Abstract

Objective The therapeutic benefit of inhaled corticoids in bronchiectasis not due to cystic fibrosis is still not well documented. The aim of the present study was to assess the efficacy and safety of inhaled corticoids in this disease. Setting This study was conducted at a tertiary university hospital in the city of Barcelona, Catalonia, (Spain). Method A prospective, double-blind, parallel, placebo-masked study was conducted. Seventy-seven patients (40 women; mean age: 68 years) were randomly assigned to receive either 400 mcg budesonide twice daily or placebo and were regularly reviewed for six months. Results Differences in forced vital capacity and forced expiratory volume in the first second between the beginning and end of the study were not significantly lower in the budesonide group than in the placebo group, either in absolute values [−17.4 (386.9) versus −21.4 (375.5)] or in percentages [−1.9(9.5) versus −2.8 (11.6)]. Microbiological criteria applied to evaluate changes between the beginning and end of the study showed no worsening in the budesonide group compared with the control group, whereas a non-significant improvement was obtained in 8.1 % of cases in the budesonide group compared to 3 % in the placebo group. Although significance was only achieved for sputum eosinophils (p = 0.021), a consistent tendency towards improvement was also observed in secondary end-points (symptoms, number and duration of exacerbations, quality of life, sputum cytology and interleukin-8) in the budesonide group. Conclusion Although further studies are required, inhaled corticoid treatment may be efficacious and safe in bronchiectasis not due to cystic fibrosis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Levine SJ. Bronchial epithelial cell cytokine interactions in airway inflammation. J Investig Med. 1995;43:241–9.
Wilson R. The pathogenesis and management of bronchial infections: the vicious cycle of respiratory decline. Rev Contemp Pharmacother. 1992;3:103–12.
Derendorf H, Nave R, Drollmann A, Cerasoli F, Wurst W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J. 2006;28:1042–50.
From the Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA) 2010. Available from: http://www.ginasthma.org.
From the Global Strategy for the Diagnosis, Management and Prevention of COPD. Global initiative for chronic obstructive lung disease (GOLD) 2010. Available from: http://www.goldcopd.org.
King P. Is there a role for inhaled corticosteroids and macrolide therapy in bronchiectasis? Drugs. 2007;67:965–74.
Inhaled corticosteroids for cystic fibrosis (Review). The Cochrane collaboration 2009.
Inhaled corticosteroids for bronchiectasis (Review). The Cochrane collaboration 2009.
Giner J, Basualdo LV, Casan P, Hernandez C, Macián V, Martínez I, et al. Normativa sobre la utilización de fármacos inhalados. Recomendaciones SEPAR. Arch Bronconeumol. 2000;36:34–43.
Casals T, Nunes V, Palacio A, Giménez J, Gaona A, Ibáñez N, et al. Cystic fibrosis in Spain: high frequency of mutation G542X in the Mediterranean coastal area. Hum Genet. 1993;91:66–70.
Portenoy RK, Thaler HT, Kornblith AB, Lepore JM, Friedlander-Klar H, Kiyasu E, et al. The Memorial Symptom Assessment Scale: an instrument for the evaluation of symptom prevalence, characteristics and distress. Eur J Cancer. 1994;30:1326–36.
Ferrer M, Alonso J, Prieto L, Plaza V, Monso E, Marrades R, et al. Validity and reliability of the St George’s Respiratory Questionnaire alter adaptation to a different language and culture: the Spanish example. Eur Respir J. 1996;9:1160–6.
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.
Pizzichini E, Pizzichini MM, Efthimiadis A, Hargreave FE, Dolovich J. Measurement of inflammatory indices in induced sputum: effects of selection of sputum to minimize salivary contamination. Eur Respir J. 1996;9(6):1174–80.
Murray PR, Washington JA. Microscopic and bacteriologic analysis of expectorated sputum. Mayo Clinic Proc. 1975;50:339–44.
Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493–6.
Kapur N, Bell S. Kolbe J, Chang AB. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev. 2009; 1. Art. no.: CD000996. doi:10.1002/14651858.CD000996.pub2.
Fuschillo S, De Felice A, Balzano G. Mucosal inflammation in idiopathic bronchiectasis: cellular and molecular mechanisms. Eur Respir J. 2008;31:396–406.
Phua GC, Macintyre NR. Inhaled corticosteroids in obstructive airway disease. Respir Care. 2007;52:852–8.
Sutherland R, Allmers H, Ayas NT, Venn J, Martin RJ. Inhaled corticosteroids reduce progression of airflow limitation in chronic obstructive pulmonary disease: a meta-analysis. Thorax. 2003;58:937–41.
Escotte S, Tabary O, Dusser D, Majer-Teboul C, Puchelle E, Jacquot J. Fluticasone reduces IL-6 and IL-8 production of cystic fibrosis bronchial epithelial cells via IKK-β kinase pathway. Eur Respir J. 2003;21:574–81.
Elborn JS, Johnston B, Allen F, Clarke J, McGarry J, Varguese G. Inhaled steroids in patients with bronchiectasis. Respir Med. 1992;86:121–4.
Tsang KWT, Ho PL, Lam WK, Ip MSM, Chan KN, Ho CS, et al. Inhaled fluticasone reduces sputum inflammatory indices in severe bronchiectasis. Am J Respir Crit Care Med. 1998;158:723–7.
Joshi JM, Sundaram P. Role of inhaled steroids in stable bronchiectasis. Indian Pract. 2004;57(4):243–5.
Tsang KW, Tan KC, Ho PL, Ooi GC, Ho JC, Mak J, et al. Inhaled fluticasone in bronchiectasis: a 12 month study. Thorax. 2005;60:239–43.
Martínez-García MA, Perpiñá-Tordera M, Román-Sánchez P, Soler-Cataluña JJ, Carratalá A, Pastor M. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med. 2006;100:1623–32.
Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet. 2003;362:1828–38.
Angrill J, Agustí C, de Celis R, Rañó A, Gozalez J, Solé T, et al. Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax. 2002;57:15–9.
Acknowledgments

The authors wish to thank Christine O’Hara for her help with the English translation of the manuscript and Rosa Llòria for editorial assistance.
Funding
This work was supported by the Catalan Foundation of Pneumology (FUCAP) through a grant attributed to RH, MED and RO.
Conflicts of interest
None declared.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hernando, R., Drobnic, M.E., Cruz, M.J. et al. Budesonide efficacy and safety in patients with bronchiectasis not due to cystic fibrosis. Int J Clin Pharm 34, 644–650 (2012). https://doi.org/10.1007/s11096-012-9659-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11096-012-9659-6