Skip to main content
Log in

Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Poly(vinyl chloride) (PVC) in PVC-coated poly(ethylene terephthalate) (PET) fabrics can be separated through dissolution in a suitable solvent, leaving only the PET fibers. We investigated the solubility of PVC in 30 solvents using swelling tests. The results were compared with those obtained using the Hansen, Gutmann, Swain, E T(30), and Kamlet–Taft parameters. For this purpose, Gaussian plots of the PVC swellability versus solubility parameter were used to decide the applicability of the solubility parameter system. Only Gutmann’s electron acceptor–donor parameter (AN + DN) and the Kamlet–Taft parameters β and π* could describe the PVC-solvent system satisfactorily. Tetrahydrofuran (THF), methyl ethyl ketone (MEK), N,N-dimethylformamide (DMF), cyclohexanone, and cyclopentanone were tested for separating PVC from PET at different temperatures. THF dissolved PVC at 20 °C, while cyclohexanone and cyclopentanone did so at 40 °C. Traces of PVC remained on the PET fibers when DMF was used. Complete dissolution of PVC was not achieved at any temperature with MEK. The present work shows that solubility parameters are a helpful tool for the search for suitable solvents. It shows also that solubility parameters have to be selected carefully, since their usefulness depends strongly on the polymer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Toyoda H (2012) Recyclable coated fabric using Kenaf fiber for architectural membrane structure applications. Fabr Archit 24(6):7–16

    Google Scholar 

  2. Yoshioka T, Grause G, Eger C, Kaminsky W, Okuwaki A (2004) Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polym Degrad Stab 86:499–504. doi:10.1016/j.polymdegradstab.2004.06.001

    Article  Google Scholar 

  3. McNeill IC, Memetea L, Cole WJ (1995) A study of the products of PVC thermal degradation. Polym Degrad Stab 49:181–191. doi:10.1016/0141-3910(95)00064-S

    Article  Google Scholar 

  4. Czégény Z, Jakab E, Blazsó M, Bhaskar T, Sakata Y (2012) Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: formation of chlorinated and brominated organic compounds. J Anal Appl Pyrolysis 96:69–77. doi:10.1016/j.jaap.2012.03.006

    Article  Google Scholar 

  5. Kulesza K, German K (2003) Chlorinated pyrolysis products of co-pyrolysis of poly(vinyl chloride) and poly(ethylene terephthalate). J Anal Appl Pyrolysis 67:123–134. doi:10.1016/S0165-2370(02)00057-8

    Article  Google Scholar 

  6. Bhaskar T, Kaneko J, Muto A, Sakata Y, Jakab E, Matsui T, Uddin MA (2004) Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. J Anal Appl Pyrolysis 72:27–33. doi:10.1016/j.jaap.2004.01.005

    Article  Google Scholar 

  7. López A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260. doi:10.1016/j.fuproc.2010.05.008

    Article  Google Scholar 

  8. Saffert R (1994) Recycling of PVC-coated fabrics. J Coat Fabric 23:274–279

    Google Scholar 

  9. Sadat-Shojai M, Bakhshandeh G-R (2011) Recycling of PVC wastes. Polym Degrad Stab 96:404–415. doi:10.1016/j.polymdegradstab.2010.12.001

    Article  Google Scholar 

  10. Burat F, Güney A, Olgaç Kangal M (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manage 29:1807–1813. doi:10.1016/j.wasman.2008.12.018

    Article  Google Scholar 

  11. Reddy M, Okuda T, Kurose K, Tsai T-Y, Nakai S, Nishijima W, Okada M (2010) Surface ozonation of polyvinyl chloride for its separation from waste plastic mixture by froth floatation. J Mater Cycles Waste Manage 12:326–331. doi:10.1007/s10163-010-0305-x

    Article  Google Scholar 

  12. Iuga A, Calin L, Neamtu V, Mihalcioiu A, Dascalescu L (2005) Tribocharging of plastics granulates in a fluidized bed device. J Electrost 63:937–942. doi:10.1016/j.elstat.2005.03.064

    Article  Google Scholar 

  13. Buda G, Bilici M, Dascalescu L, Samuila A (2013) Influence of material moisture on the tribocharging process of plastic granules. Part Sci Technol 31:162–167

    Article  Google Scholar 

  14. Ahmad SR (2004) A new technology for automatic identification and sorting of plastics for recycling. Environ Technol 25:1143–1149. doi:10.1080/09593332508618380

    Article  Google Scholar 

  15. Siddiqui MN, Gondal MA, Redhwi HH (2008) Identification of different type of polymers in plastics waste. J Environ Sci Heal A 43:1303–1310. doi:10.1080/10934520802177946

    Article  Google Scholar 

  16. Braun D (2002) Recycling of PVC. Prog Polym Sci 27:2171–2195. doi:10.1016/S0079-6700(02)00036-9

    Article  Google Scholar 

  17. Grause G, Buekens A, Sakata Y, Okuwaki A, Yoshioka T (2011) Feedstock recycling of waste polymeric material. J Mater Cycles Waste Manage 13:265–282. doi:10.1007/s10163-011-0031-z

    Article  Google Scholar 

  18. Adanur S, Hou Z, Broughton RM (1998) Recovery and reuse of waste PVC coated fabrics. Part 1: experimental procedures and separation of fabric components. J Coat Fabr 28:37–55

    Google Scholar 

  19. Adanur S, Hou Z, Broughton RM (1998) Recovery and reuse of waste PVC coated fabrics. Part 2: analysis of the components separated from PVC coated PET fabrics. J Coat Fabr 28:145–168

    Google Scholar 

  20. Knauf U, Mäurer A, Holley W, Wiese M, Utschick H (2000) Recycling of PVC/PET composites. Kunstst Plast Eur 90:24–26

    Google Scholar 

  21. Katritzky AR, Fara DC, Yang H, Tämm K, Tamm T, Karelson M (2004) Quantitative measures of solvent polarity. Chem Rev 104:175–198. doi:10.1021/cr020750m

    Article  Google Scholar 

  22. Launay H, Hansen CM, Almdal K (2007) Hansen solubility parameters for a carbon fiber/epoxy composite. Carbon 45:2859–2865. doi:10.1016/j.carbon.2007.10.011

    Article  Google Scholar 

  23. Gutmann V (1976) Empirical parameters for donor and acceptor properties of solvents. Electrochim Acta 21:661–670. doi:10.1016/0013-4686(76)85034-7

    Article  Google Scholar 

  24. Swain CG, Swain MS, Powell AL, Alunni S (1983) Solvent effects on chemical reactivity. Evaluation of anion- and cation-solvation components. J Am Chem Soc 105:502–513. doi:10.1021/ja00341a033

    Article  Google Scholar 

  25. Taft R, Abboud J-L, Kamlet M, Abraham M (1985) Linear solvation energy relations. J Solut Chem 14:153–186. doi:10.1007/BF00647061

    Article  Google Scholar 

  26. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. doi:10.1021/cr00032a005

    Article  Google Scholar 

  27. Alsalhy QF, Rashid KT, Noori WA, Simone S, Figoli A, Drioli E (2012) Poly(vinyl chloride) hollow-fiber membranes for ultrafiltration applications: effects of the internal coagulant composition. J Appl Polym Sci 124:2087–2099. doi:10.1002/app.35220

    Article  Google Scholar 

  28. Jia L, Wang Y, Wang B, He M, Zhang Q, Shi B (2008) Relationship between hansen solubility parameters and Lewis acid-base parameters of polymers. J Macromol Sci Part B Phys 47:378–383

    Article  Google Scholar 

  29. Petersen H, Jakubowicz I, Enebro J, Yarahmadi N (2015) Organic modification of montmorillonite for application in plasticized PVC nanocomposites. Appl Clay Sci 107:78–84. doi:10.1016/j.clay.2015.01.006

    Article  Google Scholar 

  30. Weerachanchai P, Lim KH, Lee J-M (2014) Influence of organic solvent on the separation of an ionic liquid from a lignin–ionic liquid mixture. Bioresour Technol 156:404–407. doi:10.1016/j.biortech.2014.01.077

    Article  Google Scholar 

  31. Malavolta L, Oliveira E, Cilli EM, Nakaie CR (2002) Solvation of polymers as model for solvent effect investigation: proposition of a novel polarity scale. Tetrahedron 58:4383–4394. doi:10.1016/S0040-4020(02)00417-9

    Article  Google Scholar 

  32. Kameda T, Ono M, Grause G, Mizoguchi T, Yoshioka T (2009) Chemical modification of poly(vinyl chloride) by nucleophilic substitution. Polym Degrad Stab 94:107–112. doi:10.1016/j.polymdegradstab.2008.10.006

    Article  Google Scholar 

  33. Jańczuk B, Białopiotrowicz T, Zdziennicka A (1999) Some remarks on the components of the liquid surface free energy. J Colloid Interface Sci 211:96–103. doi:10.1006/jcis.1998.5990

    Article  Google Scholar 

  34. Michalski M-C, Hardy J, Saramago BJV (1998) On the surface free energy of PVC/EVA polymer blends: comparison of different calculation methods. J Colloid Interface Sci 208:319–328. doi:10.1006/jcis.1998.5814

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Division of Multidisciplinary Research on the Circulation of Waste Resources, which is endowed by the Sendai Environmental Development Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guido Grause or Toshiaki Yoshioka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grause, G., Hirahashi, S., Toyoda, H. et al. Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers. J Mater Cycles Waste Manag 19, 612–622 (2017). https://doi.org/10.1007/s10163-015-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0457-9

Keywords