Abstract

A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”. I. Phys. Rev. 85(2), 166–179 (1952)
Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”. II. Phys. Rev. 85(2), 180–193 (1952)
Tumulka, R.: Understanding Bohmian mechanics: a dialogue. Am. J. Phys. 72(9), 1220–1226 (2004)
Passon, O.: How to teach quantum mechanics. Eur. J. Phys. 25(6), 765–769 (2004)
Styer, D.F., et al.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002)
Passon, O.: Why isn’t every physicist a Bohmian? quant-ph/0412119
Pauli, W.: Handbuch der Physik. Springer, Berlin (1926)
Busch, P.: The time energy uncertainty relation, quant-ph/0105049
Boström, K.: Quantizing time, quant-ph/0301049
Aharonov, Y., Bohm, D.: Time in quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)
’t Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quantum Gravity 16, 3263–3279 (1999)
’t Hooft, G.: Determinism in free bosons. Int. J. Theor. Phys. 42, 355–361 (2003)
Rosen, N.: The relation between classical and quantum mechanics. Am. J. Phys. 32(8), 597–600 (1964)
Rosen, N.: Mixed states in classical mechanics. Am. J. Phys. 33(2), 146–150 (1965)
Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)
Nikolić, H.: Classical mechanics without determinism. Found. Phys. Lett. 19, 553–566 (2006)
Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)
Mermin, N.D.: Bringing home the atomic world: quantum mysteries for anybody. Am. J. Phys. 49(10), 940–943 (1981)
Laloë, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phys. 69(6), 655–701 (2001)
Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)
Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer Academic, Dordrecht (1989)
Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731–734 (1990)
Jordan, T.F.: Quantum mysteries explored. Am. J. Phys. 62(10), 874–880 (1994)
Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)
Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)
Berndl, K., Goldstein, S.: Comment on “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 780 (1994)
Hardy, L.: Hardy replies. Phys. Rev. Lett. 72, 781 (1994)
Schauer, D.L.: Comment on “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 782 (1994)
Hardy, L.: Hardy replies. Phys. Rev. Lett. 72, 783 (1994)
Goldstein, S.: Nonlocality without inequalities for almost all entangled states for two particles. Phys. Rev. Lett. 72, 1951 (1994)
Mermin, N.D.: Quantum mysteries refined. Am. J. Phys. 62(10), 880–887 (1994)
Zeilinger, A.: The message of the quantum. Nature 438(8), 743 (2005)
Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)
Smerlak, M., Rovelli, C.: Relational EPR. Found. Phys. 37, 427–445 (2007)
Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66(9), 753–767 (1998)
Medina, R.: Orthodox quantum mechanics free from paradoxes, quant-ph/0508014
Cohen, D.: Lecture notes in quantum mechanics, quant-ph/0605180
Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: Naive realism about operators, quant-ph/9601013
Bilaniuk, O.M.P., Deshpande, V.K., Sudarshan, E.C.G.: “Meta” relativity. Am. J. Phys. 30(10), 718–723 (1962)
Bilaniuk, O.M.P., Sudarshan, E.C.G.: Particles beyond the light barrier. Phys. Today 22(5), 43–51 (1969)
Liberati, S., Sonego, S., Visser, M.: Faster-than-c signals, special relativity, and causality. Ann. Phys. 298, 167–185 (2002)
Nikolić, H.: Causal paradoxes: a conflict between relativity and the arrow of time. Found. Phys. Lett. 19, 259–267 (2006)
Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996)
Dürr, D., Goldstein, S., Münch-Berndl, K., Zanghì, N.: Hypersurface Bohm-Dirac models. Phys. Rev. A 60, 2729–2736 (1999)
Horton, G., Dewdney, C.: Relativistically invariant extension of the de Broglie-Bohm theory of quantum mechanics. J. Phys. A 35, 10117–10127 (2002)
Horton, G., Dewdney, C.: A relativistically covariant version of Bohm’s quantum field theory for the scalar field. J. Phys. A 37, 11935–11944 (2004)
Nikolić, H.: Relativistic quantum mechanics and the Bohmian interpretation. Found. Phys. Lett. 18, 549–561 (2005)
Nikolić, H.: Relativistic Bohmian interpretation of quantum mechanics, quant-ph/0512065, talk given at conference “On the Present Status of Quantum Mechanics”, Mali Lošinj, Croatia, 7–9 September 2005
Nikolić, H.: Covariant canonical quantization of fields and Bohmian mechanics. Eur. Phys. J. C 42, 365–374 (2005)
Nikolić, H.: Quantum determinism from quantum general covariance. Int. J. Mod. Phys. D 15, 2171–2176 (2006)
Nikolić, H.: Honorable Mention of the Gravity Research Foundation 2006 Essay Competition
Nikolić, H.: Covariant many-fingered time Bohmian interpretation of quantum field theory. Phys. Lett. A 348, 166–171 (2006)
Nikolić, H.: Quantum nonlocality without hidden variables: an algorithmic approach, quant-ph/0703071
Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw–Hill, New York (1964)
Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21(3), 400–406 (1949)
Ghose, P., Home, D., Sinha Roy, M.N.: Relativistic quantum mechanics of bosons. Phys. Lett. A 183(4), 267–271 (1993)
Gavrilov, S.P., Gitman, D.M.: Quantization of point-like particles and consistent relativistic quantum mechanics. Int. J. Mod. Phys. A 15(28), 4499–4538 (2000)
Nikolić, H.: Probability in relativistic quantum mechanics and foliation of spacetime, quant-ph/0602024
Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1984)
Zeh, H.D.: There is no “first” quantization. Phys. Lett. A 309, 329–334 (2003)
Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw–Hill, New York (1965)
Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1984)
Jaffe, R.L.: Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005)
Schubert, C.: Perturbative quantum field theory in the string-inspired formalism. Phys. Rep. 355, 73–234 (2001)
Thorndike, A.: Using Feynman diagrams to solve the classical harmonic oscillator. Am. J. Phys. 68(2), 155–159 (2000)
Penco, R., Mauro, D.: Perturbation theory via Feynman diagrams in classical mechanics, hep-th/0605061
Creutz, M.: Quarks, Gluons and Lattices. Cambridge University Press, Cambridge (1983)
Davies, C.: Lattice QCD, hep-ph/0205181
Sharpe, S.R.: Phenomenology from the lattice, hep-ph/9412243
Carroll, S.M.: Lecture notes on general relativity, gr-qc/9712019
Nelson, R.A.: Generalized Lorentz transformation for an accelerated, rotating frame of reference. J. Math. Phys. 28, 2379–2383 (1987)
Nelson, R.A.: J. Math. Phys. 35, 6224–6225 (1994), Erratum
Nikolić, H.: Relativistic contraction and related effects in noninertial frames. Phys. Rev. A 61, 032109 (2000)
Nikolić, H.: Relativistic contraction of an accelerated rod. Am. J. Phys. 67(11), 1007–1012 (1999)
Nikolić, H.: The role of acceleration and locality in the twin paradox. Found. Phys. Lett. 13, 595–601 (2000)
Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)
Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047–1056 (1984)
Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, New York (1982)
Rindler, W.: Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34(12), 1174–1178 (1966)
Nikolić, H.: Inappropriateness of the Rindler quantization. Mod. Phys. Lett. A 16, 579–581 (2001)
Sriramkumar, L., Padmanabhan, T.: Probes of the vacuum structure of quantum fields in classical backgrounds. Int. J. Mod. Phys. D 11, 1–34 (2002)
Nikolić, H.: A general-covariant concept of particles in curved background. Phys. Lett. B 527, 119–124 (2002)
Nikolić, H.: The general-covariant and gauge-invariant theory of quantum particles in classical backgrounds. Int. J. Mod. Phys. D 12, 407–444 (2003)
Nikolić, H.: Generalizations of normal ordering and applications to quantization in classical backgrounds. Gen. Rel. Grav. 37, 297–311 (2005)
Davies, P.C.W.: Particles do not exist. In: Christensen, S.M. (ed.) Quantum Theory of Gravity, pp. 66–77. Adam Hilger Ltd, Bristol (1984)
Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)
Brout, R., Massar, S., Parentani, R., Spindel, Ph.: A primer for black hole quantum physics. Phys. Rep. 260, 329–446 (1995)
Jacobson, T.: Introduction to quantum fields in curved spacetime and the Hawking effect, gr-qc/0308048
Padmanabhan, T.: Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005)
Srinivasan, K., Padmanabhan, T.: Doing it with mirrors: classical analogues for black hole radiation, gr-qc/9812087
Nouri-Zonoz, M., Padmanabhan, T.: The classical essence of black hole radiation, gr-qc/9812088
Padmanabhan, T.: Physical interpretation of quantum field theory in noninertial coordinate systems. Phys. Rev. Lett. 64, 2471–2474 (1990)
Belinski, V.A.: On the existence of black hole evaporation yet again. Phys. Lett. A 354, 249–257 (2006)
Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)
Manogue, C.A.: The Klein paradox and superradiance. Ann. Phys. 181, 261–283 (1988)
Nikolić, H.: On particle production by classical backgrounds, hep-th/0103251
Nikolić, H.: Physical stability of the QED vacuum, hep-ph/0105176
Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)
Nikolić, H.: Bohmian particle trajectories in relativistic bosonic quantum field theory. Found. Phys. Lett. 17, 363–380 (2004)
Nikolić, H.: Bohmian particle trajectories in relativistic fermionic quantum field theory. Found. Phys. Lett. 18, 123–138 (2005)
Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004)
Szabo, R.J.: BUSSTEPP lectures on string theory, hep-th/0207142
Polchinski, J.: What is string theory? hep-th/9411028
Nikolić, H.: Strings, world-sheet covariant quantization and Bohmian mechanics. Eur. Phys. J. C 47, 525–529 (2006)
Nikolić, H.: Boson-fermion unification, superstrings, and Bohmian mechanics, hep-th/0702060
Nikolić, H.: Strings, T-duality breaking, and nonlocality without the shortest distance. Eur. Phys. J. C 50, 431–434 (2007)
Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)
Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)
Hawking, S.W.: The nature of space and time, hep-th/9409195
Townsend, P.K.: Black holes, gr-qc/9707012
Visser, M.: Hawking radiation without black hole entropy. Phys. Rev. Lett. 80, 3436–3439 (1998)
Carlip, S.: Quantum gravity: A progress report. Rep. Prog. Phys. 64, 885–942 (2001)
Alvarez, E.: Quantum gravity, gr-qc/0405107
Rovelli, C.: Loop quantum gravity. Living Rev. Rel. 1, 1–75 (1998), gr-qc/9710008
Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)
Horowitz, G.T.: Quantum states of black holes, gr-qc/9704072
Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002)
Giddings, S.B.: Quantum mechanics of black holes, hep-th/9412138
Strominger, A.: Les Houches lectures on black holes, hep-th/9501071
Nikolić, H.: Black holes radiate but do not evaporate. Int. J. Mod. Phys. D 14, 2257–2261 (2005)
Nikolić, H.: Honorable Mention of the Gravity Research Foundation 2005 Essay Competition
Nikolić, H.: Cosmological constant, semiclassical gravity, and foundations of quantum mechanics, gr-qc/0611037
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nikolić, H. Quantum Mechanics: Myths and Facts. Found Phys 37, 1563–1611 (2007). https://doi.org/10.1007/s10701-007-9176-y
-
Advertisement
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-007-9176-y