Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Why do RNA viruses recombine?

Key Points

  • RNA viruses are able to undergo two forms of recombination: RNA recombination, which (in principle) can occur in any type of RNA virus, and reassortment, which is restricted to those viruses with segmented genomes.

  • Rates of RNA recombination vary markedly among RNA viruses. Some viruses, particularly those with negative-sense single-stranded genomes, exhibit such low rates of recombination that they are effectively clonal. By contrast, some positive-sense single-stranded RNA viruses and some retroviruses such as HIV exhibit high rates of recombination that can exceed the rates of mutation when measured per nucleotide.

  • Although recombination is often argued to represent a form of sexual reproduction, there is little evidence that recombination in RNA viruses evolved as a way of creating advantageous genotypes or removing deleterious mutations. In particular, there is no association between recombination frequency and the burden of a deleterious mutation. Similarly, there is little evidence that recombination could have been selected as a form of genetic repair.

  • The strongest association for rates of recombination in RNA viruses is with genome structure. Hence, negative-sense single-stranded RNA viruses may recombine at low rates because of the restrictive association of genomic RNA in a ribonucleoprotein complex, as well as a lack of substrates for template switching, whereas some retroviruses recombine rapidly because their virions contain two genome copies and template switching between these copies is an inevitable part of the viral replication cycle.

  • We therefore hypothesize that recombination in RNA viruses is a mechanistic by-product of the processivity of the viral polymerase that is used in replication, and that it varies with genome structure.

Abstract

Recombination occurs in many RNA viruses and can be of major evolutionary significance. However, rates of recombination vary dramatically among RNA viruses, which can range from clonal to highly recombinogenic. Here, we review the factors that might explain this variation in recombination frequency and show that there is little evidence that recombination is favoured by natural selection to create advantageous genotypes or purge deleterious mutations, as predicted if recombination functions as a form of sexual reproduction. Rather, recombination rates seemingly reflect larger-scale patterns of viral genome organization, such that recombination may be a mechanistic by-product of the evolutionary pressures acting on other aspects of virus biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of recombinant and reassortant RNA viruses.
Figure 2: Potential consequences of a disassociation event during viral transcription.
Figure 3: Evolutionary consequences of recombination.

Similar content being viewed by others

References

  1. Holmes, E. C. The Evolution and Emergence of RNA Viruses (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  2. Brown, D. W. Threat to humans from virus infections of non-human primates. Rev. Med. Virol. 7, 239–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Gibbs, M. J. & Weiller, G. F. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc. Natl Acad. Sci. USA 96, 8022–8027 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khatchikian, D., Orlich, M. & Rott, R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340, 156–157 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Malim, M. H. & Emerman, M. HIV-1 sequence variation: drift, shift, and attenuation. Cell 104, 469–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Nora, T. et al. Contribution of recombination to the evolution of human immunodeficiency viruses expressing resistance to antiretroviral treatment. J. Virol. 81, 7620–7628 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lai, M. M. RNA recombination in animal and plant viruses. Microbiol. Rev. 56, 61–79 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aaziz, R. & Tepfer, M. Recombination in RNA viruses and in virus-resistant transgenic plants. J. Gen. Virol. 80, 1339–1346 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Breyer, W. A. & Matthews, B. W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Von Hippel, P. H., Fairfield, F. R. & Dolejsi, M. K. On the processivity of polymerases. Ann. NY Acad. Sci. 726, 118–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Baird, H. A. et al. Sequence determinants of breakpoint location during HIV-1 intersubtype recombination. Nucleic Acids Res. 34, 5203–5216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galetto, R., Giacomoni, V., Véron, M. & Negroni, M. Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycle. J. Biol. Chem. 281, 2711–2720 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, J. & Temin, H. M. Retrovirus recombination depends on the length of sequence identity and is not error prone. J. Virol. 68, 2409–2414 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Worobey, M. & Holmes, E. C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80, 2535–2543 (1999). A review of recombination frequency in RNA viruses, focusing particularly on the use of phylogenetic methods to investigate this characteristic.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, A. S. & Baltimore, D. Defective viral particles and viral disease processes. Nature 226, 325–327 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. Roux., L., Simon, A. E. & Holland, J. J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res. 40, 181–211 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazzarini, R. A., Keene, J. D. & Schubert, M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26, 145–154 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Chetverin, A. B., Chetverina, H. V., Demidenko, A. A. & Ugarov, V. I. Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure. Cell 88, 503–513 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gallei, A., Pankraz, A., Thiel, H. J. & Becher, P. RNA recombination in vivo in the absence of viral replication. J. Virol. 78, 6271–6281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gmyl, A. P. et al. Nonreplicative RNA recombination in poliovirus. J. Virol. 73, 8958–8965 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McDonald, S. M. & Patton, J. T. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol. 19, 136–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Nibert, M. L., Margraf, R. L. & Coombs, K. M. Nonrandom segregation of parental alleles in reovirus reassortants. J. Virol. 70, 7295–7300 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu, W. P., Geske, S. M., Hickey, C. M. & Moyer, J. W. Tomato spotted wilt Tospovirus genome reassortment and genome segment-specific adaptation. Virology 244, 186–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Urquidi, V. & Bishop, D. H. Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J. Gen. Virol. 73, 2255–2265 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Roossinck, M. J. Symbiosis versus competition in plant virus evolution. Nature Rev. Microbiol. 3, 917–924 (2005).

    Article  CAS  Google Scholar 

  26. González-Jara, P., Fraile, A., Canto, T. & García-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of Soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. García-Arriaza, J., Manrubia, S. C., Toja, M., Domingo, E. & Escarmís, C. Evolutionary transition toward defective RNAs that are infectious by complementation. J. Virol. 78, 11678–11685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O. & Arnold, F. H. On the conservative nature of intragenic recombination. Proc. Natl Acad. Sci. USA 102, 5380–5385 (2005). An important paper exploring the relative impact of mutation and recombination on the functionality of proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nature Struct. Biol. 9, 553–558 (2002).

    CAS  PubMed  Google Scholar 

  31. Escriu, F., Fraile, A. & García-Arenal, F. Constraints to genetic exchange support gene coadaptation in a tripartite RNA virus. PLoS Pathog. 3, e8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pringle, C. R., Lees, J. F., Clark, W. & Elliott, R. M. Genome subunit reassortment among Bunyaviruses analysed by dot hybridization using molecularly cloned complementary DNA probes. Virology 135, 244–256 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Mansky, L. M. Retrovirus mutation rates and their role in genetic variation. J. Gen. Virol. 79, 1337–1345 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Neher, R. A. & Leitner, T. Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput. Biol. 6, e1000660 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shriner, D., Rodrigo, A. G., Nickle, D. C. & Mullins, J. I. Pervasive genomic recombination of HIV-1 in vivo. Genetics 167, 1573–1583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Savolainen-Kopra, C. & Blomqvist, S. Mechanisms of genetic variation in polioviruses. Rev. Med. Virol. 20, 358–371 (2010).

    Article  PubMed  Google Scholar 

  37. Lai, M. M., Pearlman, S. & Anderson, L. J. in Fields Virology 5th edn (eds Howley, P. M. & Knipe, D. M.) 1305–1335 (Lippincott Williams and Wilkins, Philadelphia, USA, 2007).

    Google Scholar 

  38. Urbanowicz, A. et al. Homologous crossovers among molecules of brome mosaic bromovirus RNA1 or RNA2 segments in vivo. J. Virol. 79, 5732–5742 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibbs, A. & Ohshima, K. Potyviruses and the digital revolution. Annu. Rev. Phytopathol. 48, 205–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Tomimura, K. et al. Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330, 408–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Holmes, E. C., Worobey, M. & Rambaut, A. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16, 405–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Taucher, C., Berger, A. & Mandl, C. W. A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J. Virol. 84, 599–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Tolou, H. J. et al. Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J. Gen. Virol. 82, 1283–1290 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Uzcategui, N. Y. et al. Molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J. Gen. Virol. 82, 2945–2953 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Reiter, J. et al. Hepatitis C virus RNA recombination in cell culture. J. Hepatol. 17 Feb 2011 (doi:10.1016/j.jhep.2010.12.038).

    Article  CAS  PubMed  Google Scholar 

  46. Chare, E. R., Gould, E. A. & Holmes, E. C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 84, 2691–2703 (2003). A study that uses a comparative phylogenetic analysis to show the low rate of recombination in (−)ssRNA viruses.

    Article  CAS  PubMed  Google Scholar 

  47. McCarthy, A. J., Shaw, M. A. & Goodman, S. J. Pathogen evolution and disease emergence in carnivores. Proc. Biol. Sci. 274, 3165–3174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boni, M. F., de Jong, M. D., van Doorn, H. R. & Holmes, E. C. Guidelines for identifying homologous recombination events in influenza A virus. PLoS ONE 5, e10434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatchette, T. F. et al. Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J. Gen. Virol. 85, 2327–2337 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Lindstrom, S. E., Cox, N. J. & Klimov, A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957–1972: evidence for genetic divergence and multiple reassortment events. Virology 328, 101–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Xu, X. et al. Reassortment and evolution of current human influenza A and B viruses. Virus Res. 103, 55–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Jetzt, A. E. et al. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol. 74, 1234–1240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jung, A. et al. Recombination: multiply infected spleen cells in HIV patients. Nature 418, 144 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Nemirov, K. et al. Isolation and characterization of Dobrava hantavirus carried by the striped field mouse (Apodemus agrarius) in Estonia. J. Gen. Virol. 80, 371–379 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Vieth, S., Torda, A. E., Asper, M., Schmitz, H. & Gunther, S. Sequence analysis of L RNA of Lassa virus. Virology 318, 153–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Miranda, G. J., Azzam, O. & Shirako, Y. Comparison of nucleotide sequences between northern and southern philippine isolates of rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology 266, 26–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Rabadan, R., Levine, A. J. & Krasnitz, M. Non-random reassortment in human influenza A viruses. Influenza Other Respi. Viruses 2, 9–22 (2008).

    Article  CAS  Google Scholar 

  58. Iturriza-Gómara, M., Isherwood, B., Desselberger, U. & Gray, J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J. Virol. 75, 3696–3705 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Watanabe, M., Nakagomi, T., Koshimura, Y. & Nakagomi, O. Direct evidence for genome segment reassortment between concurrently-circulating human rotavirus strains. Arch. Virol. 146, 557–570 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Horimoto, T. & Kawaoka, Y. Influenza: lessons from past pandemics, warnings from current incidents. Nature Rev. Microbiol. 3, 591–600 (2005).

    Article  CAS  Google Scholar 

  61. McDonald, S. M. et al. Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog. 5, e1000634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silander, O. K. et al. Widespread genetic exchange among terrestrial bacteriophages. Proc. Natl Acad. Sci. USA 102, 19009–19014 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rice, W. R. Experimental tests of the adaptive significance of sexual recombination. Nature Rev. Genet. 3, 241–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Burt, A. Perspective: sex, recombination, and the efficacy of selection – was Weismann right? Evolution 54, 337–351 (2000).

    CAS  PubMed  Google Scholar 

  65. Gu, Z., Gao, Q., Faust, E. A. & Wainberg, M. A. Possible involvement of cell fusion and viral recombination in generation of human immunodeficiency virus variants that display dual resistance to AZT and 3TC. J. Gen. Virol. 76, 2601–2605 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Kellam, P. & Larder, B. A. Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J. Virol. 69, 669–674 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moutouh, L., Corbeil, J. & Richman, D. D. Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc. Natl Acad. Sci. USA 93, 6106–6111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yusa, K., Kavlick, M. F., Kosalaraksa, P. & Mitsuya, H. HIV-1 acquires resistance to two classes of antiviral drugs through homologous recombination. Antiviral Res. 36, 179–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Kalinina, O., Norder, H., Mukomolov, S. & Magnius, L. O. A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. J. Virol. 76, 4034–4043 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Noppornpanth, S. et al. Identification of a naturally occurring recombinant genotype 2/6 hepatitis C virus. J. Virol. 80, 7569–7577 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sentandreu, V. et al. Evidence of recombination in intrapatient populations of hepatitis C virus. PLoS ONE 3, e3239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999). An important experimental demonstration of clonal interference in RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  74. Pepin, K. M. & Wichman, H. A. Experimental evolution and genome sequencing reveal variation in levels of clonal interference in large populations of bacteriophage phiX174. BMC Evol. Biol. 8, 85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage phi6. Genetics 166, 19–24 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    Article  CAS  PubMed  Google Scholar 

  77. Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455 (1990). A classic demonstration of the occurrence of Muller's ratchet in an experimental RNA virus population.

    Article  CAS  PubMed  Google Scholar 

  78. Chao, L. in The Evolutionary Biology of Viruses (ed. Morse, S. S.) 233–250 (Raven, New York,1994).

    Google Scholar 

  79. Chao, L., Tran, T. T. & Matthews, C. Muller's ratchet and the advantage of sex in the RNA virus phi-6. Evolution 46, 289–299 (1992).

    PubMed  Google Scholar 

  80. Chao, L. & Tran, T. T. The advantage of sex in the RNA virus phi6. Genetics 147, 953–959 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lázaro, E., Escarmís, C., Pérez-Mercader, J., Manrubia, S. C. & Domingo, E. Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. Proc. Natl Acad. Sci. USA 100, 10830–10835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex. Science 290, 331–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988). A seminal report outlining the mutational deterministic hypothesis for the evolution of sexual reproduction.

    Article  CAS  PubMed  Google Scholar 

  84. Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nature Rev. Genet. 9, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Elena, S. F. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J. Mol. Evol. 49, 703–707 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Pybus, O. G. et al. Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol. Biol. Evol. 24, 845–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Bonhoeffer, S., Chappey, C., Parkin, N. T., Whitcomb, J. M. & Petropoulos, C. J. Evidence for positive epistasis in HIV-1. Science 306, 1547–1550 (2004). An important study showing that positive (antagonistic) epistasis occurs in HIV and, hence, that recombination is unlikely to be selected as a way of purging deleterious mutations.

    Article  CAS  PubMed  Google Scholar 

  88. Burch, C. L., Turner, P. E. & Hanley, K. A. Patterns of epistasis in RNA viruses: a review of the evidence from vaccine design. J. Evol. Biol. 16, 1223–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Sanjuan, R., Moya, A. & Elena, S. F. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc. Natl Acad. Sci. USA 101, 15376–15379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shapiro, B., Rambaut, A., Pybus, O. G. & Holmes, E. C. A phylogenetic method for detecting positive epistasis in gene sequences and its application to RNA virus evolution. Mol. Biol. Evol. 23, 1724–1730 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Elena, S. F., Carrasco, P., Daros, J. A. & Sanjuan, R. Mechanisms of genetic robustness in RNA viruses. EMBO Rep. 7, 168–173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Turner, P. E. & Chao, L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics 150, 523–532 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fulton, R. W. Practices and precautions in the use of cross protection for plant-virus disease control. Annu. Rev. Phytopathol. 24, 67–81 (1986).

    Article  Google Scholar 

  94. Nethe, M., Berkhout, B. & van der Kuyl, A. C. Retroviral superinfection resistance. Retrovirology 2, 52 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, Y. M., Tscherne, D. M., Yun, S. I., Frolov, I. & Rice, C. M. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J. Virol. 79, 3231–3242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adams, R. H. & Brown, D. T. BHK cells expressing Sindbis virus-induced homologous interference allow the translation of nonstructural genes of superinfecting virus. J. Virol. 54, 351–357 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Karpf, A. R., Lenches, E., Strauss, E. G., Strauss, J. H. & Brown, D. T. Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J. Virol. 71, 7119–7123 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Michod, R. E., Bernstein, H. & Nedelcu, A. M. Adaptive value of sex in microbial pathogens. Infect. Genet. Evol. 8, 267–285 (2008). An article that outlines the repair hypothesis for the evolution of sexual reproduction and applies it to microbial populations, including RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  99. Coffin, J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol. 42, 1–26 (1979).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, H. & Boeke, J. D. High-frequency deletion between homologous sequences during retrotransposition of Ty elements in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 84, 8553–8557 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu, W. S. & Temin, H. M. Effect of gamma radiation on retroviral recombination. J. Virol. 66, 4457–4463 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Novella, I. S., Ball, L. A. & Wertz, G. W. Fitness analyses of vesicular stomatitis strains with rearranged genomes reveal replicative disadvantages. J. Virol. 78, 9837–9841 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spann, K. M., Collins, P. L. & Teng, M. N. Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J. Virol. 77, 11201–11211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Archer, A. M. & Rico-Hesse, R. High genetic divergence and recombination in Arenaviruses from the Americas. Virology 304, 274–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Charrel, R. N. et al. Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem. Biophys. Res. Commun. 296, 1118–1124 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Wittmann, T. J. et al. Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. Proc. Natl Acad. Sci. USA 104, 17123–17127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sawicki, S. G., Sawicki, D. L. & Siddell, S. G. A contemporary view of coronavirus transcription. J. Virol. 81, 20–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Onafuwa-Nuga, A. & Telesnitsky, A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol. Mol. Biol. Rev. 73, 451–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kondrashov, A. S. & Crow, J. F. Haploidy or diploidy: which is better? Nature 351, 314–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  110. Otto, S. P. & Goldstein, D. B. Recombination and the evolution of diploidy. Genetics 131, 745–751 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Perrot, V., Richerd, S. & Valero, M. Transition from haploidy to diploidy. Nature 351, 315–317 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Froissart, R. et al. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 3, e89 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hudson, R. R. Estimating the recombination parameter of a finite population model without selection. Genet. Res. 50, 245–250 (1987).

    Article  CAS  PubMed  Google Scholar 

  114. Hudson, R. R. Two-locus sampling distributions and their application. Genetics 159, 1805–1817 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. McVean, G., Awadalla, P. & Fearnhead, P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Simon-Loriere, E. et al. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus. PLoS Pathog. 5, e1000418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nikolaitchik, O. A., Galli, A., Moore, M. D., Pathak, V. K. & Hu, W. S. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay. J. Mol. Biol. 407, 521–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Motomura, K., Chen, J. & Hu, W. S. Genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2, two distinct human lentiviruses. J. Virol. 82, 1923–1933 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Marsh, G. A., Rabadan, R., Levine, A. J. & Palese, P. Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. J. Virol. 82, 2295–2304 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Simon-Loriere, E., Martin, D. P., Weeks, K. M. & Negroni, M. RNA structures facilitate recombination-mediated gene swapping in HIV-1. J. Virol. 84, 12675–12682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weaver, S. C. Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol. 299, 285–314 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jackwood, M. W. et al. Emergence of a group 3 coronavirus through recombination. Virology 398, 98–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Martin, G. S. The road to Src. Oncogene 23, 7910–7917 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.C.H. is supported in part by US National Institutes of Health grant R01GM080533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Holmes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Edward C. Holmes's homepage

Glossary

Genomic segment

An independently replicating RNA molecule. RNA viruses can possess either a single segment (such that they are unsegmented) or multiple segments. Those with multiple segments may experience reassortment.

Defective interfering particles

Defective viruses (usually possessing long genome deletions) that compete, and hence interfere, with fully functional viruses for cellular resources.

Virions

The final mature virus particles containing the RNA genome and the full set of proteins.

Processivity

A measure of the average number of nucleotides added by a polymerase enzyme per association–disassociation with the template during replication.

Packaging

The process by which the nucleic acid genome and other essential virion components are inserted in the structural core or shell of a virus particle.

Complementation

The process by which a defective virus can parasitize a fully functional virus that is infecting the same cell; the defective virus 'steals' the proteins of the functional virus to restore its own fitness.

Multiplicity of infection

(MOI). The ratio of viruses to the number of cells that are infected.

Breakpoint

The site in the genome sequence at which a recombination event has occurred. Phylogenetic trees are incongruent on either side of the breakpoint.

Linkage disequilibrium

(LD). The nonrandom association between alleles at two or more loci, being indicative of a lack of recombination. Recombination reduces LD.

Clonal interference

The process by which beneficial mutations compete, and hence interfere, with each other as they proceed toward fixation.

Epistasis

An interaction between mutations such that their combined effect on fitness is different to that expected from their stand-alone effects. Depending on the nature of the deviation, epistasis can be either antagonistic (positive) or synergistic (negative).

Genetic redundancy

The situation in which a specific phenotype is determined by more than one gene, such as members of multigene families.

Robustness

The constancy of a phenotype in the face of pressure from a deleterious mutation.

Provirus

The DNA form of a retroviral genome that is integrated into the genetic material of a host cell.

Genome dimerization

A non-covalent process by which retroviruses carry two RNA genomes in the virion.

Sequence space

All possible mutational combinations that are present in DNA or amino acid sequence data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon-Loriere, E., Holmes, E. Why do RNA viruses recombine?. Nat Rev Microbiol 9, 617–626 (2011). https://doi.org/10.1038/nrmicro2614

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2614

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing