Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The resurgence of covalent drugs

Key Points

  • Covalent drugs block protein function by forming a specific bond between the ligand and target protein.

  • A covalent mechanism of action can provide many pharmacological advantages over a reversible mechanism of action; these advantages include enhanced potency, selectivity and prolonged duration of action.

  • As a therapeutic class, covalent drugs have made a major impact on human health, as indicated by the many examples of US Food and Drug Administration (FDA)-approved covalent drugs in various indications.

  • Many of the approved covalent drugs were discovered through serendipity. Computer-assisted drug design has led to a predictable means of creating a new generation of covalent drugs that have been termed 'targeted covalent inhibitors'.

  • Several targeted covalent inhibitors are in late-stage clinical development and are showing encouraging efficacy.

  • This Review surveys the prevalence and pharmacological advantages of covalent drugs, and discusses how potential risks and challenges may be addressed through innovative design, as well as the broad opportunities presented by targeted covalent inhibitors.

Abstract

Covalent drugs haveproved to be successful therapies for various indications, but largely owing to safety concerns, they are rarely considered when initiating a target-directed drug discovery project. There is a need to reassess this important class of drugs, and to reconcile the discordance between the historic success of covalent drugs and the reluctance of most drug discovery teams to include them in their armamentarium. This Review surveys the prevalence and pharmacological advantages of covalent drugs, discusses how potential risks and challenges may be addressed through innovative design, and presents the broad opportunities provided by targeted covalent inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of approved covalent drugs by therapeutic indication (n= 39).
Figure 2: Timeline of covalent drugs.
Figure 3: Special considerations in the discovery and development of targeted covalent inhibitors.
Figure 4: X-ray complexes of targeted covalent inhibitors covalently bound to their targets.

Similar content being viewed by others

References

  1. Potashman, M. H. & Duggan, M. E. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52, 1231–1246 (2009). An excellent historical perspective on the prevalence of covalent drugs.

    Article  CAS  Google Scholar 

  2. Robertson, J. G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).

    Article  CAS  Google Scholar 

  3. Bartholow, M. Top 200 Prescription Drugs of 2009. Pharmacy Times [online], (2010).

  4. Jeffreys, D. Aspirin: The Remarkable Story of a Wonder Drug (Bloomsbury, New York, 2004).

    Google Scholar 

  5. Dixon, J. M. Exemestane: a potent irreversible aromatase inactivator and a promising advance in breast cancer treatment. Expert. Rev. Anticancer Ther. 2, 267–275 (2002).

    Article  CAS  Google Scholar 

  6. Thomas, D. M. & Zalcberg, J. R. 5-fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin. Exp. Pharmacol. Physiol. 25, 887–895 (1998).

    Article  CAS  Google Scholar 

  7. Xu, H., Faber, C., Uchiki, T., Racca, J. & Dealwis, C. Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Proc. Natl Acad. Sci. USA 103, 4028–4033 (2006).

    Article  CAS  Google Scholar 

  8. Yusuf, S. et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345, 494–502 (2001).

    Article  CAS  Google Scholar 

  9. Esplugues, J. V. & Marti-Cabrera, M. Safety and interactions of proton pump inhibitors: lessons learned in millions of patients. Gastroenterol. Hepatol. 33 (Suppl. 1), 15–21 (2010).

    Article  Google Scholar 

  10. Oldfield, V., Keating, G. M. & Perry, C. M. Rasagiline: a review of its use in the management of Parkinson's disease. Drugs 67, 1725–1747 (2007).

    Article  CAS  Google Scholar 

  11. Savi, P. et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost. 84, 891–896 (2000).

    Article  CAS  Google Scholar 

  12. Warner, T. D. & Mitchell, J. A. Cyclooxygenase-3 (COX-3): filling in the gaps toward a COX continuum? Proc. Natl Acad. Sci. USA 99, 13371–13373 (2002).

    Article  CAS  Google Scholar 

  13. Waxman, D. J. & Strominger, J. L. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869 (1983).

    Article  CAS  Google Scholar 

  14. Olbe, L., Carlsson, E. & Lindberg, P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nature Rev. Drug Discov. 2, 132–139 (2003).

    Article  CAS  Google Scholar 

  15. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  Google Scholar 

  16. Erve, J. C. Chemical toxicology: reactive intermediates and their role in pharmacology and toxicology. Expert. Opin. Drug Metab. Toxicol. 2, 923–946 (2006).

    Article  CAS  Google Scholar 

  17. Uetrecht, J. Immune-mediated adverse drug reactions. Chem. Res. Toxicol. 22, 24–34 (2009).

    Article  CAS  Google Scholar 

  18. Baillie, T. A. Future of toxicology — metabolic activation and drug design: challenges and opportunities in chemical toxicology. Chem. Res. Toxicol. 19, 889–893 (2006). A comprehensive overview of the toxicological implications of biotransformation of drugs.

    Article  CAS  Google Scholar 

  19. Liebler, D. C. Protein damage by reactive electrophiles: targets and consequences. Chem. Res. Toxicol. 21, 117–128 (2008).

    Article  CAS  Google Scholar 

  20. Kumar, S., Kassahun, K., Tschirret-Guth, R. A., Mitra, K. & Baillie, T. A. Minimizing metabolic activation during pharmaceutical lead optimization: progress, knowledge gaps and future directions. Curr. Opin. Drug Discov. Devel. 11, 43–52 (2008).

    CAS  PubMed  Google Scholar 

  21. Lammert, C. et al. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology 47, 2003–2009 (2008).

    Article  CAS  Google Scholar 

  22. Zhang, D. et al. Metabolism, pharmacokinetics, and protein covalent binding of radiolabeled MaxiPost (BMS-204352) in humans. Drug Metab. Dispos. 33, 83–93 (2005).

    Article  Google Scholar 

  23. Tummino, P. J. & Copeland, R. A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492 (2008).

    Article  CAS  Google Scholar 

  24. Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug-target residence time and its implications for lead optimization. Nature Rev. Drug Discov. 5, 730–739 (2006).

    Article  CAS  Google Scholar 

  25. Copeland, R. A. Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. 1–265 (Wiley, Hoboken, New Jersey, 2005).

    Google Scholar 

  26. Lu, H. & Tonge, P. J. Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol. 14, 467–474 (2010).

    Article  CAS  Google Scholar 

  27. Rajashekhar, B., Fitzpatrick, P. F., Colombo, G. & Villafranca, J. J. Synthesis of several 2-substituted 3-(p-hydroxyphenyl)-1-propenes and their characterization as mechanism-based inhibitors of dopamine β-hydroxylase. J. Biol. Chem. 259, 6925–6930 (1984).

    CAS  PubMed  Google Scholar 

  28. Wu, J. C. & Fritz, L. C. Irreversible caspase inhibitors: tools for studying apoptosis. Methods 17, 320–328 (1999).

    Article  CAS  Google Scholar 

  29. Ahn, K. et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 16, 411–420 (2009).

    Article  CAS  Google Scholar 

  30. Kuntz, I. D., Chen, K., Sharp, K. A. & Kollman, P. A. The maximal affinity of ligands. Proc. Natl Acad. Sci. USA 96, 9997–10002 (1999).

    Article  CAS  Google Scholar 

  31. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).

    Article  Google Scholar 

  32. Hajduk, P. J. Fragment-based drug design: how big is too big? J. Med. Chem. 49, 6972–6976 (2006).

    Article  CAS  Google Scholar 

  33. Smith, A. J., Zhang, X., Leach, A. G. & Houk, K. N. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J. Med. Chem. 52, 225–233 (2009). An insightful review of the potential for covalent drugs to achieve excellent potency towards drug targets.

    Article  CAS  Google Scholar 

  34. Wissner, A. et al. Synthesis and structure–activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J. Med. Chem. 46, 49–63 (2003).

    Article  CAS  Google Scholar 

  35. Jencks, W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219–410 (1975).

    CAS  PubMed  Google Scholar 

  36. Menger, F. M. On the source of intramolecular and enzymatic reactivity. Acc. Chem. Res. 18, 128–134 (1985).

    Article  CAS  Google Scholar 

  37. Puente, X. S., Sanchez, L. M., Overall, C. M. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nature Rev. Genet. 4, 544–558 (2003).

    Article  CAS  Google Scholar 

  38. Turk, B. Targeting proteases: successes, failures and future prospects. Nature Rev. Drug Discov. 5, 785–799 (2006).

    Article  CAS  Google Scholar 

  39. Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).

    Article  CAS  Google Scholar 

  40. Hagel, M. Selective irreversible inhibition of a protease by targeting a non-catalytic cysteine. Nature Chem. Biol. 7, 22–24 (2010). This was the first reported example of a TCI of a protease that targeted a non-catalytic residue.

    Article  Google Scholar 

  41. Lewandowicz, A., Tyler, P. C., Evans, G. B., Furneaux, R. H. & Schramm, V. L. Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J. Biol. Chem. 278, 31465–31468 (2003).

    Article  CAS  Google Scholar 

  42. Sachs, G., Shin, J. M. & Howden, C. W. Review article: the clinical pharmacology of proton pump inhibitors. Aliment. Pharmacol. Ther. 23 (Suppl. 2), 2–8 (2006).

    Article  CAS  Google Scholar 

  43. Kwak, E. L. et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl Acad. Sci. USA 102, 7665–7670 (2005).

    Article  CAS  Google Scholar 

  44. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  Google Scholar 

  45. Carter, T. A. et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc. Natl Acad. Sci. USA 102, 11011–11016 (2005).

    Article  CAS  Google Scholar 

  46. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    Article  CAS  Google Scholar 

  47. Singh, J. et al. Structure-based design of a potent, selective, and irreversible inhibitor of the catalytic domain of the erbB receptor subfamily of protein tyrosine kinases. J. Med. Chem. 40, 1130–1135 (1997). The original outline of the TCI strategy targeted towards EGFR.

    Article  CAS  Google Scholar 

  48. Fry, D. W. Inhibition of the epidermal growth factor receptor family of tyrosine kinases as an approach to cancer chemotherapy: progression from reversible to irreversible inhibitors. Pharmacol. Ther. 82, 207–218 (1999).

    Article  CAS  Google Scholar 

  49. Wissner, A. & Mansour, T. S. The development of HKI-272 and related compounds for the treatment of cancer. Arch. Pharm. (Weinheim) 341, 465–477 (2008).

    Article  CAS  Google Scholar 

  50. Cohen, M. S., Zhang, C., Shokat, K. M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).

    Article  CAS  Google Scholar 

  51. Zhou, W. et al. A structure-guided approach to creating covalent FGFR inhibitors. Chem. Biol. 17, 285–295 (2010).

    Article  CAS  Google Scholar 

  52. Schirmer, A., Kennedy, J., Murli, S., Reid, R. & Santi, D. V. Targeted covalent inactivation of protein kinases by resorcylic acid lactone polyketides. Proc. Natl Acad. Sci. USA 103, 4234–4239 (2006).

    Article  CAS  Google Scholar 

  53. Choi, S., Connelly, S., Reixach, N., Wilson, I. A. & Kelly, J. W. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nature Chem. Biol. 6, 133–139 (2010).

    Article  CAS  Google Scholar 

  54. Fry, D. W. Site-directed irreversible inhibitors of the erbB family of receptor tyrosine kinases as novel chemotherapeutic agents for cancer. Anticancer Drug Des. 15, 3–16 (2000).

    CAS  PubMed  Google Scholar 

  55. Fry, D. W. et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl Acad. Sci. USA 95, 12022–12027 (1998). This was the first example of targeted covalent inhibition of a kinase with detailed in vitro and in vivo characterization.

    Article  CAS  Google Scholar 

  56. Gan, J., Harper, T. W., Hsueh, M. M., Qu, Q. & Humphreys, W. G. Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem. Res. Toxicol. 18, 896–903 (2005).

    Article  CAS  Google Scholar 

  57. Torrance, C. J. et al. Combinatorial chemoprevention of intestinal neoplasia. Nature Med. 6, 1024–1028 (2000).

    Article  CAS  Google Scholar 

  58. Chandrasekaran, A. et al. Reversible covalent binding of neratinib to human serum albumin in vitro. Drug Metab. Lett. 4, 220–227 (2010).

    Article  CAS  Google Scholar 

  59. Wang, J. et al. Characterization of HKI-272 covalent binding to human serum albumin. Drug Metab. Dispos. 38, 1083–1093 (2010).

    Article  CAS  Google Scholar 

  60. Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    Article  CAS  Google Scholar 

  61. Yap, T. A. et al. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J. Clin. Oncol. 28, 3965–3972 (2010).

    Article  CAS  Google Scholar 

  62. Gonzales, A. J. et al. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol. Cancer Ther. 7, 1880–1889 (2008).

    Article  CAS  Google Scholar 

  63. Burstein, H. J. et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol. 28, 1301–1307 (2010). Promising early clinical data with the TCI neratinib.

    Article  CAS  Google Scholar 

  64. Singh, J., Petter, R. C. & Kluge, A. F. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol. 14, 475–480 (2010).

    Article  CAS  Google Scholar 

  65. Vogiatzi, P. & Claudio, P. P. Efficacy of abiraterone acetate in post-docetaxel castration-resistant prostate cancer. Expert. Rev. Anticancer Ther. 10, 1027–1030 (2010).

    Article  CAS  Google Scholar 

  66. O'Connor, O. A. et al. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin. Cancer Res. 15, 7085–7091 (2009).

    Article  CAS  Google Scholar 

  67. Ryan, C. J. et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol. 28, 1481–1488 (2010).

    Article  CAS  Google Scholar 

  68. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  Google Scholar 

  69. Lin, C., Kwong, A. D. & Perni, R. B. Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS34A serine protease. Infect. Disord. Drug Targets 6, 3–16 (2006).

    Article  CAS  Google Scholar 

  70. Kwo, P. Y. et al. Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon α2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. Lancet 376, 705–716 (2010).

    Article  CAS  Google Scholar 

  71. Gierse, J. K., Koboldt, C. M., Walker, M. C., Seibert, K. & Isakson, P. C. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem. J. 339, 607–614 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Avila team for their help and encouragement in the preparation of this manuscript. We would also like to thank K. Houk, D. Fry and A. Wissner for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juswinder Singh.

Ethics declarations

Competing interests

Juswinder Singh and Russell C. Petter are employees of Avila Therapeutics.

Thomas A. Baillie and Adrian Whitty are paid consultants of Avila Therapeutics.

Supplementary information

Related links

Related links

DATABASES

RCSB Protein Data Bank (PDB) 

3OYP

2JIV

FURTHER INFORMATION

ChEMBL-og — Kinase Inhibitors in Clinical Development

Glossary

Idiosyncratic drug-related toxicity

(IDT). A rare adverse event that is observed after administration of certain drugs and is frequently immunogenic in origin.

Targeted covalent inhibitor

An inhibitor bearing a bond-forming functional group of low reactivity that, following binding to the target protein, is positioned to react rapidly with a specific non-catalytic residue at the target site. For the purposes of this Review, it is assumed that covalent modification is essentially irreversible.

Covalent inhibitor

An inhibitor that reacts with its target protein to form a covalent complex in which the protein has lost its function. Covalent inhibitors can be reversible or irreversible, depending on the rate of the reverse reaction. In this Review, we predominantly consider irreversible inhibitors, and so the terms 'covalent inhibitor' and 'irreversible inhibitor' are used interchangeably.

Irreversible inhibitor

An inhibitor that possesses an off-rate that is slow relative to the rate of re-synthesis of the target protein in vivo, so that once the target protein is inhibited, it does not regain activity.

Re-synthesis rate

The rate at which a cell and/or organism replaces a protein target with freshly synthesized functional protein. The re-synthesis rate defines the rate at which an irreversibly inhibited protein target will recover activity in vivo, once the inhibitor is no longer present.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Petter, R., Baillie, T. et al. The resurgence of covalent drugs. Nat Rev Drug Discov 10, 307–317 (2011). https://doi.org/10.1038/nrd3410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3410

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer