Skip to main content

Global Ca Cycles: Coupling of Continental and Oceanic Processes

  • Chapter
  • First Online:
Calcium Stable Isotope Geochemistry

Abstract

Calcium is one of the most important mobile metals that can migrate easily between major geochemical reservoirs at the Earth’s surface; the hydrosphere and the biosphere and crust. In doing so calcium plays a key role in regulating climate over million year time-scales, transferring carbon from the atmosphere and storing it as calcium carbonate. Calcium isotopes potentially provide a way of tracing the mobility of calcium  within the Earth surface environment. This chapter reviews the steps where calcium isotopes are fractionated in the weathering and ocean environments, and how these fractionations can be used to constrain mass transfers on both the continents and in the oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JM, Post WM (1999) A preliminary estimate of changing calcrete carbon storage on land since the last glacial maximum. Global Planet Change 20(4):243–256

    Article  Google Scholar 

  • Ali MA, Dzombak DA (1996) Effects of simple organic acids on sorption of Cu2+ and Ca2+ on goethite. Geochim Cosmochim Acta 60(2):291–304. doi:http://dx.doi.org/10.1016/0016-7037(95)00385-1

    Google Scholar 

  • Amini M, Eisenhauer A, Bohm F, Fietzke J, Bach W, Garbe-Schonberg D, Rosner M, Bock B, Lackschewitz KS, Hauff F (2008) Calcium Isotope (δ 44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45’N). Geochim Cosmochim Act 72(16):4107–4122. doi:10.1016/j.gca.2008.05.055

    Article  Google Scholar 

  • Amini M, Eisenhauer A, Böhm F, Holmden C, Kreissig K, Hauff F, Jochum KP (2009) Calcium isotopes (\(\delta^{44/40}\) Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: evidence for Ca isotope fractionation in terrestrial silicates. Geostandards and Geoanalytical Research 33(2):231–247

    Google Scholar 

  • Amiotte Suchet P, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cycles 17(2):1038. doi:10.1029/2002GB001891

    Google Scholar 

  • Arning E, Lückge A, Breuer C, Gussone N, Birgel D, Peckmann J (2009) Genesis of phosphorite crusts off Peru. Marine Geology 262(1–4):68–81. doi:http://dx.doi.org/10.1016/j.margeo.2009.03.006

    Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Act 65(3):387–406. doi:http://dx.doi.org/10.1016/S0016-7037(00)00546-9

    Google Scholar 

  • Bagard ML, Chabaux F, Pokrovsky OS, Viers J, Prokushkin AS, Stille P, Rihs S, Schmitt AD, Dupré B (2011) Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim Cosmochim Acta 75(12):3335–3357. doi:http://dx.doi.org/10.1016/j.gca.2011.03.024

    Google Scholar 

  • Bagard ML, Schmitt AD, Chabaux F, Pokrovsky OS, Viers J, Stille P, Labolle F, Prokushkin AS (2013) Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia. Geochim Cosmochim Acta 114(0):169–187. doi:http://dx.doi.org/10.1016/j.gca.2013.03.038

    Google Scholar 

  • Bailey SW, Hornbeck JW, Driscoll CT, Gaudette HE (1996) Calcium inputs and transport in a base‐poor forest ecosystem as interpreted by Sr isotopes. Water Resour Res 32(3):707–719

    Google Scholar 

  • Bakker MR, George E, Turpault MP, Zhang JL, Zeller B (2005) Impact of douglas-fir and scots pine seedlings on plagioclase weathering under acidic conditions 266(1–2):247–259. doi:10.1007/s11104-005-1153-7

    Google Scholar 

  • Bélanger N, Holmden C (2010) Influence of landscape on the apportionment of Ca nutrition in a Boreal Shield forest of Saskatchewan (Canada) using 87Sr/86Sr as a tracer. Can J Soil Sci 90(2):267–288. doi:10.4141/CJSS09079, http://dx.doi.org/10.4141/CJSS09079

    Google Scholar 

  • Bélanger N, Holmden C, Courchesne F, Cote B, Hendershot WH (2012) Constraining soil mineral weathering 87Sr/86Sr for calcium apportionment studies of a deciduous forest growing on soils developed from granitoid igneous rocks. Geoderma 185–186:84–96

    Article  Google Scholar 

  • Bellot J, Roda F, Retana J, Gracia CA (eds) (1999) Ecology of Mediterranean evergreen oak forests, ecological studies. Springer, Berlin, vol 137

    Google Scholar 

  • Bern CR, Townsend AR, Farmer GL (2005) Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86(3):626–632. doi:10.1890/03-0766

    Google Scholar 

  • Bernasconi SM, Christi I, Hajdas I, Zimmermann S, Hagedom F, Smittenberg RH, Furrer G, Zeyer J, Brunner I, Frey B, Plötze M, Lapanje A, Edwards P, Venterink HO, Göransson H, Frossard E, Bünemann E, Jansa J, Tamburini F, Welc M, Mitchell E, Bourdon B, Kretzschmar R, Reynolds B, Lemarchand E, Wiederhold J, Tipper E, Kiczka M, Hindshaw R, Stähli M, Jonas T, Magnusson J, Bander A, Farinotti D, Huss M, Wacker L, Abbaspour K (2008) Weathering, soil formation and initial ecosystem evolution on a glacier forefield: a case study from the damma glacier, switzerland. Min Mag 72(1):19–22

    Article  Google Scholar 

  • Bernasconi SM, Bauder A, Bourdon B, Brunner I, Bünemann E, Christl I, Derungs N, Edwards P, Farinotti D, Frey B, Frossard E, Furrer G, Gierga M, Göransson H, Gülland K, Hagedorn F, Hajdas I, Hindshaw R, Ivy-Ochs S, Jansa J, Jonas T, Kiczka M, Kretzschmar R, Lemarchand E, Luster J, Magnusson J, Mitchell EA, Venterink HO, Plötze M, Reynolds B, Smittenberg RH, Stähli M, Tamburini F, Tipper ET, Wacker L, Welc M, Wiederhold JG, Zeyer J, Zimmermann S, Zumsteg A (2011) Chemical and biological gradients along the damma glacier soil chronosequence, switzerland. Vadose Zone J 10:867–883. doi:10.2136/vzj2010.0129

    Google Scholar 

  • Berner EK, Berner RA (1996) global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Berner RA, Kothavala Z (2001) Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Article  Google Scholar 

  • Bernhard-Reversat F (1972) Décomposition de la litière de feuilles en forêt ombrophile de basse Côte d’Ivoire. Oecologia Plantarum 7:279–300

    Google Scholar 

  • Bickle MJ, Chapman HJ, Bunbury J, Harris NBW, Fairchild IJ, Ahmad T, Pomiès C (2005) Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges. Geochim Cosmochim Act 69(9):2221–2240. doi:10.1016/j.gca.2004.11.019

    Google Scholar 

  • Bickle MJ, Tipper ET, Galy A, Chapman H, Harris N (2015) On discrimination between carbonate and silicate inputs to Himalayan rivers. Am J Sci 315:120–166

    Article  Google Scholar 

  • Blättler CL, Higgins JA (2014) Calcium isotopes in evaporites record variations in phanerozoic seawater SO4 and Ca. Geology 42(8):711–714

    Article  Google Scholar 

  • Blättler CL, Jenkyns HC, Reynard LM, Henderson GM (2011) Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet Sci Lett 309(1–2):77–88

    Article  Google Scholar 

  • Blättler CL, Henderson GM, Jenkyns HC (2012) Explaining the Phanerozoic Ca isotope history of seawater. Geology 40(9):843–846

    Article  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417(6890):729–731

    Article  Google Scholar 

  • Blum JD, Dasch AA, Hamburg SP, Yanai RD, Arthur MA (2008) Use of foliar Ca/Sr discrimination and 87Sr/86Sr ratios to determine soil Ca sources to sugar maple foliage in a northern hardwood forest. Biogeochemistry 87(3):287–296. doi:10.2307/40343550

  • Böhm F, Gussone N, Eisenhauer A, Dullo WC, Reynaud S, Paytan A (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Act 70(17):4452–4462. doi:10.1016/j.gca.2006.06.1546

    Google Scholar 

  • Bonnot-Courtois CJRN (1982) Etude des échanges entre terres rares et cations interfoliaires de deux argiles. Clay Miner 17:409–420

    Article  Google Scholar 

  • Brantley S, White TS, White AF, Sparks D, Richter D, Pregitzer K, Derry L, Chorover J, Chadwick O, April R, Anderson S, Amundson R (2005) Frontiers in exploration of the critical zone: report of a workshop sponsored by the national science foundation (nsf)

    Google Scholar 

  • Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3(5):307

    Article  Google Scholar 

  • Braun JJ, Ngoupayou JRN, Viers J, Dupre B, Bedimo JPB, Boeglin JL, Robain H, Nyeck B, Freydier R, Nkamdjou LS, Rouiller J, Muller JP (2005) Present weathering rates in a humid tropical watershed: Nsimi, south cameroon. Geochim Cosmochim Acta 69(2):357–387. doi:http://dx.doi.org/10.1016/j.gca.2004.06.022

    Google Scholar 

  • Bray J, Gorham E (1964) Litter production in forests of the world. Adv Ecol Res 2:101–157. doi: 10.1016/S0065-2504(08)60331-1

    Google Scholar 

  • Brazier JM, Suan G, Tacail T, Simon L, Martin JE, Mattioli E, Balter V (2015) Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth Planet Sci Lett 411(0):164–176. doi:http://dx.doi.org/10.1016/j.epsl.2014.11.028

    Google Scholar 

  • Bullen T, White A, Blum A, Harden J, Schulz M (1997) Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium. Geochim Cosmochim Acta 61(2):291–306

    Article  Google Scholar 

  • Bullen T, Fitzpatrick J, White A, Schulz M, Vivit D (2004) Calcium stable isotope evidence for three soil calcium pools at a granitoid chronosequence. In: Bullen T, Wang Y (eds) Proceedings of the 12th international symposium on water-rock interaction, Kunming, China, p 1734

    Google Scholar 

  • Capo RC, Chadwick OA (1999) Sources of strontium and calcium in desert soil and calcrete. Earth Planet Sci Lett 170(1–2):61–72

    Article  Google Scholar 

  • Cappellato R, Peters NE (1995) Dry deposition and canopy leaching rates in deciduous and coniferous forests of the Georgia Piedmont: an assessment of a regression model. J Hydrol 169(1–4):131–150. doi:http://dx.doi.org/10.1016/0022-1694(94)02653-S

    Google Scholar 

  • Cenki-Tok B, Chabaux F, Lemarchand D, Schmitt AD, Pierret MC, Viville D, Bagard ML, Stille P (2009) The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case). Geochim Cosmochim Act 73(8):2215–2228

    Article  Google Scholar 

  • Cerling TE (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240

    Article  Google Scholar 

  • Cerling TE, Pederson BL, Von Damm KL (1989) Sodium-calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geol 17(6):552–554

    Article  Google Scholar 

  • Chabaux F, Riotte J, Schmitt AD, Carignan J, Herckes P, Pierret MC, Wortham H (2005) Variations of U and Sr isotope ratios in Alsace and Luxembourg rain waters: origin and hydrogeochemical implications. C R Geosci 337(16):1447–1456. doi:http://dx.doi.org/10.1016/j.crte.2005.07.008

    Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397(6719):491–497

    Article  Google Scholar 

  • Chang VTC, Williams R, Makishima A, Belshaw NS, O’Nions RK (2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun 323:79–85

    Article  Google Scholar 

  • Chapelle F (2003) 5.14—Geochemistry of groundwater. In: Turekian KK, Holland HD (eds) Treatise on geochemistry. Pergamon, Oxford, pp 425–449. doi:http://dx.doi.org/10.1016/B0-08-043751-6/05167-7

    Google Scholar 

  • Chaudhuri S, Clauer N (1986) Fluctuations of isotopic composition of strontium in seawater during the phanerozoic eon. Chem Geol 59:293–303

    Article  Google Scholar 

  • Chiou CT, Rutherford DW (1997) Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays 45(6):867–880

    Google Scholar 

  • Chu NC, Henderson GM, Belshaw NS, Hedges REM (2006) Establishing the potential of ca isotopes as proxy for consumption of dairy products. Appl Geochem 21(10):1656–1667

    Article  Google Scholar 

  • Chuyong GB, Newbery DM, Songwe NC (2004) Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees 67(1):73–91. doi: 10.1023/B:BIOG.0000015316.90198.cf

    Google Scholar 

  • Clarholm M, Skyllberg U (2013) Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol Biochem 63(0):142–153. doi:http://dx.doi.org/10.1016/j.soilbio.2013.03.019

    Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348(6231):229–232. doi:10.1126/science.aaa0193, http://www.sciencemag.org/content/348/6231/229.full.pdf

    Google Scholar 

  • Cobert F, Schmitt AD, Bourgeade P, Labolle F, Badot PM, Chabaux F, Stille P (2011a) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Act 75(19):5467–5482

    Article  Google Scholar 

  • Cobert F, Schmitt AD, Calvaruso C, Turpault MP, Lemarchand D, Collignon C, Chabaux F, Stille P (2011b) Biotic and abiotic experimental identification of bacterial influence on calcium isotopic signatures. Rapid Commun Mass Spectrom 25(19):2760–2768

    Article  Google Scholar 

  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Tacon FL, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42(5):679–698. doi:http://dx.doi.org/10.1016/j.soilbio.2009.12.006

    Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10(2):63–66. doi:http://dx.doi.org/10.1016/S0169-5347(00)88978-8

    Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14(16–17):2903–2920. doi:10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6

    Google Scholar 

  • Dahlqvist R, Benedetti MF, Andersson K, Turner D, Larsson T, Stolpe B, Ingri J (2004) Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers. Geochim Cosmochim Acta 68(20):4059–4075. doi:http://dx.doi.org/10.1016/j.gca.2004.04.007

    Google Scholar 

  • Davenport J, Caro G, France-Lanord C (2014) Tracing silicate weathering in the himalaya using the 40 K-40Ca system: a reconnaissance study. Procedia Earth Planet Sci 10(0):238–242. doi:http://dx.doi.org/10.1016/j.proeps.2014.08.030

    Google Scholar 

  • De La Rocha CL, DePaolo DJ (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–1178. doi:10.1126/science.289.5482.1176

    Google Scholar 

  • De La Rocha CL, Hoff C, Bryce J (2008) Calcium cycle. In: Fath SEJD (ed) Encyclopedia of ecology. Academic Press, Oxford, pp 507–513. doi: http://dx.doi.org/10.1016/B978-008045405-4.00569-3

    Google Scholar 

  • DePaolo DJ (2004) Calcium isotopic variatons produced by biological, kinetic, radiogenic and nucleosyntheitic processes. Rev Min Geochem 55:255–288

    Article  Google Scholar 

  • DePaolo DJ (2011) Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim Cosmochim Act 75(4):1039–1056. doi:10.1016/j.gca.2010.11.020

    Google Scholar 

  • de Villiers S (1998) Excess dissolved Ca in the deep ocean: a hydrothermal hypothesis. Earth Planet Sci Lett 164(3–4):627–641

    Article  Google Scholar 

  • Derry LA, Chadwick OA (2007) Contributions from earth’s atmosphere to soil. Elements 3(5):333

    Article  Google Scholar 

  • Dezzeo N, Chacón N (2006) Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela. For Ecol Manage 234(1–3):218–226. doi:http://dx.doi.org/10.1016/j.foreco.2006.07.003

    Google Scholar 

  • Dijkstra FA (2003) Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern {US}. For Ecol Manage 175(1–3):185–194. doi:http://dx.doi.org/10.1016/S0378-1127(02)00128-7

    Google Scholar 

  • Dijkstra FA, Smits MM (2002) Tree species effects on calcium cycling: the role of calcium uptake in deep soils. Ecosystems 5(4):385–398. doi:10.1007/s10021-001-0082-4

    Google Scholar 

  • Dowling CB, Poreda RJ, Basu AR (2003) The groundwater geochemistry of the Bengal Basin: weathering, chemsorption, and trace metal flux to the oceans. Geochim Cosmochim Acta 67(12):2117–2136

    Article  Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58(10):2325–2332

    Article  Google Scholar 

  • Drever JI et al (1988) Geochemical cycles: the continental crust and the oceans. In: Chemical cycles in the evolution of the earth. A Wiley Interscience publication, Hoboken

    Google Scholar 

  • Drever JI (1997) The geochemisrty of Natural waters, 3rd edn. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Drouet T, Herbauts J, Demaiffe D (2005) Long-term records of strontium isotopic composition in tree rings suggest changes in forest calcium sources in the early 20th century. Global Change Biol 11(11):1926–1940. doi:10.1111/j.1365-2486.2005.01034.x

    Google Scholar 

  • Dupré B, Gaillardet J, Rousseau D, Allègre CJ (1996) Major and trace elements of river-borne material: the Congo Basin. Geochim Cosmochim Acta 60:1301–1321

    Article  Google Scholar 

  • Dürr HH, Meybeck M, Dürr SH (2005) Lithologic composition of the earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochem Cycles 19(4):n/a–n/a. doi:10.1029/2005GB002515, gB4S10

    Google Scholar 

  • Ewing SA, Yang W, DePaolo DJ, Michalski G, Kendall C, Stewart BW, Thiemens M, Amundson R (2008) Non-biological fractionation of stable Ca isotopes in soils of the Atacama Desert, Chile. Geochim Cosmochim Act 72:1096–1110. doi:10.1016/j.gca.2007.10.029

    Google Scholar 

  • Fantle MS (2010) Evaluating the Ca isotope proxy. Am J Sci 310(3):194–230

    Article  Google Scholar 

  • Fantle MS (2015) Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies. Geochim Cosmochim Acta 148:378–401. doi:http://dx.doi.org/10.1016/j.gca.2014.10.005

    Google Scholar 

  • Fantle MS, DePaolo DJ (2005) Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett 237(1–2):102–117. doi:10.1016/j.epsl.2005.06.024

    Google Scholar 

  • Fantle MS, DePaolo DJ (2007) Ca isotopes in carbonate sediment and pore fluid from ODP site 807A: The Ca2+ (aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Act 71(10):2524–2546. doi:10.1016/j.gca.2007.03.006

    Google Scholar 

  • Fantle MS, Tipper ET (2014) The global calcium cycle: a review. Earth-Sci Rev 129:148–177

    Article  Google Scholar 

  • Fantle MS, Tollerud H, Eisenhauer A, Holmden C (2012) The Ca isotopic composition of dust-producing regions: measurements of surface sediments in the Black Rock Desert, Nevada. Geochim Cosmochim Act 87:178–193

    Article  Google Scholar 

  • FAO (2007) The state of food and agriculture

    Google Scholar 

  • Farkaš J, Buhl D, Blenkinsop J, Veizer J (2006) Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from \(\delta^{44/40}\) Ca of marine skeletal carbonates. Earth Planet Sci Lett 253(1–2):96–111. doi:10.1016/j.epsl.2006.10.015

    Google Scholar 

  • Farkaš J, Böhm F, Wallmann K, Blenkinsop J, Eisenhauer A, van Geldern R, Munnecke A, Voigt S, Veizer J (2007) Calcium isotope record of phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms. Geochim Cosmochim Act 71(21):5117–5134. doi:10.1016/j.gca.2007.09.004

    Google Scholar 

  • Farkaš J, Déjeant A, Novák M, Jacobsen SB (2011) Calcium isotope constraints on the uptake and sources of Ca2+ in a base-poor forest: a new concept of combining stable (δ 44/42Ca) and radiogenic (ϵCa) signals. Geochim Cosmochim Act 75(22):7031–7046. doi:http://dx.doi.org/10.1016/j.gca.2011.09.021

    Google Scholar 

  • Faurie C, Ferra C, Medori P, Devaux J, Hemptinne J (2011) Ecologie—approche scientifique et pratique, 6th edn. Lavoisier, Paris

    Google Scholar 

  • Fichter J, Turpault MP, Dambrine E, Ranger J (1998) Localization of base cations in particle size fractions of acid forest soils (Vosges Mountains, N-E France). Geoderma 82(4):295–314. doi:http://dx.doi.org/10.1016/S0016-7061(97)00106-7

    Google Scholar 

  • Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, Hoboken

    Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan Erosion. Nature 390:65–67

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Allègre CJ (1999a) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Act 63(23–24):1037–4051. doi:10.1016/S0016-7037(99)00307-5

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999b) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159(1–4):31–60. doi:10.1016/S0009-2541(99)00033-9

    Google Scholar 

  • Galy A, France-Lanord C, Derry LA (1999) The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochim Cosmochim Act 63(13–14):1905–1925. doi:10.1016/S0016-7037(99)00081-2

    Google Scholar 

  • Gangloff S, Stille P, Pierret MC, Weber T, Chabaux F (2014) Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed). Geochim Cosmochim Acta 130:21–41. doi:http://dx.doi.org/10.1016/j.gca.2013.12.033

    Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1998) Rhizospheric processes influencing the biogeochemistry of forest ecosystems 42(1–2):107–120. doi:10.1023/A:1005967203053

    Google Scholar 

  • Gregor CB (1985) The mass-age distribution of Phanerozoic sediments. Geological Society, London, Memoirs 10(1):284–289

    Article  Google Scholar 

  • Griffith EM, Paytan A, Caldeira K, Bullen TD, Thomas E (2008a) A dynamic marine calcium cycle during the past 28 million years. Science 322(5908):1671–1674

    Article  Google Scholar 

  • Griffith EM, Paytan A, Kozdon R, Eisenhauer A, Ravelo AC (2008b) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268(12):124–136

    Article  Google Scholar 

  • Griffith EM, Schauble EA, Bullen TD, Paytan A (2008c) Characterization of calcium isotopes in natural and synthetic barite. Geochim Cosmochim Act 72(23):5641–5658

    Article  Google Scholar 

  • Griffith EM, Paytan A, Eisenhauer A, Bullen TD, Thomas E (2011) Seawater calcium isotope ratios across the eocene-oligocene transition. Geology 39:683–686

    Google Scholar 

  • Griffith EM, Fantle MS, Eisenhauer A, Paytan A, Bullen TD (2015) Effects of ocean acidification on the marine calcium isotope record at the Paleocene–Eocene thermal maximum. Earth Planet Sci Lett 419:81–92. doi:http://dx.doi.org/10.1016/j.epsl.2015.03.010

    Google Scholar 

  • Grousset FE, Biscaye PE (2005) Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem Geol 222(3–4):149–167. doi:http://dx.doi.org/10.1016/j.chemgeo.2005.05.006

    Google Scholar 

  • Gussone N, Filipsson HL (2010) Calcium isotope ratios in calcitic tests of benthic foraminifers. Earth Planet Sci Lett 290(12):108–117

    Google Scholar 

  • Gussone N, Eisenhauer A, Heuser A, Dietzel M, Bock B, Böhm F, Spero HJ, Lea DW, Bijma J, Nägler TF (2003) Model for kinetic effects on calcium isotope fractionation (\(\delta^{44}\) Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim Cosmochim Acta 67(7):1375–1382

    Google Scholar 

  • Gussone N, Eisenhauer A, Tiedemann R, Haug GH, Heuser A, Bock B, Ngler TF, Müller A (2004) Reconstruction of caribbean sea surface temperature and salinity fluctuations in response to the pliocene closure of the central american gateway and radiative forcing, using \(\delta^{44/40}\)Ca, \(\delta^{18}O\) and Mg/Ca ratios. Earth Planet Sci Lett 227(3–4):201–214

    Google Scholar 

  • Gussone N, Böhm F, Eisenhauer A, Dietzel M, Heuser A, Teichert BMA, Reitner J, Wörheide G, Dullo WC (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Act 69(18):4485–4494. doi:10.1016/S0016-7037(02)01296-6

    Google Scholar 

  • Gussone N, Langer G, Geisen M, Steel BA, Riebesell U (2007) Calcium isotope fractionation in coccoliths of cultured calcidiscus leptoporus, helicosphaera carteri, syracosphaera pulchra and umbilicosphaera foliosa. Earth Planet Sci Lett 260(3-4):505–515

    Google Scholar 

  • Gussone N, Hönisch B, Heuser A, Eisenhauer A, Spindler M, Hemleben C (2009) A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim Cosmochim Acta 73(24):7241–7255. doi:http://dx.doi.org/10.1016/j.gca.2009.08.035

    Google Scholar 

  • Gussone N, Zonneveld K, Kuhnert H (2010) Minor element and Ca isotope composition of calcareous dinoflagellate cysts of cultured Thoracosphaera heimii. Earth Planet Sci Lett 289(1–2):180–188. doi:http://dx.doi.org/10.1016/j.epsl.2009.11.006

    Google Scholar 

  • Gussone N, Nehrke G, Teichert BMA (2011) Calcium isotope fractionation in ikaite and vaterite. Chem Geol 285(14):194–202

    Article  Google Scholar 

  • Halicz L, Galy A, Belshaw NS, O’Nions RK (1999) High-precision measurememt of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J Anal At Spectrosc 14:1835–1838

    Article  Google Scholar 

  • Harouaka K, Eisenhauer A, Fantle MS (2014) Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation. Geochim Cosmochim Acta 129:157–176. doi:http://dx.doi.org/10.1016/j.gca.2013.12.004

    Google Scholar 

  • Hartmann J, Moosdorf N (2012) The new global lithological map database glim: a representation of rock properties at the earth surface. Geochemistry, Geophysics, Geosystems 13(12):n/a–n/a. doi:10.1029/2012GC004370

  • Heinemann A, Fietzke J, Eisenhauer A, Zumholz K (2008) Modification of Ca isotope and trace metal composition of the major matrices involved in shell formation of Mytilus edulis. Geochemistry, Geophysics, Geosystems 9(1):n/a–n/a. doi:10.1029/2007GC001777

    Google Scholar 

  • Henderson G, Bayon G, Benoit M, Chu NC (2006) \(\delta^{44/42}\) Ca in gas hydrates, porewaters and authigenic carbonates from Niger Delta sediments. Geochim Cosmochim Act 70(18):A244

    Google Scholar 

  • Hensley TM (2006) Calcium isotopic variation in marine evaporites and carbonates: applications to late miocene mediterranean brine chemistry and late cenozoic calcium cycling in the oceans. PhD thesis, Scripps Institution of Oceanography

    Google Scholar 

  • Hernández J, del Pino A, Salvo L, Arrarte G (2009) Nutrient export and harvest residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate of Uruguay. For Ecol Manage 258(2):92–99. doi:http://dx.doi.org/10.1016/j.foreco.2009.03.050

    Google Scholar 

  • Herwitz SR (1986) Infiltration-excess caused by Stemflow in a cyclone-prone tropical rainforest. Earth Surf Proc Land 11(4):401–412. doi:10.1002/esp.3290110406

    Google Scholar 

  • Heuser A, Eisenhauer A, Böhm F, Wallmann K, Gussone N, Pearson PN, Nägler TF, Dullo WC (2005) Calcium isotope (\(\delta^{44/40}\) Ca) variations of Neogene planktonic foraminifera. Paleoceanography 20:PA2013. doi:10.1029/2004PA001048

    Google Scholar 

  • Hiebenthal C (2009) Sensitivity of A. islandica and M. edulis towards environmental changes: a threat to the bivalves—an opportunity for palaeo-climatology?

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschafts Gesellschaft 1904(98):59–78

    Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  • Hindshaw RS, Reynolds BC, Wiederhold JG, Kretzschmar R, Bourdon B (2011) Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland. Geochim Cosmochim Act 75(1):106–118

    Article  Google Scholar 

  • Hindshaw R, Reynolds B, Wiederhold J, Kiczka M, Kretzschmar R, Bourdon B (2012) Calcium isotope fractionation in alpine plants. Biogeochemistry 1–16. doi:10.1007/s10533-012-9732-1

    Google Scholar 

  • Hindshaw RS, Bourdon B, Pogge von Strandmann PAE, Vigier N, Burton KW (2013) The stable calcium isotopic composition of rivers draining basaltic catchments in iceland. Earth Planet Sci Lett 374:173–184. doi:http://dx.doi.org/10.1016/j.epsl.2013.05.038

    Google Scholar 

  • Hinojosa JL, Brown ST, Chen J, DePaolo DJ, Paytan A, Shen Sz, Payne JL (2012) Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40(8):743–746. doi:10.1130/G33048.1, http://geology.gsapubs.org/content/40/8/743.full.pdf+html

    Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agr 64:225–265

    Article  Google Scholar 

  • Hinsinger P, Gilkes RJ (1996) Mobilization of phosphate from phosphate rock and alumina–sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur J Soil Sci 47(4):533–544. doi:10.1111/j.1365-2389.1996.tb01853.x

    Google Scholar 

  • Hinsinger P, Gilkes R (1997) Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate. Geoderma 75(3–4):231–249. doi:http://dx.doi.org/10.1016/S0016-7061(96)00094-8

    Google Scholar 

  • Hinsinger P, Bolland M, Gilkes R (1995) Silicate rock powder: effect on selected chemical properties of a range of soils from Western Australia and on plant growth as assessed in a glasshouse experiment. Fertilizer Res 45(1):69–79

    Article  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist 168(2):293–303. doi:10.1111/j.1469-8137.2005.01512.x

    Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88(1):210–213

    Article  Google Scholar 

  • Hippler D, Schmitt A, Gussone N, Heuser A, Stille PAE, Nägler T (2003) Ca isotopic composition of various standards and seawater. Geostandard Newslett 27:13–19

    Google Scholar 

  • Hippler D, Eisenhauer A, Nägler TF (2006) Tropical atlantic SST history inferred from Ca isotope thermometry over the last 140 ka. Geochim Cosmochim Act 70(1):90–100. doi:10.1016/j.gca.2005.07.022

    Google Scholar 

  • Hippler D, Buhl D, Witbaard R, Richter DK, Immenhauser A (2009) Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates. Geochim Cosmochim Act 73(20):6134–6146. doi:10.1016/j.gca.2009.07.031

    Google Scholar 

  • Hippler D, Witbaard R, van Aken HM, Buhl D, Immenhauser A (2013) Exploring the calcium isotope signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens. Palaeogeogr Palaeoclimatol Palaeoecol 373:75–87

    Article  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21(10):548–554. doi:http://dx.doi.org/10.1016/j.tree.2006.06.004

    Google Scholar 

  • Holmden C (2009) Ca isotope study of ordovician dolomite, limestone, and anhydrite in the williston basin: implications for subsurface dolomitization and local ca cycling. Chem Geol 268:180–188

    Article  Google Scholar 

  • Holmden C, Bélanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim Act 74(3):995–1015

    Article  Google Scholar 

  • Holmden C, Papanastassiou DA, Blanchon P, Evans S (2012) \(\delta^{44/40}\) ca variability in shallow water carbonates and the impact of submarine groundwater discharge on ca-cycling in marine environments. Geochim Cosmochim Act 83:179–194. doi:10.1016/j.gca.2011.12.031

    Google Scholar 

  • Huang S, Farkaš J, Jacobsen SB (2010) Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett 292(3–4):337–344

    Article  Google Scholar 

  • Huang S, Farkaš J, Jacobsen SB (2011) Stable calcium isotopic compositions of hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta 75(17):4987–4997

    Article  Google Scholar 

  • Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, US Virgin Islands): applications to the nature of reef systems in the fossil record. J Sediment Res 60(3)

    Google Scholar 

  • Husson J, Higgins J, Maloof A et al (2015) Ca and mg isotope constraints on the origin of earth’s deepest excursion. Geochim Cosmochim Act 160:243–266

    Article  Google Scholar 

  • Immenhauser A, Nägler TF, Steuber T, Hippler D (2005) A critical assessment of mollusk 18 O/16 O, Mg/Ca, and 44 Ca/40Ca ratios as proxies for Cretaceous seawater temperature seasonality. Palaeogeogr Palaeoclimatol Palaeoecol 215(3–4):221–237. doi:http://dx.doi.org/10.1016/j.palaeo.2004.09.005

    Google Scholar 

  • IPCC (2014) Climate Change 2014. CUP, NY

    Google Scholar 

  • Jackson M (1956) Soil chemical analysis—advanced course. Department of Soils University of Wisconsin, Madison

    Google Scholar 

  • Jacobson AD, Holmden C (2008) \(\delta^{40}\) Ca evolution in a carbonate aquifer and its bearing on the equilibrium isotope fractionation factor for calcite. Earth Planet Sci Lett 270(3–4):349–353. doi:10.1016/j.epsl.2008.03.039

    Google Scholar 

  • Jacobson AD, Blum JD, Walter LM (2002) Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochim Cosmochim Act 66(19):3417–3429

    Article  Google Scholar 

  • Jacobson AD, Grace Andrews M, Lehn GO, Holmden C (2015) Silicate versus carbonate weathering in iceland: new insights from ca isotopes. Earth Planet Sci Lett 416:132–142. doi:http://dx.doi.org/10.1016/j.epsl.2015.01.030

    Google Scholar 

  • Jarvis I, Burnett W, Nathan Y, Almbaydin F, Attia AKM, Castro LN, Flicoteaux R, Himly ME, Husain V, Outawnah AA, Serjani A, Zanin YN (1994) Phosphorite geochemistry: state-of-the-art and environmental concerns. In concepts and controversies in phosphogenesis. Eclogae Geol Helv 87(3):643–700

    Google Scholar 

  • John DM (1973) Accumulation and decay of litter and net production of forest in tropical West Africa. Oikos 24(3):430–435. doi:10.2307/3543819

    Article  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems: principles and their application in management and conservation. Wiley, Chichester, P019 1UD

    Google Scholar 

  • Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? Am Nat 117(2):167–180. doi:10.2307/2460498

  • Jost AB, Mundil R, He B, Brown ST, Altiner D, Sun Y, DePaolo DJ, Payne JL (2014) Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth Planet Sci Lett 396:201–212. doi:http://dx.doi.org/10.1016/j.epsl.2014.04.014

    Google Scholar 

  • Kasemann SA, Hawkesworth C, Prave AR, Fallick AE, Pearson PN (2005) Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet Sci Lett 231(1–2):73–86

    Article  Google Scholar 

  • Kasemann SA, Schmidt DN, Pearson PN, Hawkesworth CJ (2008) Biological and ecological insights into Ca isotopes in planktic foraminifers as a palaeotemperature proxy. Earth Planet Sci Lett 271(1):292–302

    Google Scholar 

  • Kasemann SA, Pogge von Strandmann PAE, Prave AR, Fallick AE, Elliott T, Hoffmann KH (2014) Continental weathering following a cryogenian glaciation: evidence from calcium and magnesium isotopes. Earth Planet Sci Lett 396:66–77. doi:http://dx.doi.org/10.1016/j.epsl.2014.03.048

    Google Scholar 

  • Kennedy MJ, Chadwick O, Vitousek P, Derry LA, Hendricks D (1998) Replacement of weathering with atmospheric sources of base cations during ecosystem development, Hawaiian Islands. Geol 26:1015–1018

    Article  Google Scholar 

  • Kennedy MJ, Hedin LO, Derry LA (2002) Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition. Proc Natl Acad Sci 99(15):9639–9644

    Google Scholar 

  • Komiya T, Suga A, Ohno T, Han J, Guo J, Yamamoto S, Hirata T, Li Y (2008) Ca isotopic compositions of dolomite, phosphorite and the oldest animal embryo fossils from the Neoproterozoic in Weng’an, South China. Gondwana Research 14(1–2):209–218

    Google Scholar 

  • Langer G, Gussone N, Nehrke G, Riebesell U, Eisenhauer A, Thoms S (2007) Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: independence of growth and calcification rate. Geochem Geophys Geosyst 8(Q05007). doi:10.1029/2006GC001,422

  • Lawrence CR, Neff JC (2009) The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem Geol 267(1–2):46–63. doi:http://dx.doi.org/10.1016/j.chemgeo.2009.02.005

    Google Scholar 

  • Lemarchand D, Wasserburg G, Papanastassiou D (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta 68(22):4665–4678

    Article  Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine 55:1009–1016. doi:10.2136/sssaj1991.03615995005500040020x

    Google Scholar 

  • Li S, Lu XX, He M, Zhou Y, Bei R, Li L, Ziegler AD (2011) Major element chemistry in the upper Yangtze River: a case study of the Longchuanjiang River. Geomorphology 129(1–2):29–42. doi:http://dx.doi.org/10.1016/j.geomorph.2011.01.010

    Google Scholar 

  • Liao JH, Wang HH, Tsai CC, Hseu ZY (2006) Litter production, decomposition and nutrient return of uplifted coral reef tropical forest. For Ecol Manage 235(1–3):174–185. doi:http://dx.doi.org/10.1016/j.foreco.2006.08.010

    Google Scholar 

  • Likens GE, Bormann F (1995) Biogeochemistry of a forest ecosystem, 2nd edn. Springer, Berlin

    Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Pierce RS (1967) The calcium, magnesium, potassium, and sodium budgets for a small forested ecosystem. Ecology 48(5):772–785. doi:10.2307/1933735

    Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272(5259):244–246

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41(2):89–173

    Article  Google Scholar 

  • Lovett GM, Lindberg SE (1984) Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21(3):1013–1027. doi:10.2307/2405064

    Google Scholar 

  • Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a New Hampshire forested landscape. Can J For Res 26(12):2134–2144. doi:10.1139/x26-242, http://dx.doi.org/10.1139/x26-242

    Google Scholar 

  • Mackenzie FT, Morse JW (1992) Sedimentary carbonates through phanerozoic time. Geochim Cosmochim Acta 56:3281–3295

    Article  Google Scholar 

  • Mackenzie FT (2003) Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change. Prentice-Hall

    Google Scholar 

  • Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res: Atmos 111(D10):n/a–n/a. doi:10.1029/2005JD006653

    Google Scholar 

  • Manrique LA, Jones CA (1991) Bulk density of soils in relation to soil physical and chemical properties. Soil Sci Soc Am J 55:476–481. doi:10.2136/sssaj1991.03615995005500020030x

    Google Scholar 

  • Marques R, Ranger J, Villette S, Granier A (1997) Nutrient dynamics in a chronosequence of Douglas-fir (Pseudotsuga menziesii (Mirb). Franco) stands on the Beaujolais Mounts (France). 2. Quantitative approach. For Ecol Manage 92(1):167–197. doi:10.1016/S0378-1127(96)03913-8

    Google Scholar 

  • Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004) Temperature dependence of \(\delta^{7}\) Li, \(\delta^{44}\) Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624

    Google Scholar 

  • Martignier L, Verrecchia EP (2013) Weathering processes in superficial deposits (regolith) and their influence on pedogenesis: a case study in the Swiss Jura Mountains. Geomorphology 189:26–40

    Article  Google Scholar 

  • McLaughlin SB, Wimmer R (1999) Tansley review no. 104. New Phytol 142(3):373–417. doi:10.1046/j.1469-8137.1999.00420.x

    Google Scholar 

  • Meybeck M (1979) Concentration des eaux fluviales en éléments majeurs et apports en solutions aux océans. Rev Géologie Dynamique et Géographie Physique 21(3):215–246

    Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved load. Am J Sci 287:401–428

    Article  Google Scholar 

  • Miller EK, Blum JD, Friedland AJ (1993) Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature 362(6419):438–441

    Google Scholar 

  • Milliere L, Verrecchia E, Gussone N (2014) Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC). In: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol 16, p 5812

    Google Scholar 

  • Milliman J (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cycles 7:927–957

    Article  Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85:496–504

    Article  Google Scholar 

  • Moon S, Chamberlain CP, Hilley GE (2014) New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim Cosmochim Act 134:257–274. doi:http://dx.doi.org/10.1016/j.gca.2014.02.033

    Google Scholar 

  • Mooney RW, Keenan AG, Wood LA (1952) Adsorption of Water Vapor by Montmorillonite. II. Effect of Exchangeable Ions and Lattice Swelling as Measured by X-Ray Diffraction. Journal of the American Chemical Society 74(6):1371–1374. doi:10.1021/ja01126a002, http://dx.doi.org/10.1021/ja01126a002

    Google Scholar 

  • Moore J, Jacobson AD, Holmden C, Craw D (2013) Tracking the relationship between mountain uplift, silicate weathering, and long-term co2 consumption with ca isotopes: Southern alps, new zealand. Chem Geol 341:110–127. doi:http://dx.doi.org/10.1016/j.chemgeo.2013.01.005

    Google Scholar 

  • Mulder J, Cresser M (1994) Soil and soil solution chemistry. In: Biogeochemistry of small catchments: a tool for environmental research, Wiley, Hoboken pp 107–131

    Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Steinberger S, Heine C (2008) Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–1362

    Google Scholar 

  • Nägler T, Eisenhauer A, Muller A, Hemleben C, Kramers J (2000) The \(\delta^{44}\) ca-temperature calibration on fossil and cultured globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophys Geosyst 1(9):2000GC000,091

    Google Scholar 

  • Nagy KL (1995) Dissolution and precipitation kinetics of sheet silicates. Rev Mineral Geochem 31(1):173–233

    Google Scholar 

  • Neumann AC, Land LS (1975) Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas: a budget. J Sediment Res 45(4)

    Google Scholar 

  • Nicótina L, Tarboton DG, Tesfa TK, Rinaldo A (2011) Hydrologic controls on equilibrium soil depths. Water Resour Res 47(4):n/a–n/a. doi:10.1029/2010WR009538

  • Nielsen LC, DePaolo DJ (2013) Ca isotope fractionation in a high-alkalinity lake system: Mono Lake, California. Geochim Cosmochim Acta 118:276–294. doi:http://dx.doi.org/10.1016/j.gca.2013.05.007

    Google Scholar 

  • NRC (2001) Basic research opportunities in earth science. National Academy Press, Washington DC, USA

    Google Scholar 

  • Nykvist N (2000) Tropical forests can suffer from a serious deficiency of calcium after logging. AMBIO: J Hum Environ 29(6):310–313. doi:10.1579/0044-7447-29.6.310

    Google Scholar 

  • Ockert C, Gussone N, Kaufhold S, Teichert BMA (2013) Isotope fractionation during ca exchange on clay minerals in a marine environment. Geochim Cosmochim Acta 112:374–388. doi:http://dx.doi.org/10.1016/j.gca.2012.09.041

    Google Scholar 

  • Oehlerich M, Mayr C, Gussone N, Hahn A, Hölzl S, Lücke A, Ohlendorf C, Rummel S, Teichert BMA, Zolitschka B (2015) Lateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of La- guna Potrok Aike (Argentina). Quat Sci Rev 114:189–202. doi: http://dx.doi.org/10.1016/j.quascirev.2015.02.006

    Google Scholar 

  • Oelkers EH, Gislason SR, Eiriksdottir ES, Jones M, Pearce CR, Jeandel C (2011) The role of riverine particulate material on the global cycles of the elements. Appl Geochem 26 Supplement(0):S365–S369. doi:http://dx.doi.org/10.1016/j.apgeochem.2011.03.062, ninth International Symposium on the Geochemistry of the Earth’s Surface (GES-9)

    Google Scholar 

  • Oliva Viers, Duprà Oliva P, Viers J, Dupré B (2003) Chemical weathering in granitic environments. Chem Geol 202(3–4):225–256

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2):322–331. doi:10.2307/1932179

    Google Scholar 

  • Opdyke BN, Walker JC (1992) Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20(8):733–736, nASA: Grant numbers: NAGW-176

    Google Scholar 

  • Page BD, Bullen TD, Mitchell MJ (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochem doi:10.1007/s10533-008-9188-5

    Google Scholar 

  • Park A, Cameron JL (2008) The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. For Ecol Manage 255(5–6):1915–1925. doi:http://dx.doi.org/10.1016/j.foreco.2007.12.025

    Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133

    Article  Google Scholar 

  • Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagen T, Habura A, Bowser SS (2003) The evolution of early Foraminifera. Proc Nat Acad Sci 100(20):11494–11498. doi:10.1073/pnas.2035132100, http://www.pnas.org/content/100/20/11494.full.pdf

    Google Scholar 

  • Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-permian mass extinction. Proc Natl Acad Sci 107(19):8543–8548

    Article  Google Scholar 

  • Pelletier JD, Rasmussen C (2009) Geomorphically based predictive mapping of soil thickness in upland watersheds. Water Resour Res 45(9):n/a–n/a. doi:10.1029/2008WR007319

  • Perakis SS, Maguire DA, Bullen TD, Cromack K, Waring RH, Boyle JR (2006) Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range. Ecosystems 9(1):63–74. doi:10.1007/s10021-004-0039-5

    Google Scholar 

  • Pett-Ridge JC, Derry LA, Kurtz AC (2009) Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, luquillo mountains, puerto rico. Geochim Cosmochim Acta 73(1):25–43

    Article  Google Scholar 

  • Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Duprà B, Pokrovsky O, Viers J, Shirokova L, Shevchenko V, Filipov A, Dupré B (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem Geol 273(1–2):136–149. doi:http://dx.doi.org/10.1016/j.chemgeo.2010.02.018

    Google Scholar 

  • Pokrovsky OS, Viers J, Dupré B, Chabaux F, Gaillardet J, Audry S, Prokushkin AS, Shirokova LS, Kirpotin SN, Lapitsky SA, Shevchenko VP (2012) Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: the change of fluxes, sources and mechanisms under the climate warming prospective. C R Geosci 344(11–12):663–677. doi:http://dx.doi.org/10.1016/j.crte.2012.08.003, erosion–Alteration: from fundamental mechanisms to geodynamic consequences (Ebelmen’s Symposium)

    Google Scholar 

  • Pretet C, Samankassou E, Felis T, Reynaud S, Böhm F, Eisenhauer A, Ferrier-Pagès C, Gattuso JP, Camoin G (2013) Constraining calcium isotope fractionation (\(\delta^{44} /^{40}\) Ca) in modern and fossil scleractinian coral skeleton. Chem Geol 340:49–58. doi:http://dx.doi.org/10.1016/j.chemgeo.2012.12.006

    Google Scholar 

  • Probst A, Viville D, Fritz B, Ambroise B, Dambrine E (1992) Hydrochemical budgets of a small forested granitic catchment exposed to acid deposition: the Strengbach catchment case study (Vosges massif, France) 62(3–4):337–347. doi:10.1007/BF00480265

    Google Scholar 

  • Probst A, El Gh’mari A, Aubert D, Fritz B, McNutt R (2000) Strontium as a tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, Strengbach, France. Chem Geol 170(1–4):203–219. doi:http://dx.doi.org/10.1016/S0009-2541(99)00248-X

    Google Scholar 

  • Raulund-Rasmussen K, De Jong J, Humphrey J, Smith M, Ravn H, Katzensteiner K, Klimo E, Szukics U, Delaney C, Hansen K, Stupak I, Ring E, Gundersen P, Loustau D (2011) Papers on impacts of forest management on environmental services. Tech. rep., EFI Technical Report 57p

    Google Scholar 

  • Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the mississippi river. Nature 451(7177):449–452

    Article  Google Scholar 

  • Reynard LM, Henderson GM, Hedges REM (2010) Calcium isotope ratios in animal and human bone. Geochim et Cosmochim Act 74(13):3735–3750

    Google Scholar 

  • Reynard LM, Day CC, Henderson GM (2011) Large fractionation of calcium isotopes during cave-analogue calcium carbonate growth. Geochim Cosmochim Act 75(13):3726–3740

    Google Scholar 

  • Richter DD, Markewitz D (1995) How deep is soil? BioScience 45(9):600–609. doi:10.2307/1312764

    Google Scholar 

  • Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234(3–4):299–315. doi:http://dx.doi.org/10.1016/j.epsl.2005.03.006

    Google Scholar 

  • Rochow JJ (1974) Litter fall relations in a missouri forest. Oikos 25(1):80–85. doi:10.2307/3543548

    Google Scholar 

  • Ronov AB (1982) The Earth’s sedimentary shell (quantitative patterns of its structure, compositions, and evolution). Int Geol Rev 24(11):1313–1363. doi:10.1080/00206818209451075

    Google Scholar 

  • Rudnick R, Gao S (2003) Treatise on geochemistry, vol 3, Elsevier Science, Oxford, chap Composition of the Continental Crust, pp 1–64

    Google Scholar 

  • Ryu JS, Jacobson AD, Holmden C, Lundstrom C, Zhang Z (2011) The major ion, \(\delta^{44/40}\) Ca, \(\delta^{44/42}\) Ca, and \(\delta^{26}\) Mg geochemistry of granite weathering at pH = 1 and T = 25°C: power-law processes and the relative reactivity of minerals. Geochim Cosmochim Act 75(20):6004–6026. doi:10.1016/j.gca.2011.07.025

    Google Scholar 

  • Sabine CL, Mackenzie FT (1995) Bank-derived carbonate sediment transport and dissolution in the Hawaiian Archipelago. Aquat Geochem 1(2):189–230. doi:10.1007/BF00702891

    Google Scholar 

  • Schaetzl R (2005) Soils: genesis and geomorphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmitt AD, Bracke G, Stille P, Kiefel B (2001) The calcium isotope composition of modern seawater determined by thermal ionisation mass spectrometry. Geostandard Newslett 25(2-3):267–275

    Google Scholar 

  • Schmitt AD, Stille P (2005) The source of calcium in wet atmospheric deposits: Ca-Sr isotope evidence. Geochim Cosmochim Act 69(14):3463–3468. doi: 10.1016/j.gca.2004.11.010

    Google Scholar 

  • Schmitt AD, Chabaux F, Stille P (2003a) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet Sci Lett 213(3–4):503–518. doi:10.1016/S0012-821X(03)00341-8

    Google Scholar 

  • Schmitt AD, Stille P, Vennemann T (2003b) Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence from \(\delta^{44}\) Ca and \(\delta^{18}\) O values of Miocene phosphates. Geochim Cosmochim Act 67(14):2607–2614. doi:10.1016/S0016-7037(03)00100-5

    Google Scholar 

  • Schmitt AD, Gangloff S, Cobert F, Lemarchand D, Stille P, Chabaux F (2009) High performance automated ion chromatography separation for Ca isotope measurements in geological and biological samples. J Anal Atom Spect 24(8):1089–1097

    Google Scholar 

  • Shen W, Ren H, Jenerette GD, Hui D, Ren H (2013) Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence. Atmos Environ 64(0):242 – 250. doi:http://dx.doi.org/10.1016/j.atmosenv.2012.10.015

    Google Scholar 

  • Sime NG, De La Rocha CL, Galy A (2005) Negligible temperature dependence of calcium isotope fractionation in twelve species of planktonic foramifera. Earth Planet Sci Lett 232(1–2):51–66. doi:10.1016/j.epsl.2005.01.011

    Google Scholar 

  • Sime NG, De La Rocha CL, Tipper ET, Tripati A, Galy A, Bickle MJ (2007) Interpreting the Ca Isotope record of marine biogenic carbonates. Geochim Cosmochim Act 71(16):3979–3989. doi:10.1016/j.gca.2007.06.009

    Google Scholar 

  • Simon JI, DePaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289(3):457–466

    Google Scholar 

  • Simpson A, Kingery W, Hayes M, Spraul M, Humpfer E, Dvortsak P, Kerssebaum R, Godejohann M, Hofmann M (2002) Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89(2):84–88. doi:10.1007/s00114-001-0293-8

    Google Scholar 

  • Skulan J, DePaolo DJ (1999) Calcium isotope fractionation between soft and mineralised tissues as a monitor of calcium use in vertabrates. Proc Nat Acad Sci USA 96(24):13709–13713

    Google Scholar 

  • Skulan J, DePaolo DJ, Owens TL (1997) Biological control of calcium isotope abundances in the global calcium cycle. Geochim Cosmochim Act 61(12):2505–2510. doi:10.1016/S0016-7037(97)00047-1

    Google Scholar 

  • Smith D, Prithiviraj B, Zhang F (2002) Nitrogen fixation: global perspectives. Wiley, CABI Publishing, Wallingford, Oxon, UK, pp 327–330

    Google Scholar 

  • Soudry D, Segal I, Nathan Y, Glenn CR, Halicz L, Lewy Z, VonderHaar DL (2004) 44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous-Eocene Tethyan francolites and their bearing on phosphogenesis in the southern Tethys. Geology 32(5):389–392. doi:10.1130/G20438.1

    Google Scholar 

  • Soudry D, Glenn C, Nathan Y, Segal I, VonderHaar D (2006) Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci Rev 78(1–2):27–57. doi:http://dx.doi.org/10.1016/j.earscirev.2006.03.005

    Google Scholar 

  • Sposito G (1980) Derivation of the Freundlich equation for Ion Exchange Reactions in soils 44:652–654. doi:10.2136/sssaj1980.03615995004400030045x

    Google Scholar 

  • Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Act 70(22):5507–5521. doi:10.1016/j.gca.2006.08.028

    Google Scholar 

  • Summerfield M (1997) Supercontinent break-up and landscape development. Geogr Rev 10:36–40

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Assoc, Sunderland

    Google Scholar 

  • Tang J, Dietzel M, Böhm F, Köhler SJ, Eisenhauer A (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Ca isotopes. Geochim Cosmochim Act 72(15):3733–3745

    Google Scholar 

  • Tang J, Niedermayr A, Köhler SJ, Böhm F, KÄsakürek B, Eisenhauer A, Dietzel M (2012) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength. Geochim Cosmochim Acta 77:432–443. doi:http://dx.doi.org/10.1016/j.gca.2011.10.039

    Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust. Its evolution and composition. Blackwell Science, Oxford

    Google Scholar 

  • Teichert B, Gussone N, Eisenhauer A, Bohrmann G (2005) Clathrites: archives of near-seafloor pore-fluid evolution (delta Ca-44/40, delta C-13, delta O-18) in gas hydrate environments. Geology 33(3):213–216

    Article  Google Scholar 

  • Teichert BMA, Gussone N, Torres ME (2009) Controls on calcium isotope fractionation in sedimentary porewaters. Earth Planet Sci Lett 279(34):373–382

    Article  Google Scholar 

  • Thiffault E, Paré D, Bélanger N, Munson A, Marquis F (2006) Harvesting intensity at clear-felling in the boreal forest Soil Sci Soc Am J 70:691–701. doi:10.2136/sssaj2005.0155

    Google Scholar 

  • Tipper ET, Bickle MJ, Galy A, West AJ, Pomiès C, Chapman HJ (2006a) The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochim Cosmochim Act 70(11):2737–2754. doi:10.1016/j.gca.2006.03.005

    Google Scholar 

  • Tipper ET, Galy A, Bickle MJ (2006b) Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth Planet Sci Lett 247(3–4):267–279. doi:10.1016/j.epsl.2006.04.033

    Google Scholar 

  • Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EA (2006c) The Mg isotope budget of the modern ocean: constraints from riverine Mg isotope ratios. Earth Planet Sci Lett 250:241–253. doi:10.1016/j.epsl.2006.07.037

    Google Scholar 

  • Tipper ET, Galy A, Bickle MJ (2008a) Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control? Geochim Cosmochim Act 72(4):1057–1075. doi:10.1016/j.gca.2007.11.029

    Google Scholar 

  • Tipper ET, Gaillardet J, Galy A, Louvat P, Bickle MJ (2010a) Calcium isotope ratios in the world’s largest rivers: a constraint on the maximum imbalance of oceanic calcium fluxes. Global Biogeochem Cycles 24:GB3019. doi:10.1029/2009GB003574

    Google Scholar 

  • Tipper ET, Gaillardet J, Louvat P, Capmas F, White AF (2010b) Mg isotope constraints on soil pore-fluid chemistry: evidence from Santa Cruz, California. Geochim Cosmochim Act 74:3883–3896. doi:10.1016/j.gca.2010.04.021

    Google Scholar 

  • Tipper ET, Lemarchand E, Hindshaw R, Reynolds BC, Bourdon B (2012) Seasonal sensitivity of weathering processes: hints from magnesium isotopes in a glacial stream. Chem Geol 312–313:80–92. doi:10.1016/j.chemgeo.2012.04.002

    Google Scholar 

  • Tipping E, Hurley MA (1992) A unifying model of cation binding by humic substances. Geochim Cosmochim Acta 56(10):3627–3641. doi:http://dx.doi.org/10.1016/0016-7037(92)90158-F

    Google Scholar 

  • Turchyn AV, DePaolo DJ (2011) Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments. Geochim Cosmochim Acta 75(22):7081–7098

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72(2):175–192

    Google Scholar 

  • Turpault MP, Nys C, Calvaruso C (2009) Rhizosphere impact on the dissolution of test minerals in a forest ecosystem. Geoderma 153(1–2):147–154. doi:http://dx.doi.org/10.1016/j.geoderma.2009.07.023

    Google Scholar 

  • Ullmann CV, Böhm F, Rickaby REM, Wiechert U, Korte C (2013) The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies. Geochem Geophys Geosyst 14(10):4109–4120. doi:10.1002/ggge.20257

    Google Scholar 

  • Valdes MC, Moreira M, Foriel J, Moynier F (2014) The nature of Earth’s building blocks as revealed by calcium isotopes. Earth Planet Sci Lett 394:135–145. doi:http://dx.doi.org/10.1016/j.epsl.2014.02.052

    Google Scholar 

  • Van Cappellen P (2003) Biomineralization and global biogeochemical cycles. Rev Mineral Geochem 54(1):357–381

    Article  Google Scholar 

  • Veizer J, Jansen SL (1985) Basement and sedimentary recycling-2: time dimension to global tectonics. J Geol 93:625–643. doi:10.1086/628992

    Google Scholar 

  • Veizer J, MacKenzie FT (2003) Evolution of sedimentary rocks. Treatise Geochem 7:369–407. doi:10.1016/B0-08-043751-6/07103-6

    Google Scholar 

  • Verrecchia EP, Dumont JL (1996) A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35(3):447–470. doi:10.1007/BF02183036

    Google Scholar 

  • Vivier ADD, Jacobson AD, Lehn GO, Selby D, Hurtgen MT, Sageman BB (2015) Ca isotope stratigraphy across the Cenomanian–Turonian {OAE} 2: links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth Planet Sci Lett 416:121–131. doi:http://dx.doi.org/10.1016/j.epsl.2015.02.001

    Google Scholar 

  • von Allmen K, Nagler TF, Pettke T, Hippler D, Griesshaber E, Logan A, Eisenhauer A, Samankassou E (2010) Stable isotope profiles (Ca, O, C) through modern brachiopod shells of T. septentrionalis and G. vitreus: implications for calcium isotope paleo-ocean chemistry. Chem Geol 269(3–4):210–219

    Article  Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86(C10):9776–9782

    Article  Google Scholar 

  • Wang S, Yan W, Magalhaes H et al (2012) Calcium isotope fractionation and its controlling factors over authigenic carbonates in the cold seeps of the northern South China Sea. Chin Sci Bull 57:1325–1332

    Article  Google Scholar 

  • Wang Z, Hu P, Gaetani G, Liu C, Saenger C, Cohen A, Hart S (2013) Experimental calibration of mg isotope fractionation between aragonite and seawater. Geochim Cosmochim Acta 102:113–123. doi:http://dx.doi.org/10.1016/j.gca.2012.10.022

    Google Scholar 

  • Wefer G (1980) Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285(5763):323–324

    Article  Google Scholar 

  • West AJ, Galy A, Bickle M (2005) Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett 235(1–2):211–228

    Article  Google Scholar 

  • White AF, Schulz MS, Lowenstern JB, Vivit DV, Bullen TD (2005) The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochim Cosmochim Act 69(6):1455–1471

    Article  Google Scholar 

  • White AF, Schulz MS, Vivit DV, Blum AE, Stonestrom DA, Anderson SP (2008) Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: interpreting rates and controls based on soil concentration-depth profiles. Geochim Cosmochim Act 72(1):36–68. doi:10.1016/j.gca.2007.08.029

    Google Scholar 

  • White AF, Schulz MS, Stonestrom DA, Vivit DV, Fitzpatrick JA, Bullen TD, Maher K, Blum AE, Anderson SP (2009) Chemical weathering of a marine terrace chronosequence, santa cruz, california ii: solute profiles, gradients and linear approximations of contemporary and long-term weathering rates. Geochim Cosmochim Act 72(1):36–68. doi:10.1016/j.gca.2007.08.029

    Google Scholar 

  • White AF, Schulz MS, Vivit DV, Bullen TD, Fitzpatrick J (2012) The impact of biotic/abiotic interfaces in mineral nutrient cycling: a study of soils of the santa cruz chronosequence, California. Geochim Cosmochim Acta 77:62–85. doi:http://dx.doi.org/10.1016/j.gca.2011.10.029

    Google Scholar 

  • White T, Brantley S, Banwart S, Chorover J, Dietrich W, Derry L, Lohse K, Anderson S, Aufdendkampe A, Bales R, Kumar P, Richter D, McDowell B, Giardino JR, Houser C (2015) The role of critical zone observatories in critical zone science. vol 19, Elsevier, Philadelphia, pp 15–78. doi:http://dx.doi.org/10.1016/B978-0-444-63369-9.00002-1

    Google Scholar 

  • Wiegand BA, Schwendenmann L (2013) Determination of Sr and Ca sources in small tropical catchments (La Selva, Costa Rica)—a comparison of Sr and Ca isotopes. J Hydrol 488:110–117. doi:http://dx.doi.org/10.1016/j.jhydrol.2013.02.044

    Google Scholar 

  • Wiegand BA, Chadwick OA, Vitousek PM, Wooden JL (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32(L11):404

    Google Scholar 

  • Wieser ME, Buhl D, Bouman C, Schwieters J (2004) High precision calcium isotope ratio measurements using a magnetic sector multiple collector inductively coupled plasma mass spectrometer. J Anal Atom Spect 19:844–851. doi:10.1039/b403339f

    Google Scholar 

  • Wilkinson BH, Algeo TJ (1989) Sedimentary carbonate record of calcium-magnesium cycling. Am J Sci 289:1158–1194

    Article  Google Scholar 

  • Wombacher F, Eisenhauer A, Heuser A, Weyer S (2009) Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS. J Anal Atom Spect 24:627–636. doi:10.1039/b820154d

    Google Scholar 

  • Zekster I, Dzhamalov R (1988) Role of ground water in the hydrological cycle and in continental water balance. UNESCO Paris International Hydrological Programme IHP-II Project 2 3(41623):133

    Google Scholar 

  • Zeller B, Martin F (1998) Contribution à l’étude de la decomposition d’une litiere de hetre, la liberation de l’azote, sa mineralisation et son prevement par le hetre (Fagus sylvatica L.) dans une hetraie de montagne du bassin versant du Strengbach (Haut-Rhin)

    Google Scholar 

  • Zeng GM, Zhang G, Huang GH, Jiang YM, Liu HL (2005) Exchange of Ca2+, Mg2+ and K+ and uptake of H+, for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China. Plant Sci 168(1):259–266. doi:http://dx.doi.org/10.1016/j.plantsci.2004.08.004

    Google Scholar 

  • Zhu P, Macdougall JD (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Act 62(10):1691–1698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Gussone .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tipper, E.T., Schmitt, AD., Gussone, N. (2016). Global Ca Cycles: Coupling of Continental and Oceanic Processes. In: Calcium Stable Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68953-9_6

Download citation

Publish with us

Policies and ethics