Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Dengue infection

Abstract

Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 2009 WHO dengue clinical classification.
Figure 2: The urban dengue virus cycle in humans and mosquitoes.
Figure 3: The suitability of different regions for dengue virus transmission.
Figure 4: The changing epidemiology of dengue.
Figure 5: Dengue virus life cycle.
Figure 6: Factors involved in the control of dengue virus disease response.
Figure 7: Dengue diagnosis.

Similar content being viewed by others

References

  1. Guzman, M. G. & Harris, E. Dengue. Lancet 385, 453–465 (2015). A very comprehensive review of the latest findings on the global burden of dengue between 2010 and 2015.

    Article  PubMed  Google Scholar 

  2. World Health Organization & Special Programme for Research and Training in Tropical Diseases. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control. WHOhttp://apps.who.int/iris/bitstream/10665/44188/1/9789241547871_eng.pdf (2009). This document includes recommendations for the classification and management of patients with dengue.

  3. World Health Organization. Dengue Hemorrhagic Fever: Diagnosis, Treatment, Prevention and Control 2nd edn (WHO Press, 1997).

  4. Gubler, D. J. in Dengue and Dengue Hemorrhagic Fever 2nd edn (eds Gubler, D. J., Ooi, E. E., Vasudevan, S. & Farrar, J. ) 1–29 (CAB International, 2014).

    Google Scholar 

  5. Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Siler, J. F., Hall, M. W. & Hitchens, A. P. Dengue: its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, inmunity and prevention. Philippine J. Sci. 29, 1–304 (1926).

    Google Scholar 

  7. Halstead, S. B. The XXth century dengue pandemic: need for surveillance and research. World Health Stat. Q. 45, 292–298 (1992).

    CAS  PubMed  Google Scholar 

  8. Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21(st) century. Trop. Med. Health 39, 3–11 (2011). This article describes the influences of urbanization, globalization and lack of mosquito control in driving the emergence of epidemic dengue.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Simmons, C. P., Farrar, J. J., Nguyen v. V. & Wills, B. Dengue. N. Engl. J. Med. 366, 1423–1432 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013). This article shows an evidence-based map of dengue risk and estimates of apparent and inapparent infections worldwide on the basis of the global population in 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22, 138–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beatty, M. E., Letson, G. W. & Margolis, H. S. Estimating the global burden of dengue. Am. J. Trop. Med. Hyg. 81, 231 (2009).

    Google Scholar 

  13. World Health Organization. Global Strategy for Dengue Prevention and Control 2012–2020 (WHO Press, 2013). This document outlines the global strategy for dengue prevention and control to 2020.

  14. Amarasinghe, A., Kuritsk, J. N., Letson, G. W. & Margolis, H. S. Dengue virus infection in Africa. Emerg. Infect. Dis. 17, 1349–1354 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Gubler, D. J., Sather, G. E., Kuno, G. & Cabral, J. R. Dengue 3 virus transmission in Africa. Am. J. Trop. Med. Hyg. 35, 1280–1284 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 disease and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  17. Shepard, D. S., Coudeville, L., Halasa, Y. A., Zambrano, B. & Dayan, G. H. Economic impact of dengue illness in the Americas. Am. J. Trop. Med. Hyg. 84, 200–207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shepard, D. S., Halasa, Y. A. & Undurraga, E. A. in Dengue and Dengue Hemorrhagic Fever 2nd edn (eds Gubler, D. J., Ooi, E. E., Vasudevan, S. & Farrar, J. ) 50–77 (CAB International, 2014).

    Google Scholar 

  19. Shepard, D. S., Undurraga, E. A., Halasa, Y. A. & Stanaway, J. D. The global economic burden of dengue: a systematic analysis. Lancet Infect. Dis. 16, 935–941 (2016).

    Article  PubMed  Google Scholar 

  20. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanai, R. et al. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol. 80, 11000–11008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y. et al. Conformational changes of the flavivirus e glycoprotein. Structure 12, 1607–1618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roehrig, J. T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 59, 141–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Muller, D. A. & Young, P. R. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res. 98, 192–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Akey, D. L. et al. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343, 881–885 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mackenzie, J. M., Jones, M. K. & Young, P. R. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220, 232–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Libraty, D. H. et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 186, 1165–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Beatty, P. et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl Med. 7, 304ra141 (2015). The data presented in this article indicate that immunization with NS1 could provide crucial protection against severe dengue disease and argue for the inclusion in dengue vaccine.

    Article  CAS  PubMed  Google Scholar 

  30. Modhiran, N. et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl Med. 7, 304ra142 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Marovich, M. et al. Human dendritic cells as targets of dengue virus infection. J. Investig. Dermatol. Symp. Proc. 6, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Johnston, L. J., Halliday, G. M. & King, N. J. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J. Invest. Dermatol. 114, 560–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Aye, K. S. et al. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum. Pathol. 45, 1221–1233 (2014).

    Article  PubMed  Google Scholar 

  34. Balsitis, S. J. et al. Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am. J. Trop. Med. Hyg. 80, 416–424 (2009).

    Article  PubMed  Google Scholar 

  35. Durbin, A. P. et al. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology 376, 429–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, S. J. et al. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6, 816–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Miagostovich, M. P. et al. Retrospective study on dengue fatal cases. Clin. Neuropathol. 16, 204–208 (1997).

    CAS  PubMed  Google Scholar 

  38. Rosen, L., Drouet, M. T. & Deubel, V. Detection of dengue virus RNA by reverse transcription-polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection. Am. J. Trop. Med. Hyg. 61, 720–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Couvelard, A. et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum. Pathol. 30, 1106–1110 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Marianneau, P., Flamand, M., Deubel, V. & Despres, P. Induction of programmed cell death (apoptosis) by dengue virus in vitro and in vivo. Acta Cient. Venez. 49 (Suppl. 1), 13–17 (1998).

    PubMed  Google Scholar 

  41. Marianneau, P., Cardona, A., Edelman, L., Deubel, V. & Despres, P. Dengue virus replication in human hepatoma cells activates NF-κB which in turn induces apoptotic cell death. J. Virol. 71, 3244–3249 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smit, J. M., Moesker, B., Rodenhuis-Zybert, I. & Wilschut, J. Flavivirus cell entry and membrane fusion. Viruses 3, 160–171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sabin, A. B. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1, 30–50 (1952).

    Article  CAS  PubMed  Google Scholar 

  44. Montoya, M. et al. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl. Trop. Dis. 7, e2357 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fibriansah, G. et al. A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat. Commun. 6, 6341 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Fibriansah, G. et al. Dengue virus. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 349, 88–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wahala, W. M. & de Silva, A. M. The human antibody response to dengue virus infection. Viruses 3, 2374–2395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16, 170–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Rouvinski, A. et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 520, 109–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Halstead, S. B. Etiologies of the experimental dengues of Siler and Simmons. Am. J. Trop. Med. Hyg. 23, 974–982 (1974).

    Article  CAS  PubMed  Google Scholar 

  51. Guzman, M. G. et al. Epidemiologic studies on dengue in Santiago de Cuba, 1997. Am. J. Epidemiol. 152, 793–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. de Alwis, R. et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl. Trop. Dis. 5, e1188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. de Alwis, R. et al. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog. 10, e1004386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olkowski, S. et al. Reduced risk of disease during postsecondary dengue virus infections. J. Infect. Dis. 208, 1026–1033 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gibbons, R. V. et al. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am. J. Trop. Med. Hyg. 77, 910–913 (2007).

    Article  PubMed  Google Scholar 

  56. Kliks, S. C., Nimmannitya, S., Nisalak, A. & Burke, D. S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38, 411–419 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Chau, T. N. et al. Dengue in Vietnamese infants — results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J. Infect. Dis. 198, 516–524 (2008).

    Article  PubMed  Google Scholar 

  58. Chau, T. N. et al. Clinical and virological features of Dengue in Vietnamese infants. PLoS Negl. Trop. Dis. 4, e657 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Halstead, S. B. Observations related to pathogenesis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J. Biol. Med. 42, 350–362 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Messer, W. B. et al. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl. Trop. Dis. 6, e1486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gubler, D. J., Reed, D., Rosen, L. & Hitchcock, J. R. Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am. J. Trop. Med. Hyg. 27, 581–589 (1978).

    Article  CAS  PubMed  Google Scholar 

  62. Guzman, M. G. et al. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev. Panam. Salud Publica 11, 223–227 (2002).

    Article  PubMed  Google Scholar 

  63. Hubert, B. & Halstead, S. B. Dengue 1 virus and dengue hemorrhagic fever, French Polynesia, 2001. Emerg. Infect. Dis. 15, 1265–1270 (2009).

    Article  PubMed  Google Scholar 

  64. Sangkawibha, N. et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120, 653–669 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Yauch, L. E. et al. A protective role for dengue virus-specific CD8+ T cells. J. Immunol. 182, 4865–4873 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Zompi, S., Santich, B. H., Beatty, P. R. & Harris, E. Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J. Immunol. 188, 404–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Weiskopf, D. et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl Acad. Sci. USA 110, E2046–E2053 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hanley, K. A., Nelson, J. T., Schirtzinger, E. E., Whitehead, S. S. & Hanson, C. T. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol. 8, 1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weiskopf, D. et al. Human CD8+ T cell responses against the four dengue virus serotypes are associated with distinct patterns of protein targets. J. Infect. Dis. 212, 1743–1751 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bara, J. J., Clark, T. M. & Remold, S. K. Susceptibility of larval Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to dengue virus. J. Med. Entomol. 50, 179–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Rico-Hesse, R. Microevolution and virulence of dengue viruses. Adv. Virus Res. 59, 315–341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Halstead, S. B. Dengue virus–mosquito interactions. Annu. Rev. Entomol. 53, 273–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Halstead, S. B. Controversies in dengue pathogenesis. Paediatr. Int. Child Health 32 (Suppl. 1), 5–9 (2012). In this paper, six controversies in relation to the pathogenesis of dengue fever are analysed and, where possible, resolved.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rosen, L. The Emperor's New Clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 26, 337–343 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Anderson, J. R. & Rico-Hesse, R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am. J. Trop. Med. Hyg. 75, 886–892 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Cologna, R. & Rico-Hesse, R. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J. Virol. 77, 3929–3938 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gubler, D. J. & Rosen, L. Quantitative aspects of replication of dengue viruses in Aedes albopictus (Diptera: Culicidae) after oral and parenteral infection. J. Med. Entomol. 13, 469–472 (1977).

    Article  CAS  PubMed  Google Scholar 

  78. Dietz, V. et al. The 1986 dengue and dengue hemorrhagic fever epidemic in Puerto Rico: epidemiologic and clinical observations. P. R. Health Sci. J. 15, 201–210 (1996).

    CAS  PubMed  Google Scholar 

  79. Bennett, S. N. et al. Selection-driven evolution of emergent dengue virus. Mol. Biol. Evol. 20, 1650–1658 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Steel, A., Gubler, D. J. & Bennett, S. N. Natural attenuation of dengue virus type-2 after a series of island outbreaks: a retrospective phylogenetic study of events in the South Pacific three decades ago. Virology 405, 505–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Messer, W. B. et al. Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 66, 765–773 (2002).

    Article  PubMed  Google Scholar 

  82. Messer, W. B., Gubler, D. J., Harris, E., Sivananthan, K. & de Silva, A. M. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9, 800–809 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guzman, M. G., Alvarez, M. & Halstead, S. B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158, 1445–1459 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Vaughn, D. W. Invited commentary: dengue lessons from Cuba. Am. J. Epidemiol. 152, 800–803 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Guzman, M. G., Kouri, G. & Halstead, S. B. Do escape mutants explain rapid increases in dengue case-fatality rates within epidemics? Lancet 355, 1902–1903 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Rodriguez-Roche, R. et al. Virus role during intraepidemic increase in dengue disease severity. Vector Borne Zoonotic Dis. 11, 675–681 (2011).

    Article  PubMed  Google Scholar 

  87. Chen, H. L. et al. Evolution of dengue virus type 2 during two consecutive outbreaks with an increase in severity in southern Taiwan in 2001–2002. Am. J. Trop. Med. Hyg. 79, 495–505 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. OhAinle, M. et al. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci. Transl Med. 3, 114ra128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Manokaran, G. et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350, 217–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guzman, M. G. et al. Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am. J. Trop. Med. Hyg. 42, 179–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Sierra, B.d.l. C., Kouri, G. & Guzman, M. G. Race: a risk factor for dengue hemorrhagic fever. Arch. Virol. 152, 533–542 (2007).

    Article  CAS  Google Scholar 

  92. Stephens, H. A. et al. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60, 309–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Falcon-Lezama, J. A. et al. HLA class I and II polymorphisms in Mexican Mestizo patients with dengue fever. Acta Trop. 112, 193–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Polizel, J. R. et al. Association of human leukocyte antigen DQ1 and dengue fever in a white Southern Brazilian population. Mem. Inst. Oswaldo Cruz 99, 559–562 (2004).

    Article  PubMed  Google Scholar 

  95. Appanna, R., Ponnampalavanar, S., Lum Chai See, L. & Sekaran, S. D. Susceptible and protective HLA class 1 alleles against dengue fever and dengue hemorrhagic fever patients in a Malaysian population. PLoS ONE 5, e13029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Loke, H. et al. Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J. Infect. Dis. 184, 1369–1373 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Loke, H. et al. Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and Fcγ receptor IIa genes. Am. J. Trop. Med. Hyg. 67, 102–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Lan, N. T. et al. Protective and enhancing HLA alleles, HLA-DRB1*0901 and HLA-A*24, for severe forms of dengue virus infection, dengue hemorrhagic fever and dengue shock syndrome. PLoS Negl. Trop. Dis. 2, e304 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  99. Perez, A. B. et al. Tumor necrosis factor-α, transforming growth factor-β1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever. Hum. Immunol. 71, 1135–1140 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Soundravally, R. & Hoti, S. L. Immunopathogenesis of dengue hemorrhagic fever and shock syndrome: role of TAP and HPA gene polymorphism. Hum. Immunol. 68, 973–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Garcia, G. et al. Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the Fcγ RIIa polymorphism. Am. J. Trop. Med. Hyg. 82, 1153–1156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fernandez-Mestre, M. T., Gendzekhadze, K., Rivas-Vetencourt, P. & Layrisse, Z. TNF-α-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 64, 469–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Guzman, M. G. et al. Effect of age on outcome of secondary dengue 2 infections. Int. J. Infect. Dis. 6, 118–124 (2002).

    Article  PubMed  Google Scholar 

  104. Halstead, S. B., Scanlon, J., Umpaivit, P. & Udomsakdi, S. Dengue and chikungunya virus infection in man in Thailand, 1962–1964: IV. Epidemiologic studies in the Bangkok metropolitan area. Am. J. Trop. Med. Hyg. 18, 997–1021 (1969).

    Article  CAS  PubMed  Google Scholar 

  105. Halstead, S. B. in The Togaviruses, Biology, Structure, Replication (ed. Schlesinger, R. W. ) 107–173 (Academic Press, 1980).

    Google Scholar 

  106. Gamble, J. et al. Age-related changes in microvascular permeability: a significant factor in the susceptibility of children to shock? Clin. Sci. (Lond.) 98, 211–216 (2000).

    Article  CAS  Google Scholar 

  107. Farrar, J. in Dengue (ed. Halstead, S. B. ) 171–192 (Imperial College Press, 2008).

    Book  Google Scholar 

  108. Jessie, K., Fong, M. Y., Devi, S., Lam, S. K. & Wong, K. T. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J. Infect. Dis. 189, 1411–1418 (2004).

    Article  PubMed  Google Scholar 

  109. Bethell, D. B. et al. Noninvasive measurement of microvascular leakage in patients with dengue hemorrhagic fever. Clin. Infect. Dis. 32, 243–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Libraty, D. H. et al. Assessment of body fluid compartment volumes by multifrequency bioelectrical impedance spectroscopy in children with dengue. Trans. R. Soc. Trop. Med. Hyg. 96, 295–299 (2002).

    Article  PubMed  Google Scholar 

  111. Kalayanarooj, S. et al. Early clinical and laboratory indicators of acute dengue illness. J. Infect. Dis. 176, 313–321 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Wills, B. A. et al. Size and charge characteristics of the protein leak in dengue shock syndrome. J. Infect. Dis. 190, 810–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Mitrakul, C., Poshyachinda, M., Futrakul, P., Sangkawibha, N. & Ahandrik, S. Hemostatic and platelet kinetic studies in dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 26, 975–984 (1977).

    Article  CAS  PubMed  Google Scholar 

  114. Mitrakul, C. Bleeding problem in dengue haemorrhagic fever: platelets and coagulation changes. Southeast Asian J. Trop. Med. Public Health 18, 407–412 (1987).

    CAS  PubMed  Google Scholar 

  115. Nelson, E. R., Bierman, H. R. & Chulajata, R. Hematologic findings in the 1960 hemorrhagic fever epidemic (dengue) in Thailand. Am. J. Trop. Med. Hyg. 13, 642–649 (1964).

    Article  CAS  PubMed  Google Scholar 

  116. Bierman, H. R. & Nelson, E. R. Hematodepressive virus diseases of Thailand. Ann. Intern. Med. 62, 867–883 (1965).

    Article  CAS  PubMed  Google Scholar 

  117. Binder, D., Fehr, J., Hengartner, H. & Zinkernagel, R. M. Virus-induced transient bone marrow aplasia: major role of interferon-α/β during acute infection with the noncytopathic lymphocyteic choriomeningitis virus. J. Exp. Med. 185, 517–530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bhamarapravati, N., Tuchinda, P. & Boonyapaknavik, V. Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Ann. Trop. Med. Parasitol. 61, 500–510 (1967).

    Article  CAS  PubMed  Google Scholar 

  119. Krishnamurti, C. et al. Mechanisms of hemorrhage in dengue without circulatory collapse. Am. J. Trop. Med. Hyg. 65, 840–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Wills, B. A. et al. Coagulation abnormalities in dengue hemorrhagic fever: serial investigations in 167 Vietnamese children with dengue schock syndrome. Clin. Infect. Dis. 35, 277–285 (2002).

    Article  PubMed  Google Scholar 

  121. Srikiatkhachorn, A. Plasma leakage in dengue haemorrhagic fever. Thromb. Haemost. 102, 1042–1049 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin, S. W. et al. Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J. Infect. 64, 325–334 (2012).

    Article  PubMed  Google Scholar 

  123. Bokisch, V. A. et al. The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N. Engl. J. Med. 289, 996–1000 (1973).

    Article  CAS  PubMed  Google Scholar 

  124. Bokisch, V. A., Muller-Eberhard, H. J. & Dixon, F. J. The role of complement in hemorrhagic shock syndrome (dengue). Trans. Assoc. Am. Physicians 86, 102–110 (1973).

    CAS  PubMed  Google Scholar 

  125. Cao, X. T. et al. Evaluation of the World Health Organization standard tourniquet test and a modified tourniquet test in the diagnosis of dengue infection in Vietnam. Trop. Med. Int. Health 7, 125–132 (2002).

    Article  PubMed  Google Scholar 

  126. Chairulfatah, A., Setiabudi, D., Agoes, R., van Sprundel, M. & Colebunders, R. Hospital based clinical surveillance for dengue haemorrhagic fever in Bandung, Indonesia 1994–1995. Acta Trop. 80, 111–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Harris, E. et al. Clinical, epidemiologic and virologic features of dengue in the 1998 epidemic in Nicaragua. Am. J. Trop. Med. 63, 5–11 (2000).

    Article  CAS  Google Scholar 

  128. Nimmannitya, S., Halstead, S. B., Cohen, S. N. & Margiotta, M. R. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. I. Observations on hospitalized patients with hemorrhagic fever. Am. J. Trop. Med. Hyg. 18, 954–971 (1969).

    Article  CAS  PubMed  Google Scholar 

  129. Kabra, S. K. et al. Dengue haemorrhagic fever in children in the 1996 Delhi epidemic. Trans. R. Soc. Trop. Med. Hyg. 93, 294–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen, T. L., Nguyen, T. H. & Tieu, N. T. The impact of dengue haemorrhagic fever on liver function. Res. Virol. 148, 273–277 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Pang, T., Cardosa, M. J. & Guzman, M. G. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever–dengue shock syndrome (DHF/DSS). Immunol. Cell Biol. 85, 43–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Russell, P. K. Immunopathological mechanisms in the dengue shock syndrome. Prog. Immunol. 1, 831–838 831–838 (1971).

    Article  Google Scholar 

  135. Lin, Y. S. et al. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp. Biol. Med. (Maywood) 236, 515–523 (2011).

    Article  CAS  Google Scholar 

  136. Wan, S. W. et al. Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 112, 3–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. St John, A. L., Rathore, A. P., Raghavan, B., Ng, M. L. & Abraham, S. N. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife 2, e00481 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Carr, J. M. et al. Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J. Med. Virol. 69, 521–528 (2003).

    Article  PubMed  Google Scholar 

  139. Luplertlop, N. et al. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep. 7, 1176–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Luplertlop, N. & Misse, D. MMP cellular responses to dengue virus infection-induced vascular leakage. Jpn J. Infect. Dis. 61, 298–301 (2008).

    CAS  PubMed  Google Scholar 

  141. Dejnirattisai, W. et al. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J. Immunol. 181, 5865–5874 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Michels, M. et al. High plasma mid-regional pro-adrenomedullin levels in children with severe dengue virus infections. J. Clin. Virol. 50, 8–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Wills, B. et al. Hemostatic changes in Vietnamese children with mild dengue correlate with the severity of vascular leakage rather than bleeding. Am. J. Trop. Med. Hyg. 81, 638–644 (2009).

    Article  PubMed  Google Scholar 

  144. Schlesinger, J. J., Brandriss, M. W. & Walsh, E. E. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 68, 853–857 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Halstead, S. B. Dengue vascular permeability syndrome: what no T cells? Clin. Infect. Dis. 56, 900–901 (2013).

    Article  PubMed  Google Scholar 

  146. Guzman, M. G., Buchy, P., Enria, D. & Vazquez, S. in Dengue and Dengue Hemorrhagic Fever 2nd edn (eds Gubler, D. J., Ooi, E. E., Vasudevan, S. & Farrar, J. ) 184–213 (CAB International, 2014).

    Google Scholar 

  147. Tang, K. F. & Ooi, E. E. Diagnosis of dengue: an update. Expert Rev. Anti Infect. Ther. 10, 895–907 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Guzman, M. G., Rosario, D. & Kouri, G. in Molecular Biology of the Flavivirus (eds Kalitzky, M. & Borowski, P. ) 191–223 (Horizon Bioscience, 2006).

    Google Scholar 

  149. Hunsperger, E. A. et al. Evaluation of commercially available anti-dengue virus immunoglobulin M tests. Emerg. Infect. Dis. 15, 436–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vazquez, S., Hafner, G., Ruiz, D., Calzada, N. & Guzman, M. G. Evaluation of immunoglobulin M and G capture enzyme-linked immunosorbent assay Panbio kits for diagnostic dengue infections. J. Clin. Virol. 39, 194–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Guzman, M. G. et al. Multi-country evaluation of the sensitivity and specificity of two commercially-available NS1 ELISA assays for dengue diagnosis. PLoS Negl. Trop. Dis. 4, e811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hunsperger, E. A. et al. Evaluation of commercially available diagnostic tests for the detection of dengue virus NS1 antigen and anti-dengue virus IgM antibody. PLoS Negl. Trop. Dis. 8, e3171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Guzman, M. G. et al. Dengue: a continuing global threat. Nat. Rev. Microbiol. 8, S7–S16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pan American Health Organization & World Health Organization. Zika virus (ZIKV) surveillance in the Americas: laboratory detection and diagnosis. Algorithm for detecting Zika virus (ZIKV). PAHOhttp://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=30176&Itemid=270 (2016).

  155. World Health Organization. Dengue and severe dengue. WHOhttp://www.who.int/mediacentre/factsheets/fs117/en/ (2016).

  156. Punyadee, N. et al. Microparticles provide a novel biomarker to predict severe clinical outcomes of dengue virus infection. J. Virol. 89, 1587–1607 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Yacoub, S. & Wills, B. Dengue: an update for clinicians working in non-endemic areas. Clin. Med. 15, 82–85 (2015).

    Article  Google Scholar 

  158. World Health Organization & Special Programme for Research and Training in Tropical Diseases. Handbook for Clinical Management of Dengue (WHO Press, 2012).

  159. Michels, M. et al. The predictive diagnostic value of serial daily bedside ultrasonography for severe dengue in Indonesian adults. PLoS Negl. Trop. Dis. 7, e2277 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Potts, J. A. & Rothman, A. L. Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Trop. Med. Int. Health 13, 1328–1340 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Potts, J. A. et al. Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl. Trop. Dis. 4, e769 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Huang, S. Y. et al. Use of simple clinical and laboratory predictors to differentiate influenza from dengue and other febrile illnesses in the emergency room. BMC Infect. Dis. 14, 623 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Horstick, O. et al. Comparing the usefulness of the 1997 and 2009 WHO dengue case classification: a systematic literature review. Am. J. Trop. Med. Hyg. 91, 621–634 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Farrar, J. J. et al. Dogma in classifying dengue disease. Am. J. Trop. Med. Hyg. 89, 198–201 (2013). In this paper, a group of international dengue experts explain the main advantages of the revised classification of dengue, both for clinicians and epidemiologists and also for future research.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Basuki, P. S. et al. Application of revised dengue classification criteria as a severity marker of dengue viral infection in Indonesia. Southeast Asian J. Trop. Med. Public Health 41, 1088–1094 (2010).

    PubMed  Google Scholar 

  166. Narvaez, F. et al. Evaluation of the traditional and revised WHO classifications of dengue disease severity. PLoS Negl. Trop. Dis. 5, e1397 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zakaria, Z. et al. An evaluation of the World Health Organization's 1997 and 2009 dengue classifications in hospitalized dengue patients in Malaysia. J. Infect. Dev. Ctries 8, 869–875 (2014).

    Article  PubMed  Google Scholar 

  168. Prasad, D., Kumar, C., Jain, A. & Kumar, R. Accuracy and applicability of the revised WHO classification of dengue in children seen at a tertiary healthcare facility in Northern India. Infection 41, 775–782 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. van de Weg, C. A. et al. Evaluation of the 2009 WHO dengue case classification in an Indonesian pediatric cohort. Am. J. Trop. Med. Hyg. 86, 166–170 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lovera, D. et al. Prospective applicability study of the new dengue classification system for clinical management in children. Pediatr. Infect. Dis. J. 33, 933–935 (2014).

    Article  PubMed  Google Scholar 

  171. Gibson, G. et al. From primary care to hospitalization: clinical warning signs of severe dengue fever in children and adolescents during an outbreak in Rio de Janeiro, Brazil. Cad. Saude Publica 29, 82–90 (in Portuguese) (2013).

    Article  PubMed  Google Scholar 

  172. Pamplona, L. et al. Evaluation of the WHO classification of dengue disease severity during an epidemic in 2011 in the state of Ceará, Brazil. Mem. Inst. Oswaldo Cruz 109, 93–98 (2014).

    Article  Google Scholar 

  173. Horstick, O., Martinez, E., Guzman, M. G., Martin, J. L. & Ranzinger, S. R. WHO dengue case classification 2009 and its usefulness in practice: an expert consensus in the Americas. Pathog. Glob. Health 109, 19–25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Pan American Health Organization & World Health Organization. State of the Art in the Prevention and Control of Dengue in the Americas — meeting report 28–29 May, 2014, Washington District of Columbia, USA (WHO Press, 2014).

  175. Thein, T. L., Gan, V. C., Lye, D. C., Yung, C. F. & Leo, Y. S. Utilities and limitations of the World Health Organization 2009 warning signs for adult dengue severity. PLoS Negl. Trop. Dis. 7, e2023 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Premaratna, R., Ragupathy, A., Miththinda, J. K. & de Silva, H. J. Timing, predictors, and progress of third space fluid accumulation during preliminary phase fluid resuscitation in adult patients with dengue. Int. J. Infect. Dis. 17, e505–e509 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Hadinegoro, S. R. The revised WHO dengue case classification: does the system need to be modified? Paediatr. Int. Child Health 32 (Suppl. 1), 33–38 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Chaterji, S. et al. Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults. Am. J. Trop. Med. Hyg. 84, 224–228 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gan, V. C. et al. Implications of discordance in World Health Organization 1997 and 2009 dengue classifications in adult dengue. PLoS ONE 8, e60946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jaenisch, T., Sakuntabhai, A. & Wilder-Smith, A. Dengue research funded by the European Commission — scientific strategies of three European dengue research consortia. PLoS Negl. Trop. Dis. 7, e2320 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Martinez-Torres, E. Preventing deaths from dengue: a space and challenge for primary health care. Rev. Panam. Salud Publica 20, 60–74 (in Spanish) (2006).

    Article  PubMed  Google Scholar 

  182. Simmons, C. P. et al. Recent advances in dengue pathogenesis and clinical management. Vaccine 33, 7061–7068 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Srikiatkhachorn, A. et al. Dengue hemorrhagic fever: the sensitivity and specificity of the world health organization definition for identification of severe cases of dengue in Thailand, 1994–2005. Clin. Infect. Dis. 50, 1135–1143 (2010).

    Article  PubMed  Google Scholar 

  184. Akbar, N. A. et al. Regarding “Dengue — how best to classify it”. Clin. Infect. Dis. 54, 1820–1821 (2012).

    Article  PubMed  Google Scholar 

  185. Murrell, S., Wu, S. C. & Butler, M. Review of dengue virus and the development of a vaccine. Biotechnol. Adv. 29, 239–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Yauch, L. E. & Shresta, S. Dengue virus vaccine development. Adv. Virus Res. 88, 315–372 (2014). This review discusses the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates and historical and current dengue vaccine approaches.

    Article  CAS  PubMed  Google Scholar 

  187. Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372, 113–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Laoprasopwattana, K. et al. Antibody-dependent cellular cytotoxicity mediated by plasma obtained before secondary dengue virus infections: potential involvement in early control of viral replication. J. Infect. Dis. 195, 1108–1116 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Garcia, G. et al. Antibodies from patients with dengue viral infection mediate cellular cytotoxicity. J. Clin. Virol. 37, 53–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Weiskopf, D. & Sette, A. T-cell immunity to infection with dengue virus in humans. Front. Immunol. 7, 93 (2014).

    Google Scholar 

  192. Weiskopf, D. et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl Acad. Sci. USA 112, E4256–E4257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bhamarapravati, N. & Sutee, Y. Live attenuated tetravalent dengue vaccine. Vaccine 18 (Suppl. 2), 44–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Sabchareon, A. et al. Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr. Infect. Dis. J. 23, 99–109 (2004).

    Article  PubMed  Google Scholar 

  195. Sabchareon, A. et al. Safety and immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of serotype concentration, ratio, and multiple doses. Am. J. Trop. Med. Hyg. 66, 264–272 (2002).

    Article  PubMed  Google Scholar 

  196. Sanchez, V. et al. Innate and adaptive cellular immunity in flavivirus-naive human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3). Vaccine 24, 4914–4926 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Edelman, R. et al. Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am. J. Trop. Med. Hyg. 69, 48–60 (2003).

    Article  PubMed  Google Scholar 

  198. Simasathien, S. et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus naive children. Am. J. Trop. Med. Hyg. 78, 426–433 (2008).

    Article  PubMed  Google Scholar 

  199. Watanaveeradej, V. et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus-naive infants. Am. J. Trop. Med. Hyg. 85, 341–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Thomas, S. J. et al. A phase II, randomized, safety and immunogenicity study of a re-derived, live-attenuated dengue virus vaccine in healthy adults. Am. J. Trop. Med. Hyg. 88, 73–88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Men, R., Bray, M., Clark, D., Chanock, R. M. & Lai, C. J. Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J. Virol. 70, 3930–3937 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. de Borba, L. et al. Overlapping local and long-range RNA–RNA interactions modulate dengue virus genome cyclization and replication. J. Virol. 89, 3430–3437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Whitehead, S. S. et al. Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated for mosquitoes, mice, and rhesus monkeys. Vaccine 21, 4307–4316 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Whitehead, S. S. et al. A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3′ untranslated region is highly attenuated and immunogenic in monkeys. J. Virol. 77, 1653–1657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Durbin, A. P. et al. A single dose of the DENV-1 candidate vaccine rDEN1Δ30 is strongly immunogenic and induces resistance to a second dose in a randomized trial. PLoS Negl. Trop. Dis. 5, e1267 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Durbin, A. P. et al. A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial. J. Infect. Dis. 207, 957–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kirkpatrick, B. D. et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J. Infect. Dis. 212, 702–710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kirkpatrick, B. D. et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl Med. 8, 330ra36 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Guy, B., Briand, O., Lang, J., Saville, M. & Jackson, N. Development of the Sanofi Pasteur tetravalent dengue vaccine: one more step forward. Vaccine 33, 7100–7111 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Hadinegoro, S. R. et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373, 1195–1206 (2015). This article presents the results of long-term follow-up interim analyses and integrated efficacy analyses of the Sanofi Pasteur dengue vaccine in regions of endemic disease.

    Article  CAS  PubMed  Google Scholar 

  211. Halstead, S. B. & Russell, P. K. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 34, 1643–1647 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Huang, C. Y. et al. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J. Virol. 77, 11436–11447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Osorio, J. E. et al. Efficacy of a tetravalent chimeric dengue vaccine (DENVax) in cynomolgus macaques. Am. J. Trop. Med. Hyg. 84, 978–987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Osorio, J. E. et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. Lancet Infect. Dis. 14, 830–838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Osorio, J. E., Wallace, D. & Stinchcomb, D. T. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev. Vaccines 15, 497–508 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. Guzman, M. G. et al. Induction of neutralizing antibodies and partial protection from viral challenge in Macaca fascicularis immunized with recombinant dengue 4 virus envelope glycoprotein expressed in Pichia pastoris. Am. J. Trop. Med. Hyg. 69, 129–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Konishi, E. & Fujii, A. Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20, 1058–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Kuwahara, M. & Konishi, E. Evaluation of extracellular subviral particles of dengue virus type 2 and Japanese encephalitis virus produced by Spodoptera frugiperda cells for use as vaccine and diagnostic antigens. Clin. Vaccine Immunol. 17, 1560–1566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Simmons, M., Murphy, G. S., Kochel, T., Raviprakash, K. & Hayes, C. G. Characterization of antibody responses to combinations of a dengue-2 DNA and dengue-2 recombinant subunit vaccine. Am. J. Trop. Med. Hyg. 65, 420–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Clements, D. E. et al. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 28, 2705–2715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Coller, B. A., Clements, D. E., Bett, A. J., Sagar, S. L. & Ter Meulen, J. H. The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine 29, 7267–7275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02450838 (2015).

  223. Marcos, E. et al. Purified and highly aggregated chimeric protein DIIIC-2 induces a functional immune response in mice against dengue 2 virus. Arch. Virol. 158, 225–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Suzarte, E. et al. A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys. Int. Immunol. 27, 367–379 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Izquierdo, A. et al. Serotype specificity of recombinant fusion protein containing domain III and capsid protein of dengue virus 2. Antiviral Res. 95, 1–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Costa, S. M. et al. Protection against dengue type 2 virus induced in mice immunized with a DNA plasmid encoding the non-structural 1 (NS1) gene fused to the tissue plasminogen activator signal sequence. Vaccine 24, 195–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Wu, S. F. et al. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine 21, 3919–3929 (2003).

    Article  CAS  PubMed  Google Scholar 

  228. Zheng, Q. et al. Evaluation of a DNA vaccine candidate expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection. Vaccine 29, 763–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  229. Gubler, D. J. Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Charles Franklin Craig Lecture. Am. J. Trop. Med. Hyg. 40, 571–578 (1989).

    Article  CAS  PubMed  Google Scholar 

  230. Gubler, D. The emergence of epidemic dengue fever and dengue hemorrhagic fever in the Americas: a case of failed public health policy. Rev. Panam. Salud Publica 17, 221–224 (2005).

    Article  PubMed  Google Scholar 

  231. Gubler, D. Prevention and control of Aedes aegypti-borne diseases: lesson learned from past successes and failures. Asia Pac. J. Mol. Biol. Biotechnol. 19, 111–114 (2011).

    Google Scholar 

  232. Schliessmann, D. J. & Calheiros, L. B. A review of the status of yellow fever and Aedes aegypti eradication programs in the Americas. Mosquito News 34, 1–9 (1974).

    Google Scholar 

  233. Sencer, D. J. Health protection in a shrinking world. Am. J. Trop. Med. Hyg. 18, 341–345 (1969).

    Article  CAS  PubMed  Google Scholar 

  234. Chan, Y. C., Lim, K. A. & Ho, B. C. Recent epidemics of haemorrhagic fever in Singapore. Jpn J. Med. Sci. Biol. 20, 81–88 (1967).

    PubMed  Google Scholar 

  235. Chan, K. L., Ng, S. K. & Chew, L. M. The 1973 dengue haemorrhagic fever outbreak in Singapore and its control. Singapore Med. J. 18, 81–93 (1977).

    CAS  PubMed  Google Scholar 

  236. Ooi, E. E., Goh, K. T. & Gubler, D. J. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 12, 887–893 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Kouri, G. P., Guzman, M. G., Bravo, J. R. & Triana, C. Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. Bull. World Health Organ. 67, 375–380 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Armada Gessa, J. A. & Figueredo Gonzalez, R. Application of environmental management principles in the program for eradication of Aedes (Stegomyia) aegypti (Linneus, 1762) in the Republic of Cuba, 1984. Bull. Pan Am. Health Organ. 20, 186–193 (1986).

    CAS  PubMed  Google Scholar 

  239. Gubler, D. J. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp. Immunol. Microbiol. Infect. Dis. 27, 319–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  240. Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gubler, D. J. The partnership for dengue control — a new global alliance for the prevention and control of dengue. Vaccine 33, 1233 (2015).

    Article  PubMed  Google Scholar 

  242. Frentiu, F. D., Walker, T. & O'Neill, S. in Dengue and Dengue Hemorrhagic Fever 2nd edn (eds Gubler, D. J., Ooi, E. E., Vasudevan, S. & Farrar, J. ) 537–547 (CAB International, 2014).

    Google Scholar 

  243. Brown, D. M. & James, A. A. in Dengue and Dengue Hemorrhagic Fever 2nd edn (eds Gubler, D. J., Ooi, E. E., Vasudevan, S. & Farrar, J. ) 519–536 (CAB International, 2014).

    Google Scholar 

  244. Rocha, C. et al. Improvement in hospital indicators after changes in dengue case management in Nicaragua. Am. J. Trop. Med. Hyg. 81, 287–292 (2009).

    Article  PubMed  Google Scholar 

  245. de Andrade, S. M. O., Herkert, C. M. M., da Cunha, R. V., Rodrigues, M. D. & da Silva, B. A. K. A new approach to reducing mortality from dengue. Open J. Clin. Diagnost. 4, 12–16 (2014).

    Article  Google Scholar 

  246. Rajapakse, S., Rodrigo, C. & Rajapakse, A. Treatment of dengue fever. Infect. Drug Resist. 5, 103–112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Martinez, E. Medical care organization to face dengue epidemics. Rev. Cubana Med. Trop. 61, 2 (2009).

    Google Scholar 

  248. Laughlin, C. A. et al. Dengue research opportunities in the Americas. J. Infect. Dis. 206, 1121–1127 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wiwanitkit, V. Dengue fever: diagnosis and treatment. Expert Rev. Anti Infect. Ther. 8, 841–845 (2010).

    Article  PubMed  Google Scholar 

  250. Harris, E. et al. Fluid intake and decreased risk for hospitalization for dengue fever, Nicaragua. Emerg. Infect. Dis. 9, 1003–1006 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Sagib, M. A., Rafique, I., Bashir, S. & Salam, A. A. A retrospective analysis of dengue fever case management and frequency of co-morbidities associated with deaths. BMC Res. Notes 7, 205 (2014).

    Article  Google Scholar 

  252. Lee, I. K., Lee, W. H., Yang, K. D. & Liu, J. W. Comparison of the effects of oral hydration and intravenous fluid replacement in adult patients with non-shock dengue hemorrhagic fever in Taiwan. Trans. R. Soc. Trop. Med. Hyg. 104, 541–545 (2010).

    Article  PubMed  Google Scholar 

  253. Toledo, J. et al. Relevance of non-communicable comorbidities for the development of the severe forms of dengue: a systematic literature review. PLoS Negl. Trop. Dis. 10, e0004284 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lima, F. R. et al. Evaluation of the traditional and revised World Health Organization classifications of dengue cases in Brazil. Clinics (Sao Paulo) 68, 1299–1304 (2013).

    Article  Google Scholar 

  255. Usman, H. B. et al. Evidence of the use of intravenous rehydration for the treatment of plasma leakage in severe dengue of children and adults: a systematic review. Dengue Bulletin 36, 149–165 (2012).

    Google Scholar 

  256. Thomas, L. et al. Clinical presentation of dengue among patients admitted to the adult emergency department of a tertiary care hospital in Martinique: implications for triage, management, and reporting. Ann. Emerg. Med. 59, 42–50 (2012).

    Article  PubMed  Google Scholar 

  257. Organización Panamericana de la Salud. Dengue. Guías de Atención para Enfermos en la Región de las Américas (in Spanish) (OPS, 2014).

  258. World Health Organization South-East Asia Regional Office (SEARO). Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever (SEARO, 2011).

  259. Vargas-Sanchez, A. et al. Cerebellar hemorrhage in a patient during the convalescent phase of dengue fever. J. Stroke 16, 202–204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Lum, L. C., Goh, A. Y., Chan, P. W., El-Amin, A. L. & Lam, S. K. Risk factors for hemorrhage in severe dengue infections. J. Pediatr. 140, 629–631 (2002).

    Article  PubMed  Google Scholar 

  261. Setlik, R. F. et al. Pulmonary hemorrhage syndrome associated with an autochthonous case of dengue hemorrhagic fever. South Med. J. 97, 688–691 (2004).

    Article  PubMed  Google Scholar 

  262. Whitehorn, J. et al. Prophylactic platelets in dengue: survey responses highlight lack of an evidence base. PLoS Negl. Trop. Dis. 6, e1716 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Yacoub, S. et al. Cardiac function in Vietnamese patients with different dengue severity grades. Crit. Care Med. 40, 477–483 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Miranda, C. H. et al. Evaluation of cardiac involvement during dengue viral infection. Clin. Infect. Dis. 57, 812–819 (2013).

    Article  CAS  PubMed  Google Scholar 

  265. Povoa, T. F. et al. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS ONE 9, e83386 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Singhi, S., Kissoon, N. & Bansal, A. Dengue and dengue hemorrhagic fever: management issues in an intensive care unit. J. Pediatr. (Rio J.) 83, S22–S35 (2007).

    Article  Google Scholar 

  267. Rodrigues, R. S. et al. Lung in dengue: computed tomography findings. PLoS ONE 9, e96313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Parkash, O. et al. Severity of acute hepatitis and its outcome in patients with dengue fever in a tertiary care hospital Karachi, Pakistan (South Asia). BMC Gastroenterol. 10, 43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Chen, T. C., Perng, D. S., Tsai, J. J., Lu, P. L. & Chen, T. P. Dengue hemorrhagic fever complicated with acute pancreatitis and seizure. J. Formos. Med. Assoc. 103, 865–868 (2004).

    PubMed  Google Scholar 

  270. Balasubramanian, S., Ramachandran, B. & Amperayani, S. Dengue viral infection in children: a perspective. Arch. Dis. Child. 97, 907–912 (2012).

    Article  CAS  PubMed  Google Scholar 

  271. Nguyen, N. M. et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J. Infect. Dis. 207, 1442–1450 (2013).

    Article  CAS  PubMed  Google Scholar 

  272. Tricou, V. et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl. Trop. Dis. 4, e785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Whitehorn, J. et al. Lovastatin for adult patients with dengue: protocol for a randomised controlled trial. Trials 13, 203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Wong, J. G. et al. Self-reported pain intensity with the numeric reporting scale in adult dengue. PLoS ONE 9, e96514 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Paliwal, V. K. et al. Acute dengue virus myositis: a report of seven patients of varying clinical severity including two cases with severe fulminant myositis. J. Neurol. Sci. 300, 14–18 (2011).

    Article  PubMed  Google Scholar 

  276. Chen, T. Y. & Lee, C. T. Guillain–Barre syndrome following dengue fever. Ann. Emerg. Med. 50, 94–95 (2007).

    Article  PubMed  Google Scholar 

  277. Gonzalez, D. et al. Evaluation of some clinical, humoral and imagenological parameters in patients of dengue haemorrhagic fever six months after acute illness. Dengue Bulletin 29, 79–84 (2005).

    Google Scholar 

  278. Garcia, G. et al. Long-term persistence of clinical symptoms in dengue-infected persons and its association with immunological disorders. Int. J. Infect. Dis. 15, e38–e43 (2011).

    Article  PubMed  Google Scholar 

  279. Wittesjo, B., Eitrem, R. & Niklasson, B. Dengue fever among Swedish tourists. Scand. J. Infect. Dis. 25, 699–704 (1993).

    Article  CAS  PubMed  Google Scholar 

  280. del Valle Diaz, S., Pinera Martinez, M. & Guasch Saent Felix, F. Reactive hepatitis caused by the hemorrhagic dengue virus. Rev. Cubana Med. Trop. 53, 28–31 (in Spanish) (2001).

    CAS  PubMed  Google Scholar 

  281. Seet, R. C., Quek, A. M. & Lim, E. C. Post-infectious fatigue syndrome in dengue infection. J. Clin. Virol. 38, 1–6 (2007).

    Article  PubMed  Google Scholar 

  282. Cheng, V. C. et al. Clinical deterioration in community acquired infections associated with lymphocyte upsurge in immunocompetent hosts. Scand. J. Infect. Dis. 36, 743–751 (2004).

    Article  PubMed  Google Scholar 

  283. Chang, P. E. et al. Visual disturbances in dengue fever: an answer at last? Singapore Med. J. 48, e71–e73 (2007).

    CAS  PubMed  Google Scholar 

  284. Teoh, S. C. et al. Optical coherence tomography patterns as predictors of visual outcome in dengue-related maculopathy. Retina 30, 390–398 (2010).

    Article  PubMed  Google Scholar 

  285. Mehra, N., Patel, A., Abraham, G., Reddy, Y. N. & Reddy, Y. N. Acute kidney injury in dengue fever using Acute Kidney Injury Network criteria: incidence and risk factors. Trop. Doct 42, 160–162 (2012).

    Article  PubMed  Google Scholar 

  286. Sharp, T. M. et al. Fatal hemophagocytic lymphohistiocytosis associated with locally acquired dengue virus infection — New Mexico and Texas, 2012. MMWR Morb. Mortal. Wkly Rep. 63, 49–54 (2014).

    PubMed  PubMed Central  Google Scholar 

  287. Schwartz, L. M., Halloran, M. E., Durbin, A. P. & Longini, I. M. The dengue vaccine pipeline: Implications for the future of dengue control. Vaccine 33, 3293–3298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Guzman, M. G. A new moment for facing dengue? Pathog. Glob. Health 109, 2–3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Wilder-Smith, A. & Macary, P. Dengue: challenges for policy makers and vaccine developers. Curr. Infect. Dis. Rep. 16, 404 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Sabchareon, A., Wallace, D., Lang, J., Bouckenooghe, A. & Moureau, A. Efficacy of tetravalent dengue vaccine in Thai schoolchildren — authors' reply. Lancet 381, 1094–1095 (2013).

    Article  PubMed  Google Scholar 

  291. [No authors listed.] Meeting of the Strategic Advisory Group of Experts on immunization, April 2016 — conclusions and recommendations. Wkly Epidemiol. Rec. 91, 266–284 (2016).

  292. Farrar, J. et al. Towards a global dengue research agenda. Trop. Med. Int. Health 12, 695–699 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Special Programme for Research and Training in Tropical Diseases & World Health Organization. Report of the Scientific Working Group meeting on dengue, Geneva, 1–5 October 2006. WHOhttp://www.who.int/tdr/publications/documents/swg_dengue_2.pdf (2006). This report outlines dengue research priorities according an expert group convened by the Special Programme for Research and Training in Tropical Diseases and the WHO.

  294. San Martin, J. L. & Brathwaite-Dick, O. Integrated strategy for dengue prevention and control in the Region of the Americas. Rev. Panam. Salud Publica 21, 55–63 (in Spanish) (2007).

    Article  PubMed  Google Scholar 

  295. Hombach, J., Jane Cardosa, M., Sabchareon, A., Vaughn, D. W. & Barrett, A. D. Scientific consultation on immunological correlates of protection induced by dengue vaccines report from a meeting held at the World Health Organization 17–18 November 2005. Vaccine 25, 4130–4139 (2007).

    Article  CAS  PubMed  Google Scholar 

  296. Hombach, J. Vaccines against dengue: a review of current candidate vaccines at advanced development stages. Rev. Panam Salud Publica 21, 254–260 (2007).

    Article  PubMed  Google Scholar 

  297. Kroeger, A., Nathan, M. B., Hombach, J., Dayal-Drager, R. & Weber, M. W. Dengue research and training supported through the World Health Organization. Ann. Trop. Med. Parasitol. 100, S97–S101 (2006).

    Article  PubMed  Google Scholar 

  298. Kroeger, A. et al. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ 332, 1247–1252 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Jaenisch, T. et al. Dengue research funded by the European Commission — scientific strategies of three European dengue research consortia. PLoS Negl. Trop. Dis. 8, 2883 (2014).

    Article  Google Scholar 

  300. Dengue Vaccine Initiative. About DVI. DVIhttp://www.denguevaccines.org/about-dvi (2016).

  301. Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Screaton, G., Mongkolsapaya, J., Yacoub, S. & Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15, 745–759 (2015).

    Article  CAS  PubMed  Google Scholar 

  303. Xie, X., Zou, J., Puttikhunt, C., Yuan, Z. & Shi, P. Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89, 1298–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  304. Munoz-Jordan, J. L. et al. Inhibition of α/β interferon signaling by the NS4B protein of flaviviruses. J. Virol. 79, 8004–8013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Munoz-Jordan, J. L. & Santiago, G. A. Inconclusive reverse transcription-PCR assay comparison for dengue virus detection and serotyping. J. Clin. Microbiol. 52, 1800 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.G.G.); Epidemiology (D.J.G.); Mechanisms/pathophysiology (S.B.H.); Diagnosis, screening and prevention (A.I., D.J.G., E.M. and M.G.G.); Management (E.M.); Quality of life (E.M.); Outlook (M.G.G.); Overview of Primer (M.G.G.).

Corresponding author

Correspondence to Maria G. Guzman.

Ethics declarations

Competing interests

D.J.G. is a patent holder on the Takeda vaccine and a stock holder in the company. He has consulted for Takeda and Sanofi, and was on the Scientific Advisory Board of Novartis Institute for Tropical Diseases from 2003 to 2012. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman, M., Gubler, D., Izquierdo, A. et al. Dengue infection. Nat Rev Dis Primers 2, 16055 (2016). https://doi.org/10.1038/nrdp.2016.55

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.55

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing