(et.)21 b(The)16
b(\014rst)f(trac)o(k,)f(with)i(alphab)q(et)-75 1916 y(\006)-42
1923 y Fj(1)-10 1916 y Fs(=)d(\006,)g(will)h(b)q(e)f(used)g(to)f(sim)o
(ulate)i(the)e(tap)q(e)h(of)f Fl(M)5 b Fs(.)19 b(The)13
b(second)g(trac)o(k,)f(with)h(alphab)q(et)h(\006)1559
1923 y Fj(2)1591 1916 y Fs(=)f Fm(f)p Fs(#)p Fl(;)8 b
Fs(1)p Fm(g)p Fs(,)j(will)j(b)q(e)f(used)-75 1972 y(to)j(store)h(a)f
(single)i(1)f(lo)q(cating)h(the)f(tap)q(e)g(head)g(of)f
Fl(M)5 b Fs(.)26 b(The)17 b(third)g(trac)o(k,)f(with)i(alphab)q(et)f
(\006)1582 1979 y Fj(3)1617 1972 y Fs(=)f Fm(f)p Fs(#)p
Fl(;)8 b Fs($)p Fm(g)i([)h Fs(\()p Fl(Q)g Fm(\002)h Fs(\006\),)-75
2029 y(will)19 b(b)q(e)f(used)g(to)e(write)h(do)o(wn)g(a)g(list)h(of)f
(the)g(transitions)h(tak)o(en)f(b)o(y)g Fl(M)5 b Fs(,)17
b(starting)g(with)g(the)h(mark)o(er)e($.)26 b(This)17
b($)g(will)-75 2085 y(help)i(us)f(\014nd)h(the)f(start)e(cell)k(when)e
(w)o(e)g(en)o(ter)f(and)h(lea)o(v)o(e)h(the)e(cop)o(ying)i(phase.)28
b(The)18 b(fourth)g(trac)o(k,)f(with)h(alphab)q(et)-75
2142 y(\006)-42 2149 y Fj(4)-10 2142 y Fs(=)13 b(\006,)i(will)i(b)q(e)e
(used)h(to)f(write)g(the)g(output)g(of)g Fl(M)5 b Fs(.)-4
2216 y(In)22 b(describing)i(the)d(\014rst)h(mac)o(hine,)i(w)o(e)d(will)
i(giv)o(e)f(a)g(partial)g(list)h(of)e(transitions)h(ob)q(eying)h(the)e
(conditions)i(of)-75 2272 y(Theorem)c(B.0.13,)g(and)g(then)h(app)q(eal)
g(to)f(Corollary)g(B.0.15.)31 b(Our)20 b(mac)o(hines)g(will)h(usually)g
(only)f(b)q(e)g(reading)g(and)-75 2329 y(writing)d(one)f(trac)o(k)f(at)
h(a)g(time.)23 b(So,)16 b(for)f(con)o(v)o(enience)j(w)o(e)e(will)i
(list)f(a)f(transition)g(with)h(one)f(or)f(more)h(o)q(ccurrences)h(of)
-75 2385 y(the)g(sym)o(b)q(ols)f(of)g(the)h(form)f Fl(v)443
2392 y Fk(i)473 2385 y Fs(and)h Fl(v)587 2369 y Fy(0)585
2397 y Fk(i)615 2385 y Fs(to)f(stand)g(for)g(all)i(p)q(ossible)g
(transitions)e(with)h Fl(v)1458 2392 y Fk(i)1489 2385
y Fs(replaced)g(b)o(y)g(a)f(sym)o(b)q(ol)h(from)-75 2442
y(the)e(appropriate)g(\006)281 2449 y Fk(i)310 2442 y
Fs(other)g(than)g(the)g(sp)q(ecial)i(mark)o(er)d($,)g(and)h(with)h
Fl(v)1181 2425 y Fy(0)1179 2454 y Fk(i)1208 2442 y Fs(replaced)g(b)o(y)
f(a)g(sym)o(b)q(ol)g(from)g(\006)1784 2449 y Fk(i)1812
2442 y Fs(other)g(than)-75 2498 y($)g(and)g(#.)-4 2572
y(The)f(\014rst)g(phase)h(of)f(the)h(sim)o(ulation)g(will)h(b)q(e)g
(handled)g(b)o(y)e(the)h(mac)o(hine)g Fl(M)1335 2579
y Fj(1)1369 2572 y Fs(with)g(state)f(set)g(giv)o(en)h(b)o(y)f(the)h
(union)-75 2629 y(of)g(sets)g Fl(Q)p Fs(,)f Fl(Q)c Fm(\002)h
Fl(Q)f Fm(\002)g Fs(\006)g Fm(\002)h Fs([1)p Fl(;)d Fs(4],)k
Fl(Q)e Fm(\002)h Fs([5)p Fl(;)d Fs(7],)13 b(and)i Fm(f)p
Fl(q)861 2636 y Fk(a)882 2629 y Fl(;)8 b(q)923 2636 y
Fk(b)939 2629 y Fm(g)p Fs(.)20 b(Its)15 b(start)f(state)h(will)h(b)q(e)
g Fl(q)1450 2636 y Fk(a)1487 2629 y Fs(and)f(the)g(\014nal)h(state)f
Fl(q)1886 2636 y Fk(f)1909 2629 y Fs(.)951 2779 y(58)p
eop
%%Page: 59 59
59 58 bop -4 -26 a Fs(The)14 b(transitions)h(of)f Fl(M)408
-19 y Fj(1)443 -26 y Fs(are)g(de\014ned)i(as)e(follo)o(ws.)20
b(First,)14 b(w)o(e)h(mark)f(the)g(p)q(osition)i(of)e(the)h(tap)q(e)g
(head)g(of)f Fl(M)19 b Fs(in)d(the)-75 31 y(start)e(cell,)i(mark)f(the)
g(start)f(of)h(the)g(history)g(in)h(cell)h(1,)e(and)g(en)o(ter)g(state)
g Fl(q)1235 38 y Fj(0)1255 31 y Fs(.)522 123 y Fl(q)542
130 y Fk(a)564 123 y Fl(;)41 b Fs(\()p Fl(v)658 130 y
Fj(1)677 123 y Fl(;)8 b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)838
130 y Fj(4)855 123 y Fs(\))41 b Fm(!)h Fs(\()p Fl(v)1041
130 y Fj(1)1061 123 y Fl(;)8 b Fs(1)p Fl(;)g Fs(#)p Fl(;)g(v)1207
130 y Fj(4)1224 123 y Fs(\))p Fl(;)42 b(q)1317 130 y
Fk(b)1334 123 y Fl(;)h(R)524 179 y(q)544 186 y Fk(b)562
179 y Fl(;)g Fs(\()p Fl(v)658 186 y Fj(1)677 179 y Fl(;)8
b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)838 186 y Fj(4)855 179
y Fs(\))41 b Fm(!)h Fs(\()p Fl(v)1041 186 y Fj(1)1061
179 y Fl(;)8 b Fs(#)p Fl(;)g Fs($)p Fl(;)g(v)1207 186
y Fj(4)1224 179 y Fs(\))p Fl(;)41 b(q)1316 186 y Fj(0)1336
179 y Fl(;)g(R)-4 291 y Fs(Then,)15 b(for)g(eac)o(h)g(pair)g
Fl(p;)8 b(\033)16 b Fs(with)g Fl(p)c Fm(6)p Fs(=)i Fl(q)686
298 y Fk(f)724 291 y Fs(and)h(with)h(transition)f Fl(\016)r
Fs(\()p Fl(p;)8 b(\033)r Fs(\))j(=)i(\()p Fl(\034)s(;)8
b(q)r(;)g(d)p Fs(\))k(in)k Fl(M)k Fs(w)o(e)15 b(include)j(transitions)
-75 348 y(to)12 b(go)g(from)f(state)h Fl(p)g Fs(to)g(state)f
Fl(q)k Fs(up)q(dating)e(the)g(sim)o(ulated)g(tap)q(e)f(of)g
Fl(M)18 b Fs(while)c(adding)f(\()p Fl(p;)8 b(\033)r Fs(\))i(to)i(the)h
(end)g(of)f(the)g(history)l(.)-75 404 y(W)l(e)j(\014rst)g(carry)g(out)f
(the)i(up)q(date)f(of)g(the)g(sim)o(ulated)h(tap)q(e,)f(remem)o(b)q
(ering)h(the)g(transition)f(tak)o(en,)f(and)i(then)f(mo)o(v)o(e)g(to)
-75 461 y(the)g(end)h(of)f(the)g(history)g(to)g(dep)q(osit)h(the)f
(information)g(on)g(the)h(transition.)k(If)15 b(w)o(e)g(are)g(in)h(the)
f(middle)i(of)e(the)g(history)l(,)-75 517 y(w)o(e)f(reac)o(h)h(the)g
(end)g(of)f(the)h(history)g(b)o(y)f(w)o(alking)i(righ)o(t)e(un)o(til)i
(w)o(e)e(hit)h(a)g(blank.)20 b(Ho)o(w)o(ev)o(er,)14 b(if)h(w)o(e)f(are)
h(to)f(the)h(left)g(of)f(the)-75 574 y(history)l(,)h(then)h(w)o(e)e(m)o
(ust)h(\014rst)g(w)o(alk)g(righ)o(t)g(o)o(v)o(er)f(blanks)i(un)o(til)h
(w)o(e)d(reac)o(h)i(the)f(start)f(of)h(the)g(history)l(.)414
692 y Fl(p;)139 b Fs(\()p Fl(\033)o(;)8 b Fs(1)p Fl(;)g(v)719
699 y Fj(3)737 692 y Fl(;)g(v)780 699 y Fj(4)799 692
y Fs(\))57 b Fm(!)84 b Fs(\()p Fl(\034)s(;)8 b Fs(#)p
Fl(;)g(v)1146 699 y Fj(3)1163 692 y Fl(;)g(v)1206 699
y Fj(4)1225 692 y Fs(\))p Fl(;)83 b Fs(\()p Fl(q)r(;)8
b(p;)g(\033)o(;)g Fs(1)o(\))p Fl(;)50 b(d)331 748 y Fs(\()p
Fl(q)r(;)8 b(p;)g(\033)o(;)g Fs(1\))o Fl(;)48 b Fs(\()p
Fl(v)623 755 y Fj(1)642 748 y Fl(;)8 b Fs(#)p Fl(;)g
Fs($)p Fl(;)g(v)788 755 y Fj(4)805 748 y Fs(\))51 b Fm(!)91
b Fs(\()p Fl(v)1050 755 y Fj(1)1070 748 y Fl(;)8 b Fs(1)p
Fl(;)g Fs($)p Fl(;)g(v)1201 755 y Fj(4)1218 748 y Fs(\))p
Fl(;)90 b Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g Fs(3)o(\))p
Fl(;)38 b(R)331 804 y Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g
Fs(1\))o Fl(;)39 b Fs(\()p Fl(v)614 811 y Fj(1)633 804
y Fl(;)8 b Fs(#)p Fl(;)g(v)737 788 y Fy(0)735 816 y Fj(3)753
804 y Fl(;)g(v)796 811 y Fj(4)815 804 y Fs(\))41 b Fm(!)82
b Fs(\()p Fl(v)1041 811 y Fj(1)1060 804 y Fl(;)8 b Fs(1)p
Fl(;)g(v)1149 788 y Fy(0)1147 816 y Fj(3)1165 804 y Fl(;)g(v)1208
811 y Fj(4)1227 804 y Fs(\))p Fl(;)81 b Fs(\()p Fl(q)r(;)8
b(p;)g(\033)o(;)g Fs(3)o(\))p Fl(;)38 b(R)331 861 y Fs(\()p
Fl(q)r(;)8 b(p;)g(\033)o(;)g Fs(1\))o Fl(;)40 b Fs(\()p
Fl(v)615 868 y Fj(1)635 861 y Fl(;)8 b Fs(#)p Fl(;)g
Fs(#)p Fl(;)g(v)796 868 y Fj(4)813 861 y Fs(\))43 b Fm(!)84
b Fs(\()p Fl(v)1043 868 y Fj(1)1062 861 y Fl(;)8 b Fs(1)p
Fl(;)g Fs(#)p Fl(;)g(v)1208 868 y Fj(4)1225 861 y Fs(\))p
Fl(;)83 b Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g Fs(2)o(\))p
Fl(;)38 b(R)331 917 y Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g
Fs(2\))o Fl(;)40 b Fs(\()p Fl(v)615 924 y Fj(1)635 917
y Fl(;)8 b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)796 924 y Fj(4)813
917 y Fs(\))43 b Fm(!)76 b Fs(\()p Fl(v)1035 924 y Fj(1)1055
917 y Fl(;)8 b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)1216 924
y Fj(4)1233 917 y Fs(\))p Fl(;)75 b Fs(\()p Fl(q)r(;)8
b(p;)g(\033)o(;)g Fs(2)o(\))p Fl(;)38 b(R)331 974 y Fs(\()p
Fl(q)r(;)8 b(p;)g(\033)o(;)g Fs(2\))o Fl(;)48 b Fs(\()p
Fl(v)623 981 y Fj(1)642 974 y Fl(;)8 b Fs(#)p Fl(;)g
Fs($)p Fl(;)g(v)788 981 y Fj(4)805 974 y Fs(\))51 b Fm(!)84
b Fs(\()p Fl(v)1043 981 y Fj(1)1062 974 y Fl(;)8 b Fs(#)p
Fl(;)g Fs($)p Fl(;)g(v)1208 981 y Fj(4)1225 974 y Fs(\))p
Fl(;)83 b Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g Fs(3)o(\))p
Fl(;)38 b(R)331 1030 y Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g
Fs(3\))o Fl(;)39 b Fs(\()p Fl(v)614 1037 y Fj(1)633 1030
y Fl(;)8 b Fs(#)p Fl(;)g(v)737 1014 y Fy(0)735 1042 y
Fj(3)753 1030 y Fl(;)g(v)796 1037 y Fj(4)815 1030 y Fs(\))41
b Fm(!)74 b Fs(\()p Fl(v)1033 1037 y Fj(1)1053 1030 y
Fl(;)8 b Fs(#)p Fl(;)g(v)1157 1014 y Fy(0)1155 1042 y
Fj(3)1173 1030 y Fl(;)g(v)1216 1037 y Fj(4)1235 1030
y Fs(\))p Fl(;)73 b Fs(\()p Fl(q)r(;)8 b(p;)g(\033)o(;)g
Fs(3)o(\))p Fl(;)38 b(R)331 1087 y Fs(\()p Fl(q)r(;)8
b(p;)g(\033)o(;)g Fs(3\))o Fl(;)40 b Fs(\()p Fl(v)615
1094 y Fj(1)635 1087 y Fl(;)8 b Fs(#)p Fl(;)g Fs(#)p
Fl(;)g(v)796 1094 y Fj(4)813 1087 y Fs(\))43 b Fm(!)f
Fs(\()p Fl(v)1001 1094 y Fj(1)1021 1087 y Fl(;)8 b Fs(#)p
Fl(;)g Fs(\()p Fl(p;)g(\033)q Fs(\))p Fl(;)f(v)1250 1094
y Fj(4)1267 1087 y Fs(\))p Fl(;)85 b Fs(\()p Fl(q)r(;)8
b Fs(4\))p Fl(;)83 b(R)-4 1183 y Fs(When)14 b(the)h(mac)o(hine)g(reac)o
(hes)g(state)f(\()p Fl(q)r(;)8 b Fs(4\))k(it)j(is)g(standing)g(on)f
(the)h(\014rst)f(blank)h(after)f(the)h(end)g(of)f(the)h(history)l(.)k
(So,)-75 1240 y(for)f(eac)o(h)h(state)f Fl(q)j Fm(2)e
Fl(Q)p Fs(,)g(w)o(e)g(include)i(transitions)e(to)f(mo)o(v)o(e)h(from)f
(the)h(end)g(of)g(the)g(history)f(bac)o(k)h(left)g(to)g(the)g(head)-75
1296 y(p)q(osition)e(of)e Fl(M)5 b Fs(.)22 b(W)l(e)16
b(en)o(ter)g(our)f(w)o(alk)h(left)g(state)f(\()p Fl(q)r(;)8
b Fs(5\))14 b(while)k(writing)e(a)g(#)f(on)h(the)g(history)g(tap)q(e.)
22 b(So,)15 b(to)g(main)o(tain)-75 1353 y(rev)o(ersibilit)o(y)l(,)h(w)o
(e)e(m)o(ust)f(en)o(ter)h(a)g(second)g(left-w)o(alking)h(state)f(\()p
Fl(q)r(;)8 b Fs(6\))k(to)h(lo)q(ok)i(for)e(the)h(tap)q(e)g(head)h(mark)
o(er)e(past)g(the)i(left)-75 1409 y(end)h(of)f(the)g(history)l(.)20
b(When)c(w)o(e)e(reac)o(h)i(the)f(tap)q(e)g(head)h(p)q(osition,)g(w)o
(e)e(step)i(left)f(and)h(righ)o(t)f(en)o(tering)g(state)g
Fl(q)r Fs(.)447 1501 y(\()p Fl(q)r(;)8 b Fs(4\))p Fl(;)44
b Fs(\()p Fl(v)646 1508 y Fj(1)665 1501 y Fl(;)8 b Fs(#)p
Fl(;)g Fs(#)p Fl(;)g(v)826 1508 y Fj(4)843 1501 y Fs(\))45
b Fm(!)h Fs(\()p Fl(v)1037 1508 y Fj(1)1057 1501 y Fl(;)8
b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)1218 1508 y Fj(4)1235
1501 y Fs(\))p Fl(;)44 b Fs(\()p Fl(q)r(;)8 b Fs(5\))p
Fl(;)44 b(L)447 1558 y Fs(\()p Fl(q)r(;)8 b Fs(5\))p
Fl(;)42 b Fs(\()p Fl(v)644 1565 y Fj(1)663 1558 y Fl(;)8
b Fs(#)p Fl(;)g(v)767 1541 y Fy(0)765 1569 y Fj(3)783
1558 y Fl(;)g(v)826 1565 y Fj(4)845 1558 y Fs(\))43 b
Fm(!)h Fs(\()p Fl(v)1035 1565 y Fj(1)1055 1558 y Fl(;)8
b Fs(#)p Fl(;)g(v)1159 1541 y Fy(0)1157 1569 y Fj(3)1175
1558 y Fl(;)g(v)1218 1565 y Fj(4)1237 1558 y Fs(\))p
Fl(;)42 b Fs(\()p Fl(q)r(;)8 b Fs(5\))p Fl(;)44 b(L)447
1614 y Fs(\()p Fl(q)r(;)8 b Fs(5\))p Fl(;)51 b Fs(\()p
Fl(v)653 1621 y Fj(1)673 1614 y Fl(;)8 b Fs(#)p Fl(;)g
Fs($)p Fl(;)g(v)819 1621 y Fj(4)836 1614 y Fs(\))52 b
Fm(!)i Fs(\()p Fl(v)1045 1621 y Fj(1)1064 1614 y Fl(;)8
b Fs(#)p Fl(;)g Fs($)p Fl(;)g(v)1210 1621 y Fj(4)1227
1614 y Fs(\))p Fl(;)52 b Fs(\()p Fl(q)r(;)8 b Fs(6\))p
Fl(;)44 b(L)447 1671 y Fs(\()p Fl(q)r(;)8 b Fs(5\))p
Fl(;)49 b Fs(\()p Fl(v)651 1678 y Fj(1)671 1671 y Fl(;)8
b Fs(1)p Fl(;)g(v)760 1654 y Fy(0)758 1682 y Fj(3)776
1671 y Fl(;)g(v)819 1678 y Fj(4)838 1671 y Fs(\))50 b
Fm(!)i Fs(\()p Fl(v)1043 1678 y Fj(1)1062 1671 y Fl(;)8
b Fs(1)p Fl(;)g(v)1151 1654 y Fy(0)1149 1682 y Fj(3)1167
1671 y Fl(;)g(v)1210 1678 y Fj(4)1229 1671 y Fs(\))p
Fl(;)50 b Fs(\()p Fl(q)r(;)8 b Fs(7\))p Fl(;)44 b(L)447
1727 y Fs(\()p Fl(q)r(;)8 b Fs(5\))p Fl(;)59 b Fs(\()p
Fl(v)661 1734 y Fj(1)680 1727 y Fl(;)8 b Fs(1)p Fl(;)g
Fs($)p Fl(;)g(v)811 1734 y Fj(4)828 1727 y Fs(\))60 b
Fm(!)h Fs(\()p Fl(v)1052 1734 y Fj(1)1072 1727 y Fl(;)8
b Fs(1)p Fl(;)g Fs($)p Fl(;)g(v)1203 1734 y Fj(4)1220
1727 y Fs(\))p Fl(;)59 b Fs(\()p Fl(q)r(;)8 b Fs(7\))p
Fl(;)44 b(L)447 1784 y Fs(\()p Fl(q)r(;)8 b Fs(6\))p
Fl(;)44 b Fs(\()p Fl(v)646 1791 y Fj(1)665 1784 y Fl(;)8
b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)826 1791 y Fj(4)843 1784
y Fs(\))45 b Fm(!)h Fs(\()p Fl(v)1037 1791 y Fj(1)1057
1784 y Fl(;)8 b Fs(#)p Fl(;)g Fs(#)p Fl(;)g(v)1218 1791
y Fj(4)1235 1784 y Fs(\))p Fl(;)44 b Fs(\()p Fl(q)r(;)8
b Fs(6\))p Fl(;)44 b(L)447 1840 y Fs(\()p Fl(q)r(;)8
b Fs(6\))p Fl(;)51 b Fs(\()p Fl(v)653 1847 y Fj(1)673
1840 y Fl(;)8 b Fs(1)p Fl(;)g Fs(#)p Fl(;)g(v)819 1847
y Fj(4)836 1840 y Fs(\))52 b Fm(!)i Fs(\()p Fl(v)1045
1847 y Fj(1)1064 1840 y Fl(;)8 b Fs(1)p Fl(;)g Fs(#)p
Fl(;)g(v)1210 1847 y Fj(4)1227 1840 y Fs(\))p Fl(;)52
b Fs(\()p Fl(q)r(;)8 b Fs(7\))p Fl(;)44 b(L)447 1896
y Fs(\()p Fl(q)r(;)8 b Fs(7\))p Fl(;)40 b Fs(\()p Fl(v)642
1903 y Fj(1)661 1896 y Fl(;)8 b(v)704 1903 y Fj(2)723
1896 y Fl(;)g(v)766 1903 y Fj(3)785 1896 y Fl(;)g(v)828
1903 y Fj(4)847 1896 y Fs(\))41 b Fm(!)h Fs(\()p Fl(v)1033
1903 y Fj(1)1053 1896 y Fl(;)8 b(v)1096 1903 y Fj(2)1115
1896 y Fl(;)g(v)1158 1903 y Fj(3)1177 1896 y Fl(;)g(v)1220
1903 y Fj(4)1239 1896 y Fs(\))p Fl(;)79 b(q)r(;)i(R)-4
2006 y Fs(Finally)l(,)16 b(w)o(e)f(put)g Fl(M)353 2013
y Fj(1)388 2006 y Fs(in)h(normal)f(form)g(b)o(y)g(including)j(the)d
(transition)742 2102 y Fl(q)762 2109 y Fk(f)785 2102
y Fl(;)41 b(\033)i Fm(!)f Fl(\033)o(;)g(q)1095 2109 y
Fk(a)1116 2102 y Fl(;)f(R)-75 2198 y Fs(for)15 b(eac)o(h)g
Fl(\033)i Fs(in)f(the)f(sim)o(ulation)h(alphab)q(et.)-4
2272 y(It)e(can)h(b)q(e)h(v)o(eri\014ed)f(that)f(eac)o(h)h(state)f(can)
h(b)q(e)h(en)o(tered)f(in)g(only)g(one)g(direction)h(using)g(the)f(ab)q
(o)o(v)o(e)f(transitions,)h(and)-75 2329 y(relying)h(on)f(the)h(fact)e
(that)h Fl(M)20 b Fs(is)15 b(in)h(normal)f(form,)f(and)i(w)o(e)f(don't)
f(sim)o(ulate)i(it's)f(transitions)g(from)f Fl(q)1724
2336 y Fk(f)1763 2329 y Fs(bac)o(k)g(to)h Fl(q)1944 2336
y Fj(0)1964 2329 y Fs(,)g(it)-75 2385 y(can)d(also)g(b)q(e)h(v)o
(eri\014ed)h(that)d(the)h(partial)h(transition)f(function)h(describ)q
(ed)h(is)f(one-to-one.)19 b(Therefore,)12 b(Corollary)g(B.0.15)-75
2442 y(sa)o(ys)k(that)h(w)o(e)f(can)h(extend)h(these)f(transitions)g
(to)g(giv)o(e)g(a)g(rev)o(ersible)h(TM)e Fl(M)1304 2449
y Fj(1)1324 2442 y Fs(.)25 b(Notice)18 b(also)f(that)f(the)h(op)q
(eration)g(of)-75 2498 y Fl(M)-31 2505 y Fj(1)4 2498
y Fs(is)f(indep)q(enden)o(t)h(of)e(the)g(con)o(ten)o(ts)g(of)g(the)g
(fourth)g(trac)o(k,)f(and)h(that)f(it)i(lea)o(v)o(es)f(these)h(con)o
(ten)o(ts)e(unaltered.)-4 2572 y(F)l(or)h(the)h(second)g(and)g(third)g
(mac)o(hines,)h(w)o(e)e(simply)i(use)f(the)g(cop)o(ying)g(mac)o(hine)h
(constructed)f(in)h(Lemma)e(B.0.19)-75 2629 y(ab)q(o)o(v)o(e,)d(and)h
(the)f(rev)o(erse)h(of)f Fl(M)468 2636 y Fj(1)500 2629
y Fs(constructed)h(using)g(Lemma)f(4.2.9)f(on)i(page)f(20.)18
b(Since)c Fl(M)1525 2636 y Fj(1)1557 2629 y Fs(op)q(erated)f(indep)q
(enden)o(tly)951 2779 y(59)p eop
%%Page: 60 60
60 59 bop -75 -26 a Fs(of)15 b(the)h(fourth)f(trac)o(k,)f(so)h(will)i
(its)f(rev)o(ersal.)21 b(Therefore,)15 b(do)o(v)o(etailing)h(these)g
(three)f(TMs)g(giv)o(es)h(a)f(rev)o(ersible)i(TM)e Fl(M)1998
-42 y Fy(0)2009 -26 y Fs(,)-75 31 y(whic)o(h)20 b(on)g(input)g
Fl(x)f Fs(pro)q(duces)i(output)e Fl(x)p Fs(;)8 b Fl(\017)p
Fs(;)g Fl(\017)p Fs(;)g Fl(M)d Fs(\()p Fl(x)p Fs(\))17
b(with)j(its)g(tap)q(e)f(head)h(bac)o(k)f(in)i(the)e(start)f(cell,)k
(and)e(on)f(input)-75 87 y Fl(x)p Fs(;)8 b Fl(\017)p
Fs(;)g Fl(\017)p Fs(;)g Fl(M)d Fs(\()p Fl(x)p Fs(\))13
b(pro)q(duces)j(output)f Fl(x)p Fs(.)-4 161 y(Notice)d(that)g(the)h
(time)f(required)i(b)o(y)e Fl(M)687 168 y Fj(1)719 161
y Fs(to)g(sim)o(ulate)h(a)f(step)h(of)f Fl(M)17 b Fs(is)c(b)q(ounded)h
(b)o(y)e(a)g(p)q(olynomial)i(in)f(the)g(running)-75 218
y(time)j(of)f Fl(M)5 b Fs(,)16 b(and)g(dep)q(ends)h(only)f(on)g(the)g
(curren)o(t)f(head)h(p)q(osition)h(of)e Fl(M)5 b Fs(,)16
b(the)f(direction)i Fl(M)k Fs(mo)o(v)o(es)15 b(in)i(the)e(step,)h(and)
-75 274 y(ho)o(w)g(man)o(y)h(steps)f(ha)o(v)o(e)h(already)g(b)q(een)h
(carried)f(out.)25 b(Therefore,)17 b(the)f(running)i(time)g(of)e(the)h
(\014rst)f(phase)i(of)e Fl(M)1933 258 y Fy(0)1961 274
y Fs(de-)-75 331 y(p)q(ends)f(only)f(on)f(the)g(series)i(of)e(head)g
(mo)o(v)o(emen)o(ts)g(of)g Fl(M)5 b Fs(.)19 b(In)14 b(fact,)f(since)i
Fl(M)j Fs(is)c(oblivious,)h(this)f(running)h(time)e(dep)q(ends)-75
387 y(only)i(the)f(length)h(of)f Fl(x)p Fs(.)19 b(The)c(same)e(is)i
(true)f(of)g(the)g(third)h(phase)f(of)g Fl(M)1159 371
y Fy(0)1171 387 y Fs(,)g(since)h(the)f(rev)o(ersal)h(of)e
Fl(M)1646 394 y Fj(1)1680 387 y Fs(tak)o(es)h(exactly)g(t)o(w)o(o)-75
444 y(extra)i(time)h(steps.)23 b(Finally)l(,)18 b(the)f(running)g(time)
g(of)f(the)h(cop)o(ying)g(mac)o(hine)g(dep)q(ends)h(only)f(on)f(the)h
(length)g(of)f Fl(M)5 b Fs(\()p Fl(x)p Fs(\).)-75 500
y(Therefore,)14 b(the)h(running)h(time)f(of)f Fl(M)593
484 y Fy(0)619 500 y Fs(on)h(input)g Fl(x)g Fs(dep)q(ends)h(only)f(on)g
(the)g(lengths)g(of)f Fl(x)h Fs(and)g Fl(M)5 b Fs(\()p
Fl(x)p Fs(\))14 b(and)g(is)i(b)q(ounded)-75 557 y(b)o(y)f(a)g
(quadratic)g(p)q(olynomial)i(in)f(the)g(running)g(time)f(of)g
Fl(M)20 b Fs(on)c Fl(x)p Fs(.)901 b Fd(2)-75 737 y Fn(Theorem)17
b(B.0.21)22 b Fr(L)n(et)14 b Fl(M)435 744 y Fj(1)469
737 y Fr(b)n(e)g(an)g(oblivious)g(deterministic)g(TM)f(which)i(on)f
(any)g(input)h Fl(x)f Fr(pr)n(o)n(duc)n(es)g(output)i
Fl(M)1927 744 y Fj(1)1947 737 y Fs(\()p Fl(x)p Fs(\))p
Fr(,)-75 793 y(with)i(no)g(emb)n(e)n(dde)n(d)f(blanks,)g(with)h(its)f
(tap)n(e)h(he)n(ad)g(b)n(ack)f(in)g(the)h(start)g(c)n(el)r(l,)f(with)h
Fl(M)1400 800 y Fj(1)1420 793 y Fs(\()p Fl(x)p Fs(\))f
Fr(b)n(e)n(ginning)e(in)i(the)h(start)g(c)n(el)r(l,)-75
850 y(and)g(such)f(that)h(the)g(length)f(of)h Fl(M)524
857 y Fj(1)544 850 y Fs(\()p Fl(x)p Fs(\))f Fr(dep)n(ends)f(only)h(on)h
(the)g(length)e(of)i Fl(x)p Fr(.)25 b(L)n(et)17 b Fl(M)1415
857 y Fj(2)1452 850 y Fr(b)n(e)g(an)g(oblivious)h(deterministic)-75
906 y(TM)d(with)g(the)h(same)f(alphab)n(et)g(as)g Fl(M)576
913 y Fj(1)611 906 y Fr(which)h(on)f(any)g(input)h Fl(M)1050
913 y Fj(1)1070 906 y Fs(\()p Fl(x)p Fs(\))e Fr(pr)n(o)n(duc)n(es)h
(output)i Fl(x)p Fr(,)e(with)h(its)f(tap)n(e)g(he)n(ad)h(b)n(ack)f(in)
-75 963 y(the)j(start)f(c)n(el)r(l,)g(and)g(with)h Fl(x)g
Fr(b)n(e)n(ginning)c(in)j(the)h(start)g(c)n(el)r(l.)23
b(Then)17 b(ther)n(e)g(is)g(a)g(r)n(eversible)g(TM)f
Fl(M)1652 946 y Fy(0)1681 963 y Fr(which)i(on)f(input)h
Fl(x)-75 1019 y Fr(pr)n(o)n(duc)n(es)e(output)i Fl(M)294
1026 y Fj(1)314 1019 y Fs(\()p Fl(x)p Fs(\))p Fr(.)i(Mor)n(e)n(over,)c
Fl(M)673 1003 y Fy(0)702 1019 y Fr(on)g(input)g Fl(x)h
Fr(halts)f(with)h(its)f(tap)n(e)g(he)n(ad)h(b)n(ack)f(in)g(the)h(start)
f(c)n(el)r(l,)g(and)g(takes)-75 1076 y(time)h(which)h(dep)n(ends)f
(only)f(on)h(the)h(length)e(of)i Fl(x)f Fr(and)g(which)h(is)f(b)n
(ounde)n(d)g(by)g(a)g(p)n(olynomial)g(in)g(the)g(running)f(time)i(of)
-75 1132 y Fl(M)-31 1139 y Fj(1)5 1132 y Fr(on)e(input)h
Fl(x)f Fr(and)g(the)h(running)e(time)h(of)h Fl(M)767
1139 y Fj(2)803 1132 y Fr(on)f Fl(M)912 1139 y Fj(1)932
1132 y Fs(\()p Fl(x)p Fs(\))p Fr(.)-75 1256 y Fn(Pro)q(of.)k
Fs(Let)15 b Fl(M)212 1263 y Fj(1)247 1256 y Fs(and)g
Fl(M)379 1263 y Fj(2)414 1256 y Fs(b)q(e)h(as)f(stated)g(in)h(the)f
(theorem)g(with)g(the)h(common)f(alphab)q(et)h(\006.)-4
1330 y(Then)k(the)h(idea)g(to)e(construct)h(the)h(desired)g
Fl(M)861 1314 y Fy(0)893 1330 y Fs(is)g(\014rst)f(to)f(run)i
Fl(M)1236 1337 y Fj(1)1276 1330 y Fs(to)e(compute)i Fl(x)p
Fs(;)8 b Fl(M)d Fs(\()p Fl(x)p Fs(\),)19 b(then)i(to)f(run)g(an)-75
1387 y(exc)o(hange)c(routine)g(to)f(pro)q(duce)h Fl(M)5
b Fs(\()p Fl(x)p Fs(\);)j Fl(x)14 b Fs(and)i(\014nally)h(to)d(run)i
Fl(M)1088 1394 y Fj(2)1124 1387 y Fs(to)e(erase)i(the)f(string)h
Fl(x)p Fs(,)f(where)h(eac)o(h)f(of)g(the)h(three)-75
1443 y(phases)f(starts)e(and)h(ends)h(with)g(the)f(tap)q(e)h(head)f(in)
h(the)g(start)e(cell.)21 b(Using)15 b(the)g(construction)f(in)h
(Theorem)g(B.0.20,)d(w)o(e)-75 1500 y(build)k(normal)e(form,)f(rev)o
(ersible)i(TMs)f(to)f(accomplish)i(the)f(\014rst)g(and)g(third)h
(phases)f(in)h(times)f(whic)o(h)h(dep)q(end)g(only)g(on)-75
1556 y(the)g(lengths)h(of)f Fl(x)g Fs(and)g Fl(M)385
1563 y Fj(1)405 1556 y Fs(\()p Fl(x)p Fs(\))g(and)g(b)q(ounded)i(b)o(y)
e(a)g(p)q(olynomial)i(in)f(the)f(running)h(times)g(of)e
Fl(M)1609 1563 y Fj(1)1644 1556 y Fs(on)h(input)i Fl(x)e
Fs(and)g Fl(M)2002 1563 y Fj(2)-75 1613 y Fs(on)f(input)h
Fl(M)151 1620 y Fj(1)171 1613 y Fs(\()p Fl(x)p Fs(\).)k(In)c(Lemma)f
(B.0.18)f(on)h(page)g(57)g(w)o(e)g(ha)o(v)o(e)g(already)g(constructed)h
(a)e(rev)o(ersible)j(TM)e(that)f(p)q(erforms)-75 1669
y(the)j(exc)o(hange)h(in)g(time)f(dep)q(ending)i(only)f(on)f(the)g
(lengths)h(of)f(the)g(t)o(w)o(o)f(strings.)22 b(Do)o(v)o(etailing)17
b(these)f(three)g(mac)o(hines)-75 1725 y(giv)o(es)f(the)h(desired)g
Fl(M)5 b Fs(.)1657 b Fd(2)-4 1856 y Fs(Since)17 b(an)o(y)e(function)h
(computable)g(in)g(deterministic)i(p)q(olynomial)f(time)f(can)f(b)q(e)h
(computed)g(in)h(p)q(olynomial)g(time)-75 1913 y(b)o(y)g(an)g
(oblivious)h(generalized)h(deterministic)f(TM,)e(Theorems)h(B.0.20)e
(and)i(B.0.21)f(together)g(with)h(Theorem)g(4.1.2)-75
1969 y(giv)o(e)e(us)h(the)f(follo)o(wing.)-4 2043 y Fc(Theorem)k(4.1.3)
g(\(Synchr)o(oniza)m(tion)e(Theorem\))g Fr(If)g Fl(f)23
b Fr(is)18 b(a)g(function)g(mapping)g(strings)e(to)j(strings)d(which)
-75 2100 y(c)n(an)j(b)n(e)f(c)n(ompute)n(d)i(in)f(deterministic)g(p)n
(olynomial)f(time)i(and)f(such)g(that)h(the)g(length)e(of)i
Fl(f)5 b Fs(\()p Fl(x)p Fs(\))18 b Fr(dep)n(ends)h(only)g(on)g(the)-75
2156 y(length)c(of)i Fl(x)p Fr(,)f(then)g(ther)n(e)g(is)f(a)i(p)n
(olynomial)e(time,)i(stationary,)f(normal)g(form)h(QTM)e(which)i(given)
e(input)h Fl(x)p Fr(,)g(pr)n(o)n(duc)n(es)-75 2213 y(output)i
Fl(x)p Fs(;)8 b Fl(f)d Fs(\()p Fl(x)p Fs(\))p Fr(,)15
b(and)h(whose)g(running)g(time)g(dep)n(ends)g(only)f(on)h(the)h(length)
e(of)i Fl(x)p Fr(.)-4 2287 y(If)c Fl(f)19 b Fr(is)13
b(a)h(function)f(fr)n(om)h(strings)e(to)i(strings)f(that)h(such)g(that)
h(b)n(oth)e Fl(f)19 b Fr(and)14 b Fl(f)1318 2270 y Fy(\000)p
Fj(1)1379 2287 y Fr(c)n(an)f(b)n(e)g(c)n(ompute)n(d)h(in)g
(deterministic)-75 2343 y(p)n(olynomial)e(time,)i(and)f(such)g(that)g
(the)g(length)f(of)h Fl(f)5 b Fs(\()p Fl(x)p Fs(\))12
b Fr(dep)n(ends)g(only)h(on)f(the)h(length)f(of)h Fl(x)p
Fr(,)h(then)e(ther)n(e)h(is)f(a)h(p)n(olynomial)-75 2400
y(time,)18 b(stationary,)f(normal)h(form)f(QTM)g(which)h(given)e(input)
i Fl(x)p Fr(,)f(pr)n(o)n(duc)n(es)g(output)i Fl(f)5 b
Fs(\()p Fl(x)p Fs(\))p Fr(,)17 b(and)g(whose)h(running)e(time)-75
2456 y(dep)n(ends)g(only)f(on)h(the)h(length)e(of)i Fl(x)p
Fr(.)951 2779 y Fs(60)p eop
%%Page: 61 61
61 60 bop -75 -26 a Ft(C)68 b(A)23 b(rev)n(ersible)e(lo)r(oping)i(TM)
-75 93 y Fs(W)l(e)15 b(pro)o(v)o(e)g(here)g(the)h(Lo)q(oping)g(Lemma)f
(from)g Fm(x)p Fs(4.2.)-4 168 y Fn(Lemma)23 b(4.2.10)f(\(Lo)q(oping)k
(Lemma\))20 b Fr(Ther)n(e)g(is)g(a)h(stationary,)h(normal)f(form,)i(r)n
(eversible)c(TM)h Fl(M)26 b Fr(and)21 b(a)-75 224 y(c)n(onstant)d
Fl(c)h Fr(with)g(the)h(fol)r(lowing)e(pr)n(op)n(erties.)30
b(On)18 b(input)h(any)g(p)n(ositive)g(inte)n(ger)f Fl(k)i
Fr(written)g(in)e(binary,)i Fl(M)k Fr(runs)19 b(for)-75
281 y(time)d Fl(O)q Fs(\()p Fl(k)8 b Fs(log)173 262 y
Fk(c)198 281 y Fl(k)q Fs(\))16 b Fr(and)g(halts)f(with)i(its)e(tap)n(e)
h(unchange)n(d.)21 b(Mor)n(e)n(over,)15 b Fl(M)21 b Fr(has)16
b(a)g(sp)n(e)n(cial)f(state)h Fl(q)1624 264 y Fy(\003)1659
281 y Fr(such)g(that)h(on)f(input)-75 337 y Fl(k)q Fr(,)g
Fl(M)22 b Fr(visits)15 b(state)h Fl(q)294 320 y Fy(\003)330
337 y Fr(exactly)g Fl(k)i Fr(times,)d(e)n(ach)i(time)f(with)h(its)f
(tap)n(e)g(he)n(ad)h(b)n(ack)f(in)f(the)i(start)f(c)n(el)r(l.)-75
411 y Fn(Pro)q(of.)j Fs(As)12 b(men)o(tioned)h(ab)q(o)o(v)o(e)f(in)h
Fm(x)p Fs(4.2,)f(the)g(di\016cult)o(y)i(is)e(to)g(construct)g(a)g(lo)q
(op)h(with)g(a)e(rev)o(ersible)j(en)o(trance)e(and)h(exit.)-75
468 y(W)l(e)k(accomplish)h(this)f(as)f(follo)o(ws.)24
b(Using)17 b(the)g(Sync)o(hronization)h(Theorem,)e(w)o(e)h(can)f(build)
j(three-trac)o(k)d(stationary)l(,)-75 524 y(normal)f(form)f(rev)o
(ersible)h(TM)g Fl(M)521 531 y Fj(1)553 524 y Fs(=)e(\(\006)p
Fl(;)8 b(Q;)g(\016)r Fs(\))k(running)k(in)f(time)g(p)q(olynomial)i(in)e
(log)8 b Fl(k)16 b Fs(that)e(on)g(input)i Fl(b)p Fs(;)8
b Fl(x)p Fs(;)g Fl(k)14 b Fs(where)-75 581 y Fl(b)j Fm(2)i(f)p
Fs(0)p Fl(;)8 b Fs(1)p Fm(g)16 b Fs(outputs)i Fl(b)330
564 y Fy(0)341 581 y Fs(;)8 b Fl(x)k Fs(+)g(1;)c Fl(k)19
b Fs(where)f Fl(b)688 564 y Fy(0)718 581 y Fs(is)g(the)h(opp)q(osite)g
(of)f Fl(b)g Fs(if)g Fl(x)g Fs(=)h(0)f(or)f Fl(k)d Fm(\000)e
Fs(1)18 b(\(but)h(not)e(b)q(oth\))i(and)f Fl(b)1920 564
y Fy(0)1949 581 y Fs(=)g Fl(b)-75 637 y Fs(otherwise.)32
b(Calling)21 b(the)e(initial)i(and)f(\014nal)g(states)e(of)h(this)g
(mac)o(hine)h Fl(q)1216 644 y Fj(0)1236 637 y Fl(;)8
b(q)1277 644 y Fk(f)1300 637 y Fs(,)19 b(w)o(e)g(construct)g(a)g(rev)o
(ersible)i Fl(M)1900 644 y Fj(2)1939 637 y Fs(that)-75
693 y(lo)q(ops)15 b(on)f(mac)o(hine)i Fl(M)326 700 y
Fj(1)360 693 y Fs(as)e(follo)o(ws.)20 b(W)l(e)15 b(will)h(giv)o(e)f
Fl(M)882 700 y Fj(2)916 693 y Fs(new)g(initial)h(and)f(\014nal)g
(states)f Fl(q)1476 700 y Fk(a)1497 693 y Fl(;)8 b(q)1538
700 y Fk(z)1557 693 y Fs(,)15 b(and)f(ensure)h(that)f(it)h(has)-75
750 y(the)g(follo)o(wing)h(three)f(prop)q(erties.)-19
870 y(1.)22 b(Started)16 b(in)h(state)f Fl(q)389 877
y Fk(a)427 870 y Fs(with)h(a)f(0)g(on)h(the)g(\014rst)f(trac)o(k,)g
Fl(M)1025 877 y Fj(2)1061 870 y Fs(steps)h(left)g(and)f(bac)o(k)h(righ)
o(t,)f(c)o(hanging)h(the)g(0)f(to)g(a)h(1,)39 926 y(and)e(en)o(tering)h
(state)e Fl(q)434 933 y Fj(0)454 926 y Fs(.)-19 1019
y(2.)22 b(When)15 b(in)h(state)f Fl(q)356 1026 y Fk(f)394
1019 y Fs(with)g(a)g(0)g(on)g(the)g(\014rst)g(trac)o(k,)f
Fl(M)981 1026 y Fj(2)1016 1019 y Fs(steps)h(left)h(and)f(bac)o(k)g
(righ)o(t)g(in)o(to)g(state)g Fl(q)1738 1026 y Fj(0)1758
1019 y Fs(.)-19 1112 y(3.)22 b(When)14 b(in)h(state)e
Fl(q)352 1119 y Fk(f)389 1112 y Fs(with)h(a)f(1)h(on)g(the)g(\014rst)f
(trac)o(k,)g Fl(M)967 1119 y Fj(2)1001 1112 y Fs(steps)h(left)g(and)g
(bac)o(k)g(righ)o(t,)f(c)o(hanging)i(the)f(1)f(to)h(a)f(0,)h(and)39
1168 y(halts.)-4 1288 y(So,)f(on)h(input)h(0;)8 b(0;)g
Fl(k)13 b(M)421 1295 y Fj(2)454 1288 y Fs(will)j(step)e(left)g(and)g
(righ)o(t)g(in)o(to)g(state)f Fl(q)1129 1295 y Fj(0)1149
1288 y Fs(,)g(c)o(hanging)i(the)f(tap)q(e)g(con)o(ten)o(ts)f(to)g(1;)8
b(0;)g Fl(k)q Fs(.)17 b(Then)-75 1344 y(mac)o(hine)g
Fl(M)148 1351 y Fj(1)184 1344 y Fs(will)h(run)e(for)g(the)g(\014rst)g
(time)h(c)o(hanging)f(1;)8 b(0;)g Fl(k)15 b Fs(to)h(0;)8
b(1;)g Fl(k)15 b Fs(and)i(halting)g(in)g(state)e Fl(q)1638
1351 y Fk(f)1661 1344 y Fs(.)23 b(Whenev)o(er)16 b Fl(M)1955
1351 y Fj(2)1991 1344 y Fs(is)-75 1401 y(in)f(state)f
Fl(q)108 1408 y Fk(f)146 1401 y Fs(with)g(a)h(0)f(on)g(the)h(\014rst)f
(trac)o(k,)g(it)g(reen)o(ters)h Fl(q)920 1408 y Fj(0)954
1401 y Fs(to)f(run)h Fl(M)1136 1408 y Fj(2)1170 1401
y Fs(again.)20 b(So,)14 b(mac)o(hine)i Fl(M)1606 1408
y Fj(2)1640 1401 y Fs(will)g(run)f Fl(k)10 b Fm(\000)f
Fs(1)14 b(more)-75 1457 y(times)h(un)o(til)h(it)f(\014nally)i(pro)q
(duces)f(1;)8 b Fl(k)q Fs(;)g Fl(k)q Fs(.)18 b(A)o(t)c(that)g(p)q(oin)o
(t,)h Fl(M)1011 1464 y Fj(2)1046 1457 y Fs(c)o(hanges)g(the)g(tap)q(e)g
(con)o(ten)o(ts)f(to)h(0;)8 b Fl(k)q Fs(;)g Fl(k)14 b
Fs(and)h(halts.)20 b(So)-75 1514 y(on)13 b(input)h(0;)8
b(0;)g Fl(k)q Fs(,)j Fl(M)286 1521 y Fj(2)319 1514 y
Fs(visits)j(state)f Fl(q)565 1521 y Fk(f)601 1514 y Fs(exactly)g
Fl(k)h Fs(times,)g(eac)o(h)f(time)h(with)f(its)h(tap)q(e)f(head)g(bac)o
(k)g(in)h(the)g(start)e(cell.)20 b(This)-75 1570 y(means)c(w)o(e)g(can)
h(construct)e(the)i(desired)g Fl(M)22 b Fs(b)o(y)16 b(iden)o(tifying)i
Fl(q)1030 1577 y Fk(f)1069 1570 y Fs(as)e Fl(q)1148 1554
y Fy(\003)1167 1570 y Fs(,)h(and)f(do)o(v)o(etailing)h
Fl(M)1562 1577 y Fj(2)1598 1570 y Fs(b)q(efore)g(and)f(after)g(with)-75
1627 y(rev)o(ersible)g(TMs,)f(constructed)g(using)h(the)f(Sync)o
(hronization)i(Theorem,)d(to)h(transform)f Fl(k)i Fs(to)e(0;)8
b(0;)g Fl(k)14 b Fs(and)i(0;)8 b Fl(k)q Fs(;)g Fl(k)14
b Fs(bac)o(k)-75 1683 y(to)h Fl(k)q Fs(.)-4 1757 y(W)l(e)f(complete)g
(the)h(pro)q(of)e(b)o(y)h(constructing)g(a)g(normal)g(form,)f(rev)o
(ersible)j Fl(M)1334 1764 y Fj(2)1367 1757 y Fs(that)e(satis\014es)g
(the)g(three)g(prop)q(erties)-75 1814 y(ab)q(o)o(v)o(e.)25
b(W)l(e)17 b(giv)o(e)h Fl(M)297 1821 y Fj(2)333 1814
y Fs(the)g(same)e(alphab)q(et)i(as)f Fl(M)821 1821 y
Fj(1)858 1814 y Fs(and)g(additional)i(states)d Fl(q)1316
1821 y Fk(a)1337 1814 y Fl(;)8 b(q)1378 1821 y Fk(b)1394
1814 y Fl(;)g(q)1435 1821 y Fk(y)1456 1814 y Fl(;)g(q)1497
1821 y Fk(z)1516 1814 y Fs(.)26 b(The)17 b(transition)g(function)-75
1870 y(for)c Fl(M)37 1877 y Fj(2)70 1870 y Fs(is)g(the)g(same)g(as)g
(that)g(of)f Fl(M)545 1877 y Fj(1)578 1870 y Fs(for)h(states)f(in)i
Fl(Q)6 b Fm(\000)g Fl(q)927 1877 y Fk(f)964 1870 y Fs(and)13
b(otherwise)g(dep)q(ends)i(only)f(on)f(the)g(\014rst)g(trac)o(k)f
(\(lea)o(ving)-75 1927 y(the)j(others)g(unc)o(hanged\))h(and)f(is)h
(giv)o(en)f(b)o(y)h(the)f(follo)o(wing)h(table)p 683
2041 2 57 v 781 2024 a(#)193 b(0)g(1)p 600 2043 748 2
v 621 2082 a Fl(q)641 2089 y Fk(a)p 683 2099 2 57 v 940
2082 a Fs(\(1)p Fl(;)8 b(q)1022 2089 y Fk(b)1038 2082
y Fl(;)g(L)p Fs(\))623 2139 y Fl(q)643 2146 y Fk(b)p
683 2155 V 706 2139 a Fs(\(#)p Fl(;)g(q)803 2146 y Fj(0)821
2139 y Fl(;)g(R)p Fs(\))620 2195 y Fl(q)640 2202 y Fk(f)p
683 2212 V 940 2195 a Fs(\(0)p Fl(;)g(q)1022 2202 y Fk(b)1038
2195 y Fl(;)g(L)p Fs(\))46 b(\(0)p Fl(;)8 b(q)1236 2202
y Fk(y)1256 2195 y Fl(;)g(L)p Fs(\))621 2251 y Fl(q)641
2258 y Fk(y)p 683 2268 V 705 2251 a Fs(\(#)p Fl(;)g(q)802
2258 y Fk(z)821 2251 y Fl(;)g(R)p Fs(\))622 2308 y Fl(q)642
2315 y Fk(z)p 683 2325 V 705 2308 a Fs(\(#)p Fl(;)g(q)802
2315 y Fk(a)822 2308 y Fl(;)g(R)p Fs(\))40 b(\(0)p Fl(;)8
b(q)1018 2315 y Fk(a)1038 2308 y Fl(;)g(R)p Fs(\))40
b(\(1)p Fl(;)8 b(q)1234 2315 y Fk(a)1254 2308 y Fl(;)g(R)p
Fs(\))-75 2403 y(It)15 b(is)f(easy)h(to)f(see)g(that)g
Fl(M)387 2410 y Fj(2)421 2403 y Fs(is)h(is)g(normal)g(form)e(and)i
(satis\014es)g(the)f(three)h(prop)q(erties)g(stated)f(ab)q(o)o(v)o(e.)
19 b(Moreo)o(v)o(er,)13 b(since)-75 2459 y Fl(M)-31 2466
y Fj(1)7 2459 y Fs(is)19 b(rev)o(ersible)h(and)f(ob)q(eys)g(the)f(t)o
(w)o(o)f(conditions)j(of)e(Theorem)h(B.0.13,)e(it)i(can)g(b)q(e)g(v)o
(eri\014ed)g(that)f(the)h(transition)-75 2516 y(function)14
b(of)g Fl(M)196 2523 y Fj(2)229 2516 y Fs(also)g(ob)q(eys)f(the)h(t)o
(w)o(o)e(conditions)j(of)e(Theorem)h(B.0.13.)k(Therefore,)13
b(according)h(to)f(Theorem)h(B.0.15,)-75 2572 y(the)h(transition)h
(function)g(of)f Fl(M)485 2579 y Fj(2)519 2572 y Fs(can)h(b)q(e)g
(completed)g(giving)g(a)f(rev)o(ersible)h(TM.)643 b Fd(2)951
2779 y Fs(61)p eop
%%Page: 62 62
62 61 bop -75 -26 a Ft(Ac)n(kno)n(wledgemen)n(ts)-75
93 y Fs(This)18 b(pap)q(er)g(has)g(greatly)f(b)q(ene\014tted)i(from)e
(the)h(careful)g(reading)g(and)g(man)o(y)f(useful)i(commen)o(ts)e(of)g
(Ric)o(hard)i(Jozsa)-75 150 y(and)e(Bob)g(Solo)o(v)m(a)o(y)l(.)26
b(W)l(e)17 b(wish)g(to)f(thank)h(them)g(as)g(w)o(ell)h(as)e(Gilles)j
(Brassard,)d(Charles)h(Bennett,)h(Noam)e(Nisan)i(and)-75
206 y(Dan)d(Simon.)-75 367 y Ft(References)-52 486 y
Fs([1])21 b Fc(Adleman,)d(L.,)e(DeMarrais,)h(J.,)f(and)h(Huang,)g(M.)p
Fs(,)d Fr(Quantum)j(c)n(omputability)p Fs(,)e(man)o(uscript,)g(1994.)
-52 578 y([2])21 b Fc(Ar)o(ora)c(S.,)f(Imp)m(a)o(gliazzo,)g(R.,)g(V)-5
b(azirani,)15 b(U.)p Fs(,)e Fr(On)i(the)h(R)n(ole)f(of)h(the)f(Co)n
(ok-L)n(evin)f(The)n(or)n(em)h(in)g(Complexity)18 635
y(The)n(ory)p Fs(,)g(man)o(uscript,)g(1993.)-52 727 y([3])21
b Fc(Ar)o(ora)15 b(S.,)e(Lund)i(C.,)e(Motw)l(ani)g(R.,)h(Sud)o(an)g(M.)
f(and)i(Szeged)o(y)f(M.)p Fs(,)e Fr(Pr)n(o)n(of)h(veri\014c)n(ation)g
(and)g(intr)n(actabil-)18 784 y(ity)18 b(of)f(appr)n(oximation)h(pr)n
(oblems)p Fs(,)d(Pro)q(ceedings)i(of)f(the)g(33rd)f(Ann)o(ual)i(IEEE)f
(Symp)q(osium)h(on)f(F)l(oundations)g(of)18 840 y(Computer)f(Science,)i
(1992.)-52 933 y([4])k Fc(Babai,)e(L.,)f(and)h(Moran,)g(S.)p
Fs(,)d Fr(A)o(rthur{Merlin)i(games)p Fs(:)23 b Fr(a)18
b(r)n(andomize)n(d)f(pr)n(o)n(of)h(system,)g(and)g(a)g(hier)n(ar)n(chy)
g(of)18 989 y(c)n(omplexity)f(classes)p Fs(,)c(Journal)j(of)f(Computer)
f(and)i(System)f(Sciences,)h(36\(1988\),)d(pp.)i(254{276.)-52
1082 y([5])21 b Fc(Barenco,)34 b(A.,)i(Bennett,)e(C.,)i(Cleve,)e(R.,)j
(DiVincenzo,)32 b(D.,)k(Mar)o(golus,)e(N.,)i(Shor,)d(P.,)18
1138 y(Slea)m(tor,)25 b(T.,)h(Smolin,)e(J.,)i(and)f(Weinfur)m(ter,)h
(H.)p Fs(,)e Fr(Elementary)e(gates)h(for)h(quantum)g(c)n(omputation)p
Fs(,)18 1195 y(man)o(uscript,)16 b(1995.)-52 1287 y([6])21
b Fc(Benioff,)28 b(P.)p Fs(,)f Fr(Quantum)f(Hamiltonian)f(mo)n(dels)g
(of)h(T)m(uring)f(machines)g Fs(Journal)h(of)f(Statistical)h(Ph)o
(ysics,)18 1344 y(29\(1982\),)13 b(pp.)i(515{546.)-52
1436 y([7])21 b Fc(Bennett,)c(C.)8 b(H.)p Fs(,)14 b Fr(L)n(o)n(gic)n
(al)h(r)n(eversibility)g(of)h(c)n(omputation)p Fs(,)g(IBM)f(J.)h(Res.)f
(Dev)o(elop.,)g(17\(1973\),)d(pp.)k(525{532.)-52 1529
y([8])21 b Fc(Bennett,)27 b(C.)8 b(H.)p Fs(,)25 b Fr(Time)p
Fs(/)p Fr(sp)n(ac)n(e)e(tr)n(ade)n(o\013s)i(for)g(r)n(eversible)e(c)n
(omputation)p Fs(,)k(SIAM)e(J.)f(Comput.,)i(18\(1989\),)18
1585 y(pp.)16 b(766{776.)-52 1678 y([9])21 b Fc(Bennett,)c(C.)8
b(H.,)16 b(Bernstein,)h(E.,)f(Brassard,)h(G.,)f(and)h(V)-5
b(azirani,)16 b(U.)p Fs(,)e Fr(Str)n(engths)h(and)i(we)n(aknesses)d(of)
18 1734 y(quantum)j(c)n(omputing)p Fs(,)e(SIAM)h(J.)f(Comput.,)f(to)h
(app)q(ear.)-75 1827 y([10])21 b Fc(Bernstein,)c(E.)p
Fs(,)d Fr(Quantum)j(c)n(omplexity)g(the)n(ory)p Fs(,)e(PhD)g
(dissertation,)g(U.C.)f(Berk)o(eley)l(,)i(to)f(app)q(ear.)-75
1920 y([11])21 b Fc(Bernstein,)i(E.)f(and)h(V)-5 b(azirani,)22
b(U.)p Fs(,)f Fr(Quantum)g(c)n(omplexity)h(the)n(ory)p
Fs(,)g(Pro)q(ceedings)f(of)f(the)h(25th)f(Ann)o(ual)18
1976 y(A)o(CM)15 b(Symp)q(osium)h(on)f(Theory)g(of)g(Computing,)g
(1993,)f(pp.)h(11{20.)-75 2069 y([12])21 b Fc(Ber)m(thia)o(ume,)c(A.,)f
(and)h(Brassard,)f(G.)p Fs(,)e Fr(The)i(quantum)g(chal)r(lenge)f(to)i
(structur)n(al)f(c)n(omplexity)g(the)n(ory)p Fs(,)e(Pro-)18
2125 y(ceedings)j(of)e(7th)g(IEEE)g(Conference)h(on)f(Structure)g(in)h
(Complexit)o(y)g(Theory)l(,)f(1992,)e(pt.)i(132{137.)-75
2218 y([13])21 b Fc(Ber)m(thia)o(ume,)27 b(A.,)g(and)g(Brassard,)f(G.)p
Fs(,)f Fr(Or)n(acle)e(quantum)i(c)n(omputing)p Fs(,)h(Journal)f(of)e
(Mo)q(dern)h(Optics,)18 2274 y(41\(1994\),)13 b(pp.)i(2521{2535.)-75
2367 y([14])21 b Fc(Ber)m(thia)o(ume,)f(A.,)f(Deutsch,)g(D.,)g(and)h
(Jozsa,)e(R.)p Fs(,)g Fr(The)g(stabilisation)f(of)i(quantum)g(c)n
(omputation)p Fs(,)f(Pro-)18 2423 y(ceedings)f(of)e(the)g(W)l(orkshop)g
(on)g(Ph)o(ysics)h(and)f(Computation,)f(1994,)g(p.)h(60.)-75
2516 y([15])21 b Fc(Bshouty,)16 b(N.)g(and)h(Ja)o(ckson,)f(J.)p
Fs(,)d Fr(L)n(e)n(arning)h(DNF)i(over)g(uniform)h(distribution)f(using)
f(a)h(quantum)h(example)18 2572 y(or)n(acle)p Fs(,)11
b(Pro)q(ceedings)g(of)f(8th)g(Ann)o(ual)h(A)o(CM)e(Conference)i(on)f
(Computational)g(Learning)h(Theory)l(,)g(1995,)f(pp.)g(118{)18
2629 y(127.)951 2779 y(62)p eop
%%Page: 63 63
63 62 bop -75 -26 a Fs([16])21 b Fc(Calderbank,)i(A.R.)e(and)g(Shor,)h
(P.)p Fs(,)c Fr(Go)n(o)n(d)i(quantum)h(err)n(or)f(c)n(orr)n(e)n(cting)e
(c)n(o)n(des)h(exist)p Fs(,)g(Ph)o(ys.)g(Rev.)g(A,)g(to)18
31 y(app)q(ear.)-75 124 y([17])i Fc(Chira)o(c)c(and)g(Zoller)p
Fs(,)g Fr(Quantum)g(c)n(omputation)g(using)f(tr)n(app)n(e)n(d)g(c)n
(old)g(ions)p Fs(,)e(man)o(uscript,)h(1995.)-75 217 y([18])21
b Fc(Chuang,)j(I.,)i(LaFlamme,)f(R.,)h(Shor,)e(P.,)h(and)g(Zurek,)g(W.)
p Fs(,)f Fr(Quantum)f(c)n(omputers,)i(factoring)e(and)18
274 y(de)n(c)n(oher)n(enc)n(e)p Fs(,)14 b(man)o(uscript,)h(1995.)-75
367 y([19])21 b Fc(Cohen-T)l(annoudji,)c(C.,)f(Diu,)g(B.,)g(LaLoe,)h
(F.)p Fs(,)d Fr(Quantum)j(me)n(chanics)p Fs(,)d(1977,)g(pp.)h(108{181.)
-75 460 y([20])21 b Fc(Deutsch,)f(D.)p Fs(,)e Fr(Quantum)i(the)n(ory,)g
(the)g(Chur)n(ch-T)m(uring)e(principle)h(and)g(the)h(universal)f
(quantum)h(c)n(omputer)p Fs(,)18 516 y(Pro)q(c.)15 b(R.)g(So)q(c.)h
(Lond.,)f(A400\(1985\),)d(pp.)j(97{117.)-75 610 y([21])21
b Fc(Deutsch,)16 b(D.)p Fs(,)e Fr(Quantum)j(c)n(omputational)g
(networks)p Fs(,)e(Pro)q(c.)f(R.)i(So)q(c.)f(Lond.,)g(A425\(1989\),)d
(pp.)k(73{90.)-75 703 y([22])21 b Fc(Deutsch,)f(D.)g(and)g(Jozsa,)f(R.)
p Fs(,)g Fr(R)n(apid)h(solution)f(of)g(pr)n(oblems)g(by)g(quantum)h(c)n
(omputation)p Fs(,)g(Pro)q(c.)d(R.)i(So)q(c.)18 759 y(Lond.,)c
(A439\(1992\),)e(pp.)i(553{558.)-75 852 y([23])21 b Fc(DiVincenzo,)h
(D.)p Fs(,)f Fr(Two-bit)h(gates)f(ar)n(e)g(universal)g(for)h(quantum)g
(c)n(omputation)p Fs(,)h(Ph)o(ys.)d(Rev.)h(A,)g(51\(1995\),)18
909 y(pp.)16 b(1015-1022.)-75 1002 y([24])21 b Fc(D)57
998 y(\177)56 1002 y(urr,)f(C.,)e(Santha,)g(M.,)h(Thanh)p
Fs(,)d Fr(A)i(de)n(cision)f(pr)n(o)n(c)n(e)n(dur)n(e)g(for)i(wel)r
(l-forme)n(d)f(line)n(ar)f(quantum)i(c)n(el)r(lular)e(au-)18
1059 y(tomata)p Fs(,)f(RA)o(C)g(w)o(orkshop,)e(Berk)o(eley)l(,)i(1995.)
-75 1152 y([25])21 b Fc(Feynman,)26 b(R.)p Fs(,)g Fr(Simulating)d
(physics)h(with)h(c)n(omputers)p Fs(,)h(In)o(ternational)e(Journal)h
(of)e(Theoretical)i(Ph)o(ysics,)18 1208 y(21\(1982\),)13
b(pp.)i(467{488.)-75 1301 y([26])21 b Fc(Feynman,)13
b(R.)p Fs(,)e Fr(Quantum)i(me)n(chanic)n(al)f(c)n(omputers)p
Fs(,)f(F)l(oundations)g(of)g(Ph)o(ysics,)h(16\(1986\),)d(pp.)i
(507{531.)e(\(Orig-)18 1358 y(inally)17 b(app)q(eared)f(in)g(Optics)g
(News,)f(F)l(ebruary)g(1985.\))-75 1451 y([27])21 b Fc(Fredkin,)d(E.,)e
(and)h(Toff)o(oli,)g(T.)p Fs(,)d Fr(Conservative)i(L)n(o)n(gic)p
Fs(,)d(In)o(ternat.)i(J.)g(Theoret.)f(Ph)o(ys.,)h(21\(1982\),)d(p.)j
(219.)-75 1544 y([28])21 b Fc(Gr)o(o)o(ver,)14 b(L.)p
Fs(,)e Fr(Se)n(ar)n(ching)g(for)i(a)g(ne)n(e)n(d)r(le)e(in)h(a)g
(haystack)h({)g(a)f(fast)h(quantum)g(me)n(chanic)n(al)e(algorithm)p
Fs(,)h(man)o(uscript,)18 1601 y(1995.)-75 1694 y([29])21
b Fc(Land)o(a)o(uer,)d(R.)p Fs(,)c Fr(Is)i(quantum)h(me)n(chanics)e
(useful)p Fs(?,)g(Pro)q(c.)g(R.)g(So)q(c.)g(Lond.,)h(to)e(app)q(ear.)
-75 1787 y([30])21 b Fc(Lipton,)c(R.)p Fs(,)e(P)o(ersonal)g(comm)o
(unication,)g(1994.)-75 1880 y([31])21 b Fc(Llo)o(yd,)d(S.)p
Fs(,)c Fr(A)i(p)n(otential)r(ly)g(r)n(e)n(alizable)e(quantum)j(c)n
(omputer)p Fs(,)f(Science,)h(261\(1993\),)12 b(pp.)j(1569{1571.)-75
1974 y([32])21 b Fc(Ma)o(cht)m(a,)h(J.)p Fs(,)e Fr(Phase)g(information)
h(in)f(quantum)h(or)n(acle)f(c)n(omputing)p Fs(,)g(Ph)o(ysics)h
(Departmen)o(t,)e(Univ)o(ersit)o(y)h(of)18 2030 y(Massac)o(h)o(usetts)
14 b(at)h(Amherst,)f(man)o(uscript,)h(1996.)-75 2123
y([33])21 b Fc(Morit)m(a,)e(K.,)f(Shirasaki,)g(A.,)g(and)i(Gono,)e(Y.)p
Fs(,)e Fr(A)i(1-tap)n(e)g(2-symb)n(ol)g(r)n(eversible)e(T)m(uring)h
(Machine)p Fs(,)g(IEEE)18 2180 y(T)l(ransactions)e(of)g(the)h(IEICE,)f
(E72\(1989\),)d(pp.)k(223{228.)-75 2273 y([34])21 b Fc(v)o(on)i
(Neumann)g(J.)p Fs(,)f Fr(V)m(arious)f(T)m(e)n(chniques)f(Use)n(d)g(in)
h(Conne)n(ction)f(with)i(R)n(andom)g(Digits)p Fs(,)g(Notes)e(b)o(y)h
(G.)f(E.)18 2329 y(F)l(orsythe,)14 b(National)h(Bureau)g(of)f
(Standards,)g(Applied)j(Math)d(Series,)h(12\(1951\),)d(pp.)i(36{38.)f
(Reprin)o(ted)j(in)f(v)o(on)18 2386 y(Neumann's)h(Collected)g(W)l
(orks,)e(5\(1963\),)f(P)o(ergamon)h(Press,)h(pp.)g(768{770.)-75
2479 y([35])21 b Fc(P)l(alma,)14 b(G.,)f(Suominen,)g(K.,)h(and)g(Eker)m
(t,)g(A.)p Fs(,)e Fr(Quantum)i(c)n(omputers)g(and)f(dissip)n(ation)p
Fs(,)f(man)o(uscript,)g(1995.)-75 2572 y([36])21 b Fc(A.)c(Shamir.)p
Fs(,)c Fr(IP=PSP)m(A)o(CE)p Fs(,)f(Pro)q(ceedings)k(of)e(the)h(22nd)g
(A)o(CM)f(Symp)q(osium)i(on)f(the)g(Theory)g(of)f(Computing,)18
2629 y(1990,)g(pp.)h(11{15.)951 2779 y(63)p eop
%%Page: 64 64
64 63 bop -75 -26 a Fs([37])21 b Fc(Shor,)c(P.)p Fs(,)e
Fr(A)o(lgorithms)h(for)h(quantum)g(c)n(omputation:)22
b(Discr)n(ete)17 b(lo)n(g)f(and)g(factoring)p Fs(,)f(Pro)q(ceedings)i
(of)e(the)h(35th)18 31 y(Ann)o(ual)h(IEEE)e(Symp)q(osium)h(on)f(F)l
(oundations)h(of)e(Computer)h(Science,)i(1994.)-75 125
y([38])k Fc(Shor,)15 b(P.)p Fs(,)e Fr(F)m(ault-toler)n(ant)h(quantum)h
(c)n(omputation)p Fs(,)f(Pro)q(ceedings)h(of)e(the)g(37th)g(Ann)o(ual)h
(IEEE)g(Symp)q(osium)g(on)18 181 y(the)i(F)l(oundations)f(of)g
(Computer)g(Science,)h(1996.)-75 275 y([39])21 b Fc(Simon,)14
b(D.)p Fs(,)e Fr(On)h(the)h(p)n(ower)h(of)f(quantum)g(c)n(omputation)p
Fs(,)g(Pro)q(ceedings)g(of)e(the)h(35th)f(Ann)o(ual)h(IEEE)g(Symp)q
(osium)18 331 y(on)j(F)l(oundations)f(of)g(Computer)g(Science,)h(1994.)
-75 425 y([40])21 b Fc(Solo)o(v)l(a)m(y,)c(R.,)f(and)h(Y)l(a)o(o,)g(A.)
p Fs(,)d(man)o(uscript,)h(1996.)-75 519 y([41])21 b Fc(Toff)o(oli,)f
(T.)p Fs(,)e Fr(Bic)n(ontinuous)g(extensions)f(of)i(invertible)e(c)n
(ombinatorial)i(functions)p Fs(,)e(Mathematical)h(Systems)18
575 y(Theory)l(,)d(14\(1981\),)e(pp.)i(13{23.)-75 669
y([42])21 b Fc(Unr)o(uh,)c(W.)p Fs(,)e Fr(Maintaining)g(c)n(oher)n(enc)
n(e)g(in)g(quantum)i(c)n(omputers)p Fs(,)f(Ph)o(ys.)e(Rev.)i(A,)f
(51\(1995\),)d(p.)j(992.)-75 763 y([43])21 b Fc(V)-5
b(aliant,)16 b(L.)p Fs(,)f(P)o(ersonal)g(comm)o(unication,)g(1992.)-75
857 y([44])21 b Fc(V)-5 b(azirani,)14 b(U.)g(and)h(V)-5
b(azirani,)14 b(V.)p Fs(,)f Fr(R)n(andom)h(p)n(olynomial)g(time)g(is)g
(e)n(qual)g(to)h(semi-r)n(andom)f(p)n(olynomial)g(time)p
Fs(,)18 913 y(Pro)q(ceedings)j(of)d(the)i(26th)e(Ann)o(ual)i(IEEE)g
(Symp)q(osium)g(on)f(F)l(oundations)h(of)e(Computer)h(Science,)i(1985.)
-75 1007 y([45])k Fc(W)-5 b(a)m(tr)o(ous,)15 b(J.)p Fs(,)d
Fr(On)i(one)g(dimensional)f(quantum)i(c)n(el)r(lular)f(automata)p
Fs(,)h(Pro)q(ceedings)f(of)e(the)h(36th)g(Ann)o(ual)h(IEEE)18
1064 y(Symp)q(osium)j(on)e(F)l(oundations)g(of)g(Computer)g(Science,)h
(1995.)-75 1157 y([46])21 b Fc(Y)l(a)o(o,)16 b(A.)p Fs(,)d
Fr(Quantum)j(cir)n(cuit)f(c)n(omplexity)p Fs(,)f(Pro)q(ceedings)h(of)f
(the)g(34th)f(Ann)o(ual)i(IEEE)g(Symp)q(osium)g(on)f(F)l(ounda-)18
1214 y(tions)i(of)f(Computer)f(Science,)j(1993,)d(pp.)h(352{361.)-75
1308 y([47])21 b Fc(Zuckerman,)d(D.)p Fs(,)c Fr(We)n(ak)i(R)n(andom)h
(Sour)n(c)n(es)p Fs(,)c(PhD)i(dissertation,)h(U.C.)e(Berk)o(eley)l(,)i
(1990.)951 2779 y(64)p eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF