Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Virus entry: molecular mechanisms and biomedical applications

Key Points

  • Virus entry into animal cells is initiated by attachment to receptors and is followed by important conformational changes of viral proteins, penetration through (non-enveloped viruses) or fusion with (enveloped viruses) cellular membranes. The process ends with transfer of viral genomes inside host cells.

  • Viral proteins mediating entry are very diverse, but many share common three-dimensional structural motifs.

  • Conformational changes in the viral proteins that drive entry are typically initiated by high-affinity interactions with receptors, or changes in pH after receptor binding and internalization. They include formation of coiled-coils in class I fusion proteins, dimer to trimer transitions in class II fusion proteins, movement of capsid proteins in non-enveloped viruses and exposure of membrane destabilizing sequences.

  • Fusion with, or penetration through, cell membranes might involve multimolecular protein complexes and requires structural rearrangements of membrane lipids.

  • Inhibitors of virus entry can prevent virus attachment, or bind to entry intermediates; small organic molecules, peptides, soluble receptors and antibodies are in clinical trials. Six virus-specific polyclonal human immunoglobulins, one monoclonal antibody and one peptide have been approved by the US Food and Drug Administration for clinical use.

  • Viral proteins involved in entry can induce immune responses and be used as vaccine immunogens.

  • Viral entry machineries could be beneficial for human physiology and retargeted for the treatment of cancer and other diseases.

Abstract

Viruses have evolved to enter cells from all three domains of life — Bacteria, Archaea and Eukaryotes. Of more than 3,600 known viruses, hundreds can infect human cells and most of those are associated with disease. To gain access to the cell interior, animal viruses attach to host-cell receptors. Advances in our understanding of how viral entry proteins interact with their host-cell receptors and undergo conformational changes that lead to entry offer unprecedented opportunities for the development of novel therapeutics and vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two main virus entry pathways.
Figure 2: Structure of virus surfaces.
Figure 3: Structures of soluble fragments from virus entry proteins.
Figure 4: Receptor recognition.
Figure 5: Conformational changes of viral fusion proteins leading to membrane fusion.

Similar content being viewed by others

References

  1. d'Herelle, F. The Bacteriophage and its Behavior (Williams and Wilkins, Baltimore, USA, 1926).

    Google Scholar 

  2. Sieczkarski, S. B. & Whittaker, G. R. Dissecting virus entry via endocytosis. J. Gen. Virol. 83, 1535–1545 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Dimitrov, D. S. Cell biology of virus entry. Cell 101, 697–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rawat, S. S. et al. Modulation of entry of enveloped viruses by cholesterol and sphingolipids. Mol. Membr. Biol. 20, 243–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Takeda, M., Leser, G. P., Russell, C. J. & Lamb, R. A. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl Acad. Sci. USA 100, 14610–14617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waarts, B. L., Bittman, R. & Wilschut, J. Sphingolipid and cholesterol dependence of α-virus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J. Biol. Chem. 277, 38141–38147 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kielian, M., Chatterjee, P. K., Gibbons, D. L. & Lu, Y. E. Specific roles for lipids in virus fusion and exit. Examples from the α-viruses. Subcell. Biochem. 34, 409–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Bomsel, M. & Alfsen, A. Entry of viruses through the epithelial barrier: pathogenic trickery. Nature Rev. Mol. Cell Biol. 4, 57–68 (2003).

    Article  CAS  Google Scholar 

  11. Seisenberger, G. et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929–1932 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lowy, R. J., Sarkar, D. P., Chen, Y. & Blumenthal, R. Observation of single influenza virus-cell fusion and measurement by fluorescence video microscopy. Proc. Natl Acad. Sci. USA 87, 1850–1854 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lakadamyali, M., Rust, M. J., Babcock, H. P. & Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280–9285 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dimitrov, D. S., Willey, R., Martin, M. & Blumenthal, R. Kinetics of HIV-1 interactions with sCD4 and CD4+ cells: implications for inhibition of virus infection and initial steps of virus entry into cells. Virology 187, 398–406 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Dimitrov, D. S. et al. Quantitation of HIV-1 infection kinetics. J. Virol. 67, 2182–2190 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. White, J., Kartenbeck, J. & Helenius, A. Fusion of Semliki forest virus with the plasma membrane can be induced by low pH. J. Cell. Biol. 87, 264–272 (1980). Shows that a low pH can trigger rapid and efficient fusion of SFV with plasma membranes, which leads to delivery of the viral genome in a form that is suitable for replication.

    Article  CAS  PubMed  Google Scholar 

  17. Carr, C. M., Chaudhry, C. & Kim, P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc. Natl Acad. Sci. USA 94, 14306–14313 (1997). Proposes that the native structure of HA is trapped in a metastable state and that the fusogenic conformation is released by destabilization of the native structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hogle, J. M. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56, 677–702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stubbs, M. T. Anthrax X-rayed: new opportunities for biodefence. Trends Pharmacol. Sci. 23, 539–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  21. Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229, 1358–1365 (1985). References 21 and 22 describe the first crystal structures of human viruses with important implications for understanding their mechanisms of entry and design of inhibitors.

    Article  CAS  PubMed  Google Scholar 

  23. Mancini, E. J., Clarke, M., Gowen, B. E., Rutten, T. & Fuller, S. D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol. Cell 5, 255–266 (2000). The crystal structure of an enveloped virus to the highest resolution that has been achieved so far (9 Å), with implications for the complex structural rearrangements during entry.

    Article  CAS  PubMed  Google Scholar 

  24. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chappell, J. D., Prota, A. E., Dermody, T. S. & Stehle, T. Crystal structure of reovirus attachment protein σ1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 21, 1–11 (2002). Structural analysis reveals evolutionary relationships between two unrelated virus families.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981). The first, and still the most informative structure of an entry envelope glycoprotein — the influenza HA.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, L. et al. The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9, 255–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298 (1995). The first structure of a class II fusion protein that reveals an entirely unexpected configuration that is dramatically different from the structure of class I fusion proteins.

    Article  CAS  PubMed  Google Scholar 

  29. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001). The second structure of a class II fusion protein, which enabled the classification of these proteins as distinct from class I.

    Article  CAS  PubMed  Google Scholar 

  31. Heinz, F. X. & Allison, S. L. The machinery for flavivirus fusion with host cell membranes. Curr. Opin. Microbiol. 4, 450–455 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Colman, P. M. & Lawrence, M. C. The structural biology of type I viral membrane fusion. Nature Rev. Mol. Cell Biol. 4, 309–319 (2003).

    Article  CAS  Google Scholar 

  33. Carfi, A. et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol. Cell 8, 169–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Fass, D. et al. Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 277, 1662–1666 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Wimmer, E. (ed.) Cellular receptors for animal viruses. 1–13 (Cold Spring Harbor Laboratory Press, New York,1994).

  36. Baranowski, E., Ruiz-Jarabo, C. M. & Domingo, E. Evolution of cell recognition by viruses. Science 292, 1102–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, J. Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends Biochem. Sci. 27, 122–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998). The first crystal structure of an HIV-1 attachment protein in complex with the primary receptor CD4 and a neutralizing Fab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harouse, J. M. et al. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253, 320–323 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Fingeroth, J. D. et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl Acad. Sci. USA 81, 4510–4514 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalgleish, A. G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Klatzmann, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996). Identification of the first HIV-1 co-receptor that opened a new field with important implications for understanding entry mechanisms, and for the development of inhibitors and vaccines.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N. & Huang, E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. Entry of α-herpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618–1620 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003). Identification of the SARS-CoV receptor a few months after the discovery of the virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao, X., Chakraborti, S., Dimitrov, A. S., Gramatikoff, K. & Dimitrov, D. S. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. 312, 1159–1164 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammache, D., Yahi, N., Maresca, M., Pieroni, G. & Fantini, J. Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J. Virol. 73, 5244–5248 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Percherancier, Y. et al. HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains. J. Biol. Chem. 278, 3153–3161 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Remeta, D. P. et al. Acid-induced changes in thermal stability and fusion activity of influenza hemagglutinin. Biochemistry 41, 2044–2054 (2002). Differential scanning calorimetric measurements show that the unfolding of influenza HA at neutral pH is an endothermic process, indicating that it might not be in a metastable high-energy state.

    Article  CAS  PubMed  Google Scholar 

  52. Blumenthal, R., Clague, M. J., Durell, S. R. & Epand, R. M. Membrane fusion. Chem. Rev. 103, 53–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Barnard, R. J. & Young, J. A. α-retrovirus envelope-receptor interactions. Curr. Top. Microbiol. Immunol. 281, 107–136 (2003).

    CAS  PubMed  Google Scholar 

  54. Mothes, W., Boerger, A. L., Narayan, S., Cunningham, J. M. & Young, J. A. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103, 679–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Earp, L. J., Delos, S. E., Netter, R. C., Bates, P. & White, J. M. The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH. J. Virol. 77, 3058–3066 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eckert, D. M. & Kim, P. S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Bosch, B. J., van der Zee, R., de Haan, C. A. & Rottier, P. J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leikina, E., Ramos, C., Markovic, I., Zimmerberg, J. & Chernomordik, L. V. Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO J. 21, 5701–5710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gallo, S. A. et al. The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta 1614, 36–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Madhusoodanan, M. & Lazaridis, T. Investigation of pathways for the low-pH conformational transition in influenza hemagglutinin. Biophys. J. 84, 1926–1939 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stiasny, K., Koessl, C. & Heinz, F. X. Involvement of lipids in different steps of the flavivirus fusion mechanism. J. Virol. 77, 7856–7862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pak, C. C., Puri, A. & Blumenthal, R. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry 36, 8890–8896 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Gaudin, Y. Reversibility in fusion protein conformational changes. The intriguing case of rhabdovirus-induced membrane fusion. Subcell. Biochem. 34, 379–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Roche, S. & Gaudin, Y. Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. Virology 297, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Clague, M. J., Schoch, C., Zech, L. & Blumenthal, R. Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry 29, 1303–1308 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. & Lentz, B. R. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc. Natl Acad. Sci. USA 95, 9274–9279 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Markosyan, R. M., Cohen, F. S. & Melikyan, G. B. HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol. Biol. Cell 14, 926–938 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational changes of influenza hemagglutinin. Cell 73, 823–832 (1993). Proposes the spring-loaded mechanism for influenza and other viruses that are now known as class I fusion proteins.

    Article  CAS  PubMed  Google Scholar 

  69. Gruenke, J. A., Armstrong, R. T., Newcomb, W. W., Brown, J. C. & White, J. M. New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J. Virol. 76, 4456–4466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chernomordik, L. V., Leikina, E., Frolov, V., Bronk, P. & Zimmerberg, J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol. 136, 81–93 (1997). Finds that HA-mediated membrane fusion is consistent with the stalk hypothesis of fusion, indicating that fusion proteins begin membrane fusion by promoting the formation of a bent, lipid-containing, stalk intermediate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melikyan, G. B. & Chernomordik, L. V. Membrane rearrangements in fusion mediated by viral proteins. Trends. Microbiol. 5, 349–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Chernomordik, L., Leikina, E., Cho, M. S. & Zimmerberg, J. Control of baculovirus gp64-induced syncytium formation by membrane lipid composition (published erratum appears in J. Virol. 69, 5928). J. Virol. 69, 3049–3058 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaudin, Y., Tuffereau, C., Durrer, P., Flamand, A. & Ruigrok, R. W. Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G): G is transported in a fusion-inactive state-like conformation. J. Virol. 69, 5528–5534 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. LaBonte, J. A., Madani, N. & Sodroski, J. Cytolysis by CCR5-using human immunodeficiency virus type 1 envelope glycoproteins is dependent on membrane fusion and can be inhibited by high levels of CD4 expression. J. Virol. 77, 6645–6659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duelli, D. & Lazebnik, Y. Cell fusion: a hidden enemy? Cancer Cell 3, 445–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. De Clercq, E. New anti-HIV agents and targets. Med. Res. Rev. 22, 531–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Pollack, P. & Groothuis, J. R. Development and use of palivizumab (Synagis): a passive immunoprophylactic agent for RSV. J. Infect. Chemother. 8, 201–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kilby, J. M. & Eron, J. J. Novel therapies based on mechanisms of HIV-1 cell entry. N. Engl. J. Med. 348, 2228–2238 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sawyer, L. A. Antibodies for the prevention and treatment of viral diseases. Antiviral Res. 47, 57–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Florea, N. R., Maglio, D. & Nicolau, D. P. Pleconaril, a novel antipicornaviral agent. Pharmacother. 23, 339–348 (2003).

    Article  CAS  Google Scholar 

  81. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Kwong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Root, M. J., Kay, M. S. & Kim, P. S. Protein design of an HIV-1 entry inhibitor. Science 291, 884–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Lin, P. F. et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl Acad. Sci. USA 100, 11013–11018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arkin, M. R. et al. Binding of small molecules to an adaptive protein-protein interface. Proc. Natl Acad. Sci. USA 100, 1603–1608 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Braisted, A. C. et al. Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J. Am. Chem. Soc. 125, 3714–3715 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Dimmock, N. J. Neutralization of animal viruses. Curr. Top. Microbiol. Immunol. 183, 1–149 (1993).

    CAS  PubMed  Google Scholar 

  89. Burton, D. R. Antibodies, viruses and vaccines. Nature Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  90. Smith, T. J. Antibody interactions with rhinovirus: lessons for mechanisms of neutralization and the role of immunity in viral evolution. Curr. Top. Microbiol. Immunol. 260, 1–28 (2001).

    CAS  PubMed  Google Scholar 

  91. Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224 (1997). Evaluates the only monoclonal antibody in present use against a viral disease.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson, S. et al. A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEDI-493 and RSHZl9. J. Infect. Dis. 180, 35–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H. & Baker, T. S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383, 350–354 (1996). Shows that an antibody can penetrate a receptor-binding canyon, which indicates that it is unlikely that viral quaternary structure evolves merely to evade immune recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choe, H. et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Colman, P. M. Virus versus antibody. Structure. 5, 591–593 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Moulard, M. et al. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120–CD4–CCR5 complexes. Proc. Natl Acad. Sci. USA 99, 6913–6918 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frendo, J. L. et al. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell Biol. 23, 3566–3574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Harris, J. R. Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance. Bioessays 20, 307–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Sarkar, D. P., Ramani, K. & Tyagi, S. K. Targeted gene delivery by virosomes. Methods Mol. Biol. 199, 163–173 (2002).

    CAS  PubMed  Google Scholar 

  102. Yamada, T. et al. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nature Biotechnol. 21, 885–890 (2003).

    Article  CAS  Google Scholar 

  103. Soong, N. W. et al. Molecular breeding of viruses. Nature Genet. 25, 436–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Perabo, L. et al. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol. Ther. 8, 151–157 (2003). Shows, for the first time, that a combinatorial approach based on a eukaryotic virus library allows the generatation of efficient, receptor-specific targeting vectors with a desired tropism.

    Article  CAS  PubMed  Google Scholar 

  105. Xie, Q. et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA 99, 10405–10410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Belnap, D. M. et al. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J. Virol. 74, 1342–1354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Stehle, T. & Dermody, T. S. Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Rev. Med. Virol. 13, 123–132 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weis, W. et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Morton, C. J. et al. Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay. Virology 311, 275–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Bewley, M. C., Springer, K., Zhang, Y. B., Freimuth, P. & Flanagan, J. M. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286, 1579–1583 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Xing, L. et al. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19, 1207–1216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank R. Blumenthal, C. Broder, P. Kwong and the three reviewers for helpful comments, and members of my group, X. Xiao, M. Zhang, I. Sidorov and P. Prabakaran, for exciting discussions and help. I apologise to those colleagues whose research has not been highlighted owing to length constraints. The selected examples reflect my personal interests.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCR5

CD4

CXCR4

Protein Data Bank

gp120

influenza haemagglutinin

FURTHER INFORMATION

Dimiter S. Dimitrov's laboratory

HIV fusion and cell entry

Picornavirus infection and translation

The Big Picture Book of Viruses

Glossary

ENTRY PROTEINS

Proteins that mediate entry into cells. Entry proteins is a general term used here to denote attachment proteins and other proteins that are required for entry of non-enveloped and enveloped viruses into cells.

LIPID RAFT

Areas of the plasma membrane that are rich in cholesterol, glycosphingolipids and glycosylphosphatidylinositol-anchored proteins. Also known as glycolipid-enriched microdomains (GEMs) and detergent-insoluble glycolipid-enriched membranes (DIGs).

LIPOSOME

A lipid vesicle that is artificially formed by sonicating lipids in an aqueous solution.

METASTABLE STATE

An energy state that is separated from one of lower energy by an energy barrier. Metastable states can exist for a long time if the height of the barrier is high and be undistinguishable from a truly stable state. The trigger leads to a decrease in the energy barrier and a transition to a more stable state of lower energy. The rate of transition is determined by the difference in the energies of the initial and final states, temperature and various parameters including molecular conformations and viscosity.

ATTACHMENT PROTEINS

Proteins that mediate specific binding of viruses to their receptors. Attachment proteins are typically single proteins but in the case of many non-enveloped viruses, complexes of several proteins from the capsid bind receptor molecules and function as attachment proteins.

CAPSID

Proteins that encapsulate viral genomes. Capsid shells of many non-enveloped viruses proteins bind receptor molecules and serve as attachment proteins. Capsid proteins also typically mediate membrane penetration by non-enveloped viruses.

ENVELOPE GLYCOPROTEINS

(Envs). Viral proteins that are embedded in the envelope membranes of enveloped viruses. Many viruses, for example, rabies virus and HIV, have only one viral protein in their membranes that mediates viral entry into cells; others, for example, influenza have two or more, but some of the proteins might not be involved in the entry process. In this article, Envs is used to describe those entry proteins that mediate attachment and fusion of enveloped viruses.

FUSION PROTEINS

Proteins that mediate the fusion of enveloped viruses. This term is frequently used to denote entry proteins that mediate the membrane fusion of enveloped viruses, for example, class I and class II fusion proteins. Typically, such proteins consist of an attachment protein (subunit or domain), sometimes denoted as surface protein, and a subunit mediating the actual membrane fusion event, sometimes denoted as transmembrane protein because it spans the viral membrane.

VIRUS RECEPTORS

Host-cell molecules (usually membrane-associated) that bind virus-attachment proteins and are required for entry.

AVIDITY

Effective affinity for multivalent interactions. Avidity is a complex function of the affinity for a monovalent interaction and the number of interactions, and can be many orders of magnitude higher than affinity.

CO-RECEPTORS

Cell membrane-associated molecules that bind specifically to virus proteins and are required for entry (in addition to the primary receptor) typically to ensure continuation of the entry process after binding. By definition the term co-receptor implies a physical association with viral entry proteins after their binding to the primary receptor to distinguish them from molecules that are required for entry at later stages — for example, uncoating — or at unknown stages, and are denoted as entry cofactors.

ALTERNATIVE VIRUS RECEPTORS

Receptors that viruses can use in the absence of the primary receptor, typically with a much lower efficiency for entry.

CYTOPATHIC EFFECTS

(CPE). Effects caused by any agent, including viruses, that lead to deterioration of cellular functions and ultimately cell death.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrov, D. Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2, 109–122 (2004). https://doi.org/10.1038/nrmicro817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro817

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing