Skip to main content
Log in

Comparative production and nutritional value of “sea grapes” — the tropical green seaweeds Caulerpa lentillifera and C. racemosa

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

“Sea grapes” is a collective term for the edible varieties of the green seaweed genus Caulerpa. Here we conduct comparative analyses of the biomass productivities and biochemical properties of C. lentillifera and C. racemosa from tropical Australia. Commercial-scale production was evaluated using 1 m2 culture units with high stocking densities (>5 kg m−2). Productivity of C. lentillifera in a 6-week period yielded, on average, 2 kg week−1, whereas C. racemosa yielded <0.5 kg week−1. Morphometric comparisons of the harvestable biomass revealed that C. lentillifera had a higher proportion of fronds (edible portions) to horizontal runners (stolons) and a higher density of fronds per unit area. C. racemosa fronds, however, were significantly longer. The nutritional value of C. racemosa was higher than C. lentillifera for both polyunsaturated fatty acids (10.6 vs. 5.3 mg g−1 DW) and pigments (9.4 vs. 4.2 mg g−1 DW). The content of eicosapentaenoic acid (EPA) and β-carotene decreased with increasing frond size in both species. Trace element contents also varied substantially between the species, including higher levels of zinc, magnesium and strontium in C. lentillifera, and higher levels of selenium in C. racemosa. Some less desirable elements were higher in C. lentillifera, including arsenic (1 vs. 0.1 ppm) and cadmium, whereas others were higher in C. racemosa, including lead, copper and vanadium. Overall C. lentillifera has a high biomass production potential in monoculture and distinct nutritional properties that warrant a focus on its commercialisation as a new aquaculture product in tropical Australia and in Southeast Asia more broadly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barr NG, Kloeppel A, Rees TAV, Scherer C, Taylor RB, Wenzel A (2008) Wave surge increases rates of growth and nutrient uptake in the green seaweed Ulva pertusa maintained at low bulk flow velocities. Aquat Biol 3:179–186

    Article  Google Scholar 

  • Baumgartner FA, Motti CA, de Nys R, Paul NA (2009) Feeding preferences and host associations of specialist marine herbivores align with quantitative variation in seaweed secondary metabolites. Mar Ecol Prog Ser 396:1–12

    Article  CAS  Google Scholar 

  • Bocanegra A, Bastida S, Benedí J, Ródenas S, Sánchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258

    Article  CAS  PubMed  Google Scholar 

  • Bracken MES, Stachowicz JJ (2006) Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87:2397–2403

    Article  PubMed  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. J Agr Food Chem 53:5049–5059

    Article  CAS  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: Correlation to growth-rate. J Phycol 24:328–332

    CAS  Google Scholar 

  • David F, Sandra P, Wylie PL (2002) Agilent Application note 5988-5871EN. Improving the analysis of fatty acid methyl esters using retention time locked methods and retention time databases. Agilent Technologies Inc

  • Dawczynski C, Schaefer U, Leiterer M, Jahreis G (2007a) Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agr Food Chem 55:10470–10475

    Article  CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007b) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • Ferruzzi MG, Bohm V, Courtney PD, Schwartz SJ (2002) Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J Food Sci 67:2589–2595

    Article  CAS  Google Scholar 

  • Food and Nutrition Board USA (1981) Food chemical codex, 3rd edn. National Academy Press, Washington

    Google Scholar 

  • Galland-Irmouli AV, Fleurence J, Lamghari R, Lucon M, Rouxel C, Barbaroux O, Bronowicki JP, Villaume C, Gueant JL (1999) Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J Nutr Biochem 10:353–359

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90

    Article  CAS  PubMed  Google Scholar 

  • Gosch BJ, Magnusson M, Paul NA, de Nys R (2012) Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Gcb Bioenergy 4:919–930

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Horstmann U (1983) Cultivation of the green alga, Caulerpa racemosa, in tropical waters and some aspects of its physiological ecology. Aquaculture 32:361–371

    Article  Google Scholar 

  • Huang L, Wen KW, Gao X, Liu YH (2010) Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. Pharm Biol 48:422–426

    Article  CAS  PubMed  Google Scholar 

  • Hurd CL (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36:453–472

    Article  CAS  Google Scholar 

  • Indergaard M, Minsaas J (1991) Animal and human nutrition. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe. Wiley, Chichester, pp 21–64

    Google Scholar 

  • Kumar M, Kumari P, Trivedi N, Shukla MK, Gupta V, Reddy CRK, Jha B (2011) Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J Appl Phycol 23:797–810

    Article  CAS  Google Scholar 

  • Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757

    Article  CAS  Google Scholar 

  • Lawton RJ, de Nys R, Paul NA (2013) Selecting reliable and robust freshwater macroalgae for biomass applications. PloS one 8(5):e64168

    Google Scholar 

  • Lüning K, Pang SJ (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  PubMed  Google Scholar 

  • Magnusson M, Mata L, de Nys R, Paul NA (2013) Biomass, lipid and fatty acid production in large-scale cultures of the marine macroalga Derbesia tenuissima (Chlorophyta). Mar Biotech

  • Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    Article  CAS  Google Scholar 

  • Matanjun P, Mohamed S, Muhammad K, Mustapha NM (2010) Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J Med Food 13:792–800

    Article  CAS  PubMed  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • Murata M, Ishihara K, Saito H (1999) Hepatic fatty acid oxidation enzyme activities are stimulated in rats fed the brown seaweed, Undaria pinnatifida (wakame). J Nutr 129:146–151

    CAS  PubMed  Google Scholar 

  • Ortega-Calvo JJ, Mazuelos C, Hermosin B, Saizjimenez C (1993) Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain. J Appl Phycol 5:425–435

    Article  CAS  Google Scholar 

  • Ostraff M (2006) Limu: edible seaweed in Tonga, an ethnobotanical study. J Ethnobiol 26:208–227

    Article  Google Scholar 

  • Patarra R, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23:205–208

    Article  CAS  Google Scholar 

  • Paul NA, de Nys R (2008) Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture. Aquaculture 281:49–55

    Article  Google Scholar 

  • Paul NA, de Nys R (2011) Cultivating seaweed. Australian Patent Application AU2010224354

  • Paul NA, Tseng CK (2012) Seaweed. In: Lucas JS, Southgate PC (eds) Aquaculture: farming aquatic animals and plants, vol 2. Blackwell Publishing, Oxford, pp 268–284

    Google Scholar 

  • Peña-Rodriguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suarez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129:491–498

    Article  Google Scholar 

  • Poudyal H, Panchal SK, Ward LC, Brown L (2013) Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem 24:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Yagui CD, Danesi EDG, de Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Biores Technol 92:133–141

    Google Scholar 

  • Roberts DA, de Nys R, Paul NA (2013) The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications. PloS one 8(11):e81631

    Article  PubMed Central  PubMed  Google Scholar 

  • Rose M, Lewis J, Langford N, Baxter M, Origgi S, Barber M, MacBain H, Thomas K (2007) Arsenic in seaweed—forms, concentration and dietary exposure. Food Chem Toxicol 45:1263–1267

    Article  CAS  PubMed  Google Scholar 

  • Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    Article  Google Scholar 

  • Saito H, Xue CH, Yamashiro R, Moromizato S, Itabashi Y (2010) High polyunsaturated fatty acid levels in two subtropical macroalgae, Cladosiphon okamuranus and Caulerpa lentillifera. J Phycol 46:665–673

    Article  CAS  Google Scholar 

  • Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. PloS one 7 (5):e36470

  • Shahidi F (2009) Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Tech 20:376–387

    Article  CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    CAS  PubMed  Google Scholar 

  • South GR (1993) Edible seaweeds of Fiji — an ethnobotanical study. Bot Mar 36:335–349

    Article  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  • Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds: Part I. Proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Flora Foundation. The authors thank I. Tuart (JCU) for assistance in production experiments and Y. Hu (Advanced Analytical Centre, JCU) for conducting the elemental analyses, and two anonymous reviewers for their input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Paul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, N.A., Neveux, N., Magnusson, M. et al. Comparative production and nutritional value of “sea grapes” — the tropical green seaweeds Caulerpa lentillifera and C. racemosa . J Appl Phycol 26, 1833–1844 (2014). https://doi.org/10.1007/s10811-013-0227-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0227-9

Keywords