Skip to main content
Log in

Risk stratification of triple-negative breast cancer with core gene signatures associated with chemoresponse and prognosis

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Neoadjuvant chemotherapy studies have consistently reported a strong correlation between pathologic response and long-term outcome in triple-negative breast cancer (TNBC). We aimed to define minimal gene signatures for predicting chemoresponse by a three-step approach and to further develop a risk-stratification method of TNBC.

Methods

The first step involved the detection of genes associated with resistance to docetaxel in eight TNBC cell lines, leading to identification of thousands of candidate genes. Through subsequent second and third step analyses with gene set enrichment analysis and survival analysis using public expression profiles, the candidate gene list was reduced to prognostic core gene signatures comprising ten or four genes.

Results

The prognostic core gene signatures include three up-regulated (CEBPD, MMP20, and WLS) and seven down-regulated genes (ASF1A, ASPSCR1, CHAF1B, DNMT1, GINS2, GOLGA2P5, and SKA1). We further develop a simple risk-stratification method based on expression profiles of the core genes. Relative expression values of the up-regulated and down-regulated core genes were averaged into two scores, Up and Down scores, respectively; then samples were stratified by a diagonal line in a xy plot of the Up and Down scores. Based on this method, the patients were successfully divided into subgroups with distinct chemoresponse and prognosis. The prognostic power of the method was validated in three independent public datasets containing 230, 141, and 117 TNBC patients with chemotherapy. In multivariable Cox regression analysis, the core gene signatures were significantly associated with prognosis independent of tumor stage and age at diagnosis. In meta-analysis, we found that five core genes (CEBPD, WLS, CHAF1B, GINS2, and SKA1) play opposing roles, either tumor promoter or suppressor, in TNBC and non-TNBC tumors respectively, depending on estrogen receptor status.

Conclusions

The results may provide a promising prognostic tool for predicting chemotherapy responders among TNBC patients prior to initiation of chemotherapeutic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9):1721–1728. https://doi.org/10.1002/cncr.22618

    Article  PubMed  Google Scholar 

  2. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434. https://doi.org/10.1158/1078-0432.CCR-06-3045

    Article  PubMed  Google Scholar 

  3. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36):5652–5657. https://doi.org/10.1200/JCO.2006.06.5664

    Article  PubMed  Google Scholar 

  4. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel M (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223. https://doi.org/10.1093/annonc/mdt303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685. https://doi.org/10.1158/1078-0432.CCR-04-2421

    Article  CAS  PubMed  Google Scholar 

  6. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334. https://doi.org/10.1158/1078-0432.CCR-06-1109

    Article  CAS  PubMed  Google Scholar 

  7. Bhargava R, Beriwal S, Dabbs DJ, Ozbek U, Soran A, Johnson RR, Brufsky AM, Lembersky BC, Ahrendt GM (2010) Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 116(6):1431–1439. https://doi.org/10.1002/cncr.24876

    Article  CAS  PubMed  Google Scholar 

  8. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281. https://doi.org/10.1200/JCO.2007.14.4147

    Article  PubMed  Google Scholar 

  9. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN, Symmans WF, Ueno NT (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19(19):5533–5540. https://doi.org/10.1158/1078-0432.CCR-13-0799

    Article  CAS  PubMed  Google Scholar 

  11. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11(6):e0157368. https://doi.org/10.1371/journal.pone.0157368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, Gaetje R, Solbach C, Ahr A, Metzler D, Schmidt M, Muller V, Holtrich U, Kaufmann M (2011) A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res 13(5):R97. https://doi.org/10.1186/bcr3035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prat A, Lluch A, Albanell J, Barry WT, Fan C, Chacon JI, Parker JS, Calvo L, Plazaola A, Arcusa A, Segui-Palmer MA, Burgues O, Ribelles N, Rodriguez-Lescure A, Guerrero A, Ruiz-Borrego M, Munarriz B, Lopez JA, Adamo B, Cheang MC, Li Y, Hu Z, Gulley ML, Vidal MJ, Pitcher BN, Liu MC, Citron ML, Ellis MJ, Mardis E, Vickery T, Hudis CA, Winer EP, Carey LA, Caballero R, Carrasco E, Martin M, Perou CM, Alba E (2014) Predicting response and survival in chemotherapy-treated triple-negative breast cancer. Br J Cancer 111(8):1532–1541. https://doi.org/10.1038/bjc.2014.444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yam C, Mani SA, Moulder SL (2017) Targeting the molecular subtypes of triple negative breast cancer: understanding the diversity to progress the field. Oncologist 22(9):1086–1093. https://doi.org/10.1634/theoncologist.2017-0095

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ring BZ, Hout DR, Morris SW, Lawrence K, Schweitzer BL, Bailey DB, Lehmann BD, Pietenpol JA, Seitz RS (2016) Generation of an algorithm based on minimal gene sets to clinically subtype triple negative breast cancer patients. BMC Cancer 16:143. https://doi.org/10.1186/s12885-016-2198-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noguchi S (2006) Predictive factors for response to docetaxel in human breast cancers. Cancer Sci 97(9):813–820. https://doi.org/10.1111/j.1349-7006.2006.00265.x

    Article  CAS  PubMed  Google Scholar 

  17. Cortes J, Baselga J (2007) Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist 12(3):271–280. https://doi.org/10.1634/theoncologist.12-3-271

    Article  CAS  PubMed  Google Scholar 

  18. Bedard PL, Di Leo A, Piccart-Gebhart MJ (2010) Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nat Rev Clin Oncol 7(1):22–36. https://doi.org/10.1038/nrclinonc.2009.186

    Article  CAS  PubMed  Google Scholar 

  19. Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, Broadwater G, Goldstein LJ, Martino S, Ingle JN, Henderson IC, Norton L, Winer EP, Hudis CA, Ellis MJ, Berry DA, Cancer, Leukemia Group BI (2007) HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med 357(15):1496–1506. https://doi.org/10.1056/NEJMoa071167

    Article  CAS  PubMed  Google Scholar 

  20. Ellis P, Barrett-Lee P, Johnson L, Cameron D, Wardley A, O’Reilly S, Verrill M, Smith I, Yarnold J, Coleman R, Earl H, Canney P, Twelves C, Poole C, Bloomfield D, Hopwood P, Johnston S, Dowsett M, Bartlett JM, Ellis I, Peckitt C, Hall E, Bliss JM, Group TTM, Trialists T (2009) Sequential docetaxel as adjuvant chemotherapy for early breast cancer (TACT): an open-label, phase III, randomised controlled trial. Lancet 373(9676):1681–1692. https://doi.org/10.1016/S0140-6736(09)60740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  22. Karn T, Metzler D, Ruckhaberle E, Hanker L, Gatje R, Solbach C, Ahr A, Schmidt M, Holtrich U, Kaufmann M, Rody A (2010) Data-driven derivation of cutoffs from a pool of 3030 Affymetrix arrays to stratify distinct clinical types of breast cancer. Breast Cancer Res Treat 120(3):567–579. https://doi.org/10.1007/s10549-009-0416-z

    Article  PubMed  Google Scholar 

  23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  25. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Group M, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham I, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. https://doi.org/10.1038/nature10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balamurugan K, Sterneck E (2013) The many faces of C/EBPdelta and their relevance for inflammation and cancer. Int J Biol Sci 9(9):917–933. https://doi.org/10.7150/ijbs.7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zucchi I, Mento E, Kuznetsov VA, Scotti M, Valsecchi V, Simionati B, Vicinanza E, Valle G, Pilotti S, Reinbold R, Vezzoni P, Albertini A, Dulbecco R (2004) Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA 101(52):18147–18152. https://doi.org/10.1073/pnas.0408260101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palmieri C, Monteverde M, Lattanzio L, Gojis O, Rudraraju B, Fortunato M, Syed N, Thompson A, Garrone O, Merlano M, Lo Nigro C, Crook T (2012) Site-specific CpG methylation in the CCAAT/enhancer binding protein delta (CEBPdelta) CpG island in breast cancer is associated with metastatic relapse. Br J Cancer 107(4):732–738. https://doi.org/10.1038/bjc.2012.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. King TD, Suto MJ, Li Y (2012) The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 113(1):13–18. https://doi.org/10.1002/jcb.23350

    Article  CAS  PubMed  Google Scholar 

  30. Dey N, Barwick BG, Moreno CS, Ordanic-Kodani M, Chen Z, Oprea-Ilies G, Tang W, Catzavelos C, Kerstann KF, Sledge GW Jr, Abramovitz M, Bouzyk M, De P, Leyland-Jones BR (2013) Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 13:537. https://doi.org/10.1186/1471-2407-13-537

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bilir B, Kucuk O, Moreno CS (2013) Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med 11:280. https://doi.org/10.1186/1479-5876-11-280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koval AV, Vlasov P, Shichkova P, Khunderyakova S, Markov Y, Panchenko J, Volodina A, Kondrashov FA, Katanaev VL (2014) Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling. Biochem Pharmacol 87(4):571–578. https://doi.org/10.1016/j.bcp.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  33. Ren J, Wang R, Song H, Huang G, Chen L (2014) Secreted frizzled related protein 1 modulates taxane resistance of human lung adenocarcinoma. Mol Med 20:164–178. https://doi.org/10.2119/molmed.2013.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Voloshanenko O, Erdmann G, Dubash TD, Augustin I, Metzig M, Moffa G, Hundsrucker C, Kerr G, Sandmann T, Anchang B, Demir K, Boehm C, Leible S, Ball CR, Glimm H, Spang R, Boutros M (2013) Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun 4:2610. https://doi.org/10.1038/ncomms3610

    Article  CAS  PubMed  Google Scholar 

  35. Stewart J, James J, McCluggage GW, McQuaid S, Arthur K, Boyle D, Mullan P, McArt D, Yan B, Irwin G, Harkin DP, Zhengdeng L, Ong CW, Yu J, Virshup DM, Salto-Tellez M (2015) Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression. Mod Pathol 28(3):428–436. https://doi.org/10.1038/modpathol.2014.114

    Article  CAS  PubMed  Google Scholar 

  36. Augustin I, Goidts V, Bongers A, Kerr G, Vollert G, Radlwimmer B, Hartmann C, Herold-Mende C, Reifenberger G, von Deimling A, Boutros M (2012) The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis. EMBO Mol Med 4(1):38–51. https://doi.org/10.1002/emmm.201100186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu D, Li Y, Liu QR, Wu Q, Zhang H, Xie P, Wang Q (2015) Wls promotes the proliferation of breast cancer cells via Wnt signaling. Med Oncol 32(5):140. https://doi.org/10.1007/s12032-015-0585-z

    Article  CAS  PubMed  Google Scholar 

  38. Chiou SS, Wang LT, Huang SB, Chai CY, Wang SN, Liao YM, Lin PC, Liu KY, Hsu SH (2014) Wntless (GPR177) expression correlates with poor prognosis in B-cell precursor acute lymphoblastic leukemia via Wnt signaling. Carcinogenesis 35(10):2357–2364. https://doi.org/10.1093/carcin/bgu166

    Article  CAS  PubMed  Google Scholar 

  39. Yoon H, Blaber SI, Li W, Scarisbrick IA, Blaber M (2013) Activation profiles of human kallikrein-related peptidases by matrix metalloproteinases. Biol Chem 394(1):137–147. https://doi.org/10.1515/hsz-2012-0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW, Benda C, Nigg EA, Conti E (2012) Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46(3):274–286. https://doi.org/10.1016/j.molcel.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  41. Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS (2007) Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci USA 104(31):12685–12690. https://doi.org/10.1073/pnas.0705558104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang X, Zhong L, Liu BZ, Gao YJ, Gao YM, Hu XX (2013) Effect of GINS2 on proliferation and apoptosis in leukemic cell line. Int J Med Sci 10(12):1795–1804. https://doi.org/10.7150/ijms.7025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81(7):1105–1114. https://doi.org/10.1016/s0092-8674(05)80015-7

    Article  CAS  PubMed  Google Scholar 

  44. Mascolo M, Ilardi G, Merolla F, Russo D, Vecchione ML, de Rosa G, Staibano S (2012) Tissue microarray-based evaluation of Chromatin Assembly Factor-1 (CAF-1)/p60 as tumour prognostic marker. Int J Mol Sci 13(9):11044–11062. https://doi.org/10.3390/ijms130911044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vieira AF, Schmitt F (2018) An update on breast cancer multigene prognostic tests-emergent clinical biomarkers. Front Med (Lausanne) 5:248. https://doi.org/10.3389/fmed.2018.00248

    Article  Google Scholar 

  46. Razek AA, Gaballa G, Denewer A, Nada N (2010) Invasive ductal carcinoma: correlation of apparent diffusion coefficient value with pathological prognostic factors. NMR Biomed 23(6):619–623. https://doi.org/10.1002/nbm.1503

    Article  PubMed  Google Scholar 

  47. Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O (2013) Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 139(2):539–552. https://doi.org/10.1007/s10549-013-2560-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jatoi I, Hilsenbeck SG, Clark GM, Osborne CK (1999) Significance of axillary lymph node metastasis in primary breast cancer. J Clin Oncol 17(8):2334–2340. https://doi.org/10.1200/JCO.1999.17.8.2334

    Article  CAS  PubMed  Google Scholar 

  49. Razek AA, Lattif MA, Denewer A, Farouk O, Nada N (2016) Assessment of axillary lymph nodes in patients with breast cancer with diffusion-weighted MR imaging in combination with routine and dynamic contrast MR imaging. Breast Cancer 23(3):525–532. https://doi.org/10.1007/s12282-015-0598-7

    Article  PubMed  Google Scholar 

  50. Lee JH, Kim SH, Suh YJ, Shim BY, Kim HK (2010) Predictors of axillary lymph node metastases (ALNM) in a Korean population with T1-2 breast carcinoma: triple negative breast cancer has a high incidence of ALNM irrespective of the tumor size. Cancer Res Treat 42(1):30–36. https://doi.org/10.4143/crt.2010.42.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu Z, Li Z, Qu J, Zhang R, Zhou X, Li L, Sun K, Tang Z, Jiang H, Li H, Xiong Q, Ding Y, Zhao X, Wang K, Liu Z, Tian J (2019) Radiomics of Multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a Multicenter Study. Clin Cancer Res 25(12):3538–3547. https://doi.org/10.1158/1078-0432.CCR-18-3190

    Article  PubMed  Google Scholar 

  52. Zhang M, Horvat JV, Bernard-Davila B, Marino MA, Leithner D, Ochoa-Albiztegui RE, Helbich TH, Morris EA, Thakur S, Pinker K (2019) Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy. J Magn Reson Imaging 49(3):864–874. https://doi.org/10.1002/jmri.26285

    Article  PubMed  Google Scholar 

  53. Abdel Razek AA, Gaballa G, Denewer A, Tawakol I (2010) Diffusion weighted MR imaging of the breast. Acad Radiol 17(3):382–386. https://doi.org/10.1016/j.acra.2009.10.014

    Article  PubMed  Google Scholar 

  54. Abdel Razek AAK, Zaky M, Bayoumi D, Taman S, Abdelwahab K, Alghandour R (2019) Diffusion tensor imaging parameters in differentiation recurrent breast cancer from post-operative changes in patients with breast-conserving surgery. Eur J Radiol 111:76–80. https://doi.org/10.1016/j.ejrad.2018.12.022

    Article  PubMed  Google Scholar 

  55. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527. https://doi.org/10.1016/j.ccr.2006.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. https://doi.org/10.1016/j.ccr.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  57. Wu K, Yang Q, Liu Y, Wu A, Yang Z (2014) Meta-analysis on the association between pathologic complete response and triple-negative breast cancer after neoadjuvant chemotherapy. World J Surg Oncol 12:95. https://doi.org/10.1186/1477-7819-12-95

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96(22):1659–1668. https://doi.org/10.1093/jnci/djh312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the individuals who took part in the Translational Research Organization in Cancer (TROICA) project and all the researchers who have enabled this work to be carried out.

Funding

This research was funded by grants of the National Research Foundation (NRF) of Korea funded by the Korea government (MSIP), 2015R1A2A2A01008264 (to WH) and 2015R1A4A1041219 (to AKP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonshik Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20340 kb)

Supplementary material 2 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EK., Park, A.K., Ko, E. et al. Risk stratification of triple-negative breast cancer with core gene signatures associated with chemoresponse and prognosis. Breast Cancer Res Treat 178, 185–197 (2019). https://doi.org/10.1007/s10549-019-05366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05366-x

Keywords

Profiles

  1. Woong-Yang Park