Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the immunopathology and control of dengue virus infection

Key Points

  • Dengue virus has four distinct serotypes, and infection with one serotype results in the development of homotypic immunity. Subsequent infection with a different serotype is associated with an increased risk of developing severe disease, leading to the suggestion that severe disease is triggered by immunopathology.

  • Both T cell- and B cell-mediated adaptive immune responses are thought to be involved in the immunopathology of severe dengue. Antibody-dependent enhancement and a skewed T cell response through original antigenic sin may have a role in disease pathogenesis in secondary infections.

  • There are several vaccine candidates in development; the most advanced in clinical trials is the Sanofi Pasteur vaccine CYD-TDV. A recent 3 year follow-up study demonstrated an overall vaccine efficacy of 65%, with lower efficacies and higher hospitalizations in children younger than 9 years old.

  • A large number of dengue virus-specific monoclonal antibodies have recently been described, and antibodies targeting envelope (E) protein domain III are among the most potently neutralizing but are often serotype-specific. Recently, however, a broadly neutralizing antibody directed against the E protein dimer epitope (EDE) has been discovered.

  • Antibodies directed against precursor membrane (prM) protein can facilitate Fc receptor-mediated uptake of immature viral particles, which, although non-infectious in the absence of antibody, can undergo prM cleavage following endocytosis in the host cell, rendering them infectious.

  • Future vaccines need to target potently neutralizing epitopes, such as those found on E protein domain III, or the quaternary epitopes, such as EDE, and minimize poorly neutralizing and potentially disease-enhancing prM or FLE antibodies.

Abstract

Dengue virus poses a major threat to global public health: two-thirds of the world's population is now at risk from infection by this mosquito-borne virus. Dengue virus causes a range of diseases with a small proportion of infected patients developing severe plasma leakage that leads to dengue shock syndrome, organ impairment and bleeding. Infection with one of the four viral serotypes results in the development of homotypic immunity to that serotype. However, subsequent infection with a different serotype is associated with an increased risk of developing severe disease, which has led to the suggestion that severe disease is triggered by immunopathology. This Review outlines recent advances in the understanding of immunopathology, vaccine development and human monoclonal antibodies produced against dengue virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of dengue virus.
Figure 2: Structure of the dengue viral particle.
Figure 3: Adaptive immune responses to dengue virus infection.
Figure 4: Dengue vaccines.
Figure 5: Quaternary epitopes.

Similar content being viewed by others

References

  1. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simmons, C. P., Farrar, J. J., Nguyen v, V. & Wills, B. Dengue. N. Engl. J. Med. 366, 1423–1432 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002). This study shows the first structure of a mature flavivirus; the dengue virion is shown to consist of 90 E protein dimers arranged into a smooth virus particle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, L. et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 1830–1834 (2008). This is an important study demonstrating the structure and linkage of the prM protein to the E protein.

    Article  CAS  PubMed  Google Scholar 

  5. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004). This study shows how the structure of dengue E protein changes from dimer to trimer after membrane fusion.

    Article  CAS  PubMed  Google Scholar 

  7. Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003). This study describes how the arrangement of prM protein and E protein leads to the formation of the spiky trimers on immature dengue virions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y. et al. Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Junjhon, J. et al. Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol. 84, 8353–8358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dowd, K. A., Mukherjee, S., Kuhn, R. J. & Pierson, T. C. Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition. J. Virol. 88, 11726–11737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cherrier, M. V. et al. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 28, 3269–3276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukherjee, S. et al. Mechanism and significance of cell type-dependent neutralization of flaviviruses. J. Virol. 88, 7210–7220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dejnirattisai, W. et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745–748 (2010). This study reveals that there is a high proportion of prM-specific antibodies among human mAbs, and these antibodies do not effectively neutralize dengue virus but instead potently enhance the infection (that is, ADE).

    Article  CAS  PubMed  Google Scholar 

  16. Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16, 170–177 (2015). This study describes mAbs directed against a previously unknown epitope, the EDE; these mAbs are broadly neutralizing across dengue serotypes.

    Article  CAS  PubMed  Google Scholar 

  17. Heinz, F. X. et al. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109–117 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Rodenhuis-Zybert, I. A. et al. Immature dengue virus: a veiled pathogen? PLoS Pathog. 6, e1000718 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Plevka, P. et al. Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep. 12, 602–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cruz-Oliveira, C. et al. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev. 39, 155–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Halstead, S. B. et al. Observations related to pathogenesis of dengue hemorrhagic fever. I. Experience with classification of dengue viruses. Yale J. Biol. Med. 42, 261–275 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sangkawibha, N. et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120, 653–669 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Avirutnan, P. et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J. Infect. Dis. 193, 1078–1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Libraty, D. H. et al. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J. Infect. Dis. 185, 1213–1221 (2002).

    Article  PubMed  Google Scholar 

  25. Libraty, D. H. et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 186, 1165–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, T. H. et al. Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J. Infect. Dis. 189, 221–232 (2004).

    Article  PubMed  Google Scholar 

  28. Dejnirattisai, W. et al. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J. Immunol. 181, 5865–5874 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Green, S. et al. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J. Infect. Dis. 179, 755–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Bethell, D. B. et al. Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J. Infect. Dis. 177, 778–782 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ferrara, J. L., Abhyankar, S. & Gilliland, D. G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 25, 1216–1217 (1993).

    CAS  PubMed  Google Scholar 

  32. Ramachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 5, 213–218 (2014).

    Article  PubMed  Google Scholar 

  33. de Jong, M. D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, Y. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3, 866–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Avirutnan, P. et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog. 3, e183 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Avirutnan, P. et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med. 207, 793–806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. St John, A. L. Influence of mast cells on dengue protective immunity and immune pathology. PLoS Pathog. 9, e1003783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rothman, A. L. Dengue: defining protective versus pathologic immunity. J. Clin. Invest. 113, 946–951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duangchinda, T. et al. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc. Natl Acad. Sci. USA 107, 16922–16927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurane, I., Zeng, L., Brinton, M. A. & Ennis, F. A. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virology 240, 169–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Livingston, P. G. et al. Dengue virus-specific, HLA-B35-restricted, human CD8+ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities. J. Immunol. 154, 1287–1295 (1995).

    CAS  PubMed  Google Scholar 

  42. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003). This paper describes original antigenic sin in T cell responses to dengue virus infection.

    Article  CAS  PubMed  Google Scholar 

  43. Mongkolsapaya, J. et al. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J. Immunol. 176, 3821–3829 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Weiskopf, D. et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl Acad. Sci. USA 110, E2046–E2053 (2013). This study shows that cross-reactive T cells from primary infection expand during secondary infection (original antigenic sin), but the overall quality of the responses is not compromised.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yauch, L. E. et al. A protective role for dengue virus-specific CD8+ T cells. J. Immunol. 182, 4865–4873 (2009). This study shows the protective role of CD8+ T cells in a mouse model of dengue virus infection.

    Article  CAS  PubMed  Google Scholar 

  46. Mathew, A., Townsley, E. & Ennis, F. A. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol. 9, 411–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Rivino, L. et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J. Virol. 87, 2693–2706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zompi, S., Santich, B. H., Beatty, P. R. & Harris, E. Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J. Immunol. 188, 404–416 (2012). This study demonstrates that both cross-reactive antibodies and T cells protect mice from secondary heterotypic dengue virus infection.

    Article  CAS  PubMed  Google Scholar 

  49. Mathew, A. et al. Dominant recognition by human CD8+ cytotoxic T lymphocytes of dengue virus nonstructural proteins NS3 and NS1.2a. J. Clin. Invest. 98, 1684–1691 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathew, A. et al. Predominance of HLA-restricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection. J. Virol. 72, 3999–4004 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Green, S. et al. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J. Infect. Dis. 180, 1429–1435 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Zivna, I. et al. T cell responses to an HLA-B*07- restricted epitope on the dengue NS3 protein correlate with disease severity. J. Immunol. 168, 5959–5965 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Dung, N. T. et al. Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue. J. Immunol. 184, 7281–7287 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Friberg, H. et al. Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci. Rep. 1, 51 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rivino, L. et al. Virus-specific T lymphocytes home to the skin during natural dengue infection. Sci. Transl. Med. 7, 278ra35 (2015). This study demonstrates that dengue virus-specific T cells migrate to peripheral tissues, such as the skin, during the acute phase of infection.

    Article  CAS  PubMed  Google Scholar 

  56. Kurane, I., Meager, A. & Ennis, F. A. Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon γ production, and cytotoxic activity. J. Exp. Med. 170, 763–775 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Kurane, I., Brinton, M. A., Samson, A. L. & Ennis, F. A. Dengue virus-specific, human CD4+ CD8− cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. J. Virol. 65, 1823–1828 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fazekas de St, G. & Webster, R. G. Disquisitions of original antigenic sin. I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).

    Article  Google Scholar 

  59. Singh, R. A., Rodgers, J. R. & Barry, M. A. The role of T cell antagonism and original antigenic sin in genetic immunization. J. Immunol. 169, 6779–6786 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Weiskopf, D. et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl Acad. Sci. USA 112, E4256–E4263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coffey, L. L. et al. Human genetic determinants of dengue virus susceptibility. Microbes Infect. 11, 143–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Yauch, L. E. et al. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J. Immunol. 185, 5405–5416 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Zellweger, R. M. et al. CD8+ T cells can mediate short-term protection against heterotypic dengue reinfection in mice. J. Virol. 89, 6494–6505 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Halstead, S. B. Controversies in dengue pathogenesis. Paediatr. Int. Child Health 32, 5–9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guzman, M. G., Alvarez, M. & Halstead, S. B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158, 1445–1459 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Chan, K. R. et al. Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue. Proc. Natl Acad. Sci. USA 111, 2722–2727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zompi, S. & Harris, E. Animal models of dengue virus infection. Viruses 4, 62–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Simmons, C. P. et al. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J. Infect. Dis. 196, 416–424 (2007).

    Article  PubMed  Google Scholar 

  69. Halstead, S. B. et al. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg. Infect. Dis. 8, 1474–1479 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kliks, S. C., Nimmanitya, S., Nisalak, A. & Burke, D. S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38, 411–419 (1988). References 68 and 70 demonstrate that maternal antibodies contribute to the development of severe disease in infants experiencing primary dengue virus infection.

    Article  CAS  PubMed  Google Scholar 

  71. Pierson, T. C. Modeling antibody-enhanced dengue virus infection and disease in mice: protection or pathogenesis? Cell Host Microbe 7, 85–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Mohsin, S. N. et al. Association of FcγRIIa polymorphism with clinical outcome of dengue infection: first insight from Pakistan. Am. J. Trop. Med. Hyg. 93, 691–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garcia, G. et al. Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the FcγRIIa polymorphism. Am. J. Trop. Med. Hyg. 82, 1153–1156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Loke, H. et al. Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and Fcγ receptor IIa genes. Am. J. Trop. Med. Hyg. 67, 102–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. da Silva Voorham, J. M. et al. Antibodies against the envelope glycoprotein promote infectivity of immature dengue virus serotype 2. PLoS ONE 7, e29957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodenhuis-Zybert, I. A. et al. A fusion-loop antibody enhances the infectious properties of immature flavivirus particles. J. Virol. 85, 11800–11808 (2011). This paper shows that immature dengue virions can be driven to become infectious through ADE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Midgley, C. M. et al. An in-depth analysis of original antigenic sin in dengue virus infection. J. Virol. 85, 410–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Pierson, T. C. et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1, 135–145 (2007). This study measured the number of antibodies required for neutralization and enhancement of infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guzman, M. G. et al. Neutralizing antibodies after infection with dengue 1 virus. Emerg. Infect. Dis. 13, 282–286 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sabin, A. B. Research on dengue during World War, II. Am. J. Trop. Med. Hyg. 1, 30–50 (1952).

    Article  CAS  PubMed  Google Scholar 

  81. Bhamarapravati, N. & Sutee, Y. Live attenuated tetravalent dengue vaccine. Vaccine 18 (Suppl. 2), 44–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, W. et al. Phase 2 clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naive adults. Hum. Vaccin. 5, 33–40 (2009).

    Article  PubMed  Google Scholar 

  83. Edelman, R. et al. Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am. J. Trop. Med. Hyg. 69, 48–60 (2003).

    Article  PubMed  Google Scholar 

  84. Kanesa-thasan, N. et al. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine 19, 3179–3188 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Guy, B. et al. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29, 7229–7241 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Kirkpatrick, B. D. et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J. Infect. Dis. 212, 702–710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Osorio, J. E. et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. Lancet Infect. Dis. 14, 830–838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Watanaveeradej, V. et al. Safety and immunogenicity of a rederived, live-attenuated dengue virus vaccine in healthy adults living in Thailand: a randomized trial. Am. J. Trop. Med. Hyg. 91, 119–128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Villar, L. A. et al. Safety and immunogenicity of a recombinant tetravalent dengue vaccine in 9–16 year olds: a randomized, controlled, phase II trial in Latin America. Pediatr. Infect. Dis. J. 32, 1102–1109 (2013).

    Article  PubMed  Google Scholar 

  90. Sabchareon, A. et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380, 1559–1567 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Lanata, C. F. et al. Immunogenicity and safety of tetravalent dengue vaccine in 2–11 year-olds previously vaccinated against yellow fever: randomized, controlled, phase II study in Piura, Peru. Vaccine 30, 5935–5941 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Leo, Y. S. et al. Immunogenicity and safety of recombinant tetravalent dengue vaccine (CYD-TDV) in individuals aged 2–45 y: Phase II randomized controlled trial in Singapore. Hum. Vaccin. Immunother. 8, 1259–1271 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Capeding, R. Z. et al. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines. Vaccine 29, 3863–3872 (2011).

    Article  PubMed  Google Scholar 

  94. Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372, 113–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014). References 94 and 95 describe the first ever Phase III trial of a dengue vaccine, which showed an overall efficacy of 64.7% in children from Latin America and 56.5% in Asian children, respectively.

    Article  CAS  PubMed  Google Scholar 

  96. Hadinegoro, S. R. et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373, 1195–1206 (2015). This study is a 3-year follow up of the CYD-TDV vaccine involving 35,000 children; vaccine efficacy was higher in children over 9 years old compared with children younger than 9 years, and the younger age group was also associated with increased hospitalization.

    Article  CAS  PubMed  Google Scholar 

  97. Wu, S. F. et al. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine 21, 3919–3929 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Amorim, J. H. et al. Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine 30, 837–845 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Bhoomiboonchoo, P. et al. Sequential dengue virus infections detected in active and passive surveillance programs in Thailand, 1994–2010. BMC Publ. Health 15, 250 (2015).

    Article  Google Scholar 

  100. Olkowski, S. et al. Reduced risk of disease during postsecondary dengue virus infections. J. Infect. Dis. 208, 1026–1033 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gibbons, R. V. et al. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am. J. Trop. Med. Hyg. 77, 910–913 (2007).

    Article  PubMed  Google Scholar 

  102. Guy, B. et al. Evaluation of interferences between dengue vaccine serotypes in a monkey model. Am. J. Trop. Med. Hyg. 80, 302–311 (2009).

    Article  PubMed  Google Scholar 

  103. Dayan, G. H. et al. Assessment of bivalent and tetravalent dengue vaccine formulations in flavivirus-naive adults in Mexico. Hum. Vaccin. Immunother. 10, 2853–2863 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Durbin, A. P. et al. A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial. J. Infect. Dis. 207, 957–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. George, S. L. et al. Safety and immunogenicity of a live attenuated tetravalent dengue vaccine candidate in flavivirus-naive adults: a randomized, double-blinded Phase 1 clinical trial. J. Infect. Dis. 212, 1032–1041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomas, S. J. & Rothman, A. L. Trials and tribulations on the path to developing a dengue vaccine. Vaccine http://dx.doi.org/10.1016/j.vaccine.2015.05.095 (2015). This is a comprehensive review on dengue vaccine development.

  107. Brien, J. D. et al. Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J. Virol. 84, 10630–10643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Crill, W. D. & Roehrig, J. T. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 7769–7773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gromowski, G. D. & Barrett, A. D. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology 366, 349–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Gromowski, G. D., Barrett, N. D. & Barrett, A. D. Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J. Virol. 82, 8828–8837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Roehrig, J. T., Bolin, R. A. & Kelly, R. G. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246, 317–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Shrestha, B. et al. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog. 6, e1000823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sukupolvi-Petty, S. et al. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J. Virol. 84, 9227–9239 (2010). This is one of several studies from this group defining the epitopes that are recognized by protective antibodies and showing that the viral strains and/or genotypes have an influence on neutralizing potency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sukupolvi-Petty, S. et al. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J. Virol. 81, 12816–12826 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sukupolvi-Petty, S. et al. Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J. Virol. 87, 8826–8842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wahala, W. M. et al. Natural strain variation and antibody neutralization of dengue serotype 3 viruses. PLoS Pathog. 6, e1000821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Oliphant, T. et al. Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J. Virol. 80, 12149–12159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lai, C.-Y. et al. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J. Virol. 82, 6631–6643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oliphant, T. et al. Induction of epitope-specific neutralizing antibodies against West Nile virus. J. Virol. 81, 11828–11839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Crill, W. D., Hughes, H. R., Delorey, M. J. & Chang, G. J. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS ONE 4, e4991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith, S. A. et al. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. MBio 4, e00873–00813 (2013). This paper shows the characterization of a panel of human mAbs and the identification of an antibody that recognizes all four dengue virus serotypes with potent neutralizing activity. The epitope of this mAb was shown to be on the BC loop of a monomeric E protein.

    PubMed  PubMed Central  Google Scholar 

  122. Robinson, L. N. et al. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell 162, 493–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oliphant, T. et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 11, 522–530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lok, S. M. et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol. 15, 312–317 (2008). This interesting paper describes the crystal structure of the mAb 1A1D2 binding to the viral E protein, which reorganizes to expose hidden epitopes, suggesting that the virus can 'breathe' to accommodate antibody binding.

    Article  CAS  PubMed  Google Scholar 

  125. Williams, K. L., Wahala, W. M., Orozco, S., de Silva, A. M. & Harris, E. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo. Virology 429, 12–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Midgley, C. M. et al. Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity. J. Immunol. 188, 4971–4979 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Dowd, K. A., Jost, C. A., Durbin, A. P., Whitehead, S. S. & Pierson, T. C. A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. 7, e1002111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fibriansah, G. et al. Structural changes in dengue virus when exposed to a temperature of 37 °C. J. Virol. 87, 7585–7592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, X. et al. Dengue structure differs at the temperatures of its human and mosquito hosts. Proc. Natl Acad. Sci. USA 110, 6795–6799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fibriansah, G. et al. Dengue virus. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 349, 88–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yu, X., McGraw, P. A., House, F. S. & Crowe, J. E. Jr. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J. Immunol. Methods 336, 142–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Beltramello, M. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. de Alwis, R. et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop. Dis. 5, e1188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Smith, S. A. et al. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J. Virol. 86, 2665–2675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Smith, S. A. et al. Human monoclonal antibodies derived from memory B cells following live attenuated dengue virus vaccination or natural infection exhibit similar characteristics. J. Infect. Dis. 207, 1898–1908 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Oceguera, L. F. et al. Flavivirus serology by western blot analysis. Am. J. Trop. Med. Hyg. 77, 159–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Teoh, E. P. et al. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci. Transl. Med. 4, 139ra83 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Fibriansah, G. et al. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol. Med. 6, 358–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rouvinski, A. et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 520, 109–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Kaufmann, B. et al. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc. Natl Acad. Sci. 107, 18950–18955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fibriansah, G. et al. A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat. Commun. 6, 6341 (2015). References 130, 139, 140 and 143 are EM studies that show the binding of potent dengue virus serotype-specific antibodies recognizing conformation-dependent epitopes. All but one recognize epitopes across three E protein monomers of the two adjacent dimers on the viral particle.

    Article  CAS  PubMed  Google Scholar 

  144. McLellan, J. S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340, 1113–1117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yacoub, S., Wertheim, H., Simmons, C. P., Screaton, G. & Wills, B. Cardiovascular manifestations of the emerging dengue pandemic. Nat. Rev. Cardiol. 11, 335–345 (2014).

    Article  PubMed  Google Scholar 

  147. Trung, D. T. et al. Clinical features of dengue in a large Vietnamese cohort: intrinsically lower platelet counts and greater risk for bleeding in adults than children. PLoS Negl Trop. Dis. 6, e1679 (2012).

    Article  PubMed  Google Scholar 

  148. Whitehorn, J. et al. Dengue therapeutics, chemoprophylaxis, and allied tools: state of the art and future directions. PLoS Negl Trop. Dis. 8, e3025 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mackenzie, J. S., Gubler, D. J. & Petersen, L. R. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 10, S98–S109 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Williams, K. L. et al. Therapeutic efficacy of antibodies lacking Fcγ receptor binding against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies [corrected]. PLoS Pathog. 9, e1003157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Smith, S. A. et al. Isolation of dengue virus-specific memory B cells with live virus antigen from human subjects following natural infection reveals the presence of diverse novel functional groups of antibody clones. J. Virol. 88, 12233–12241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Alwis, R. et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl Acad. Sci. USA 109, 7439–7444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, the National Institute for Health Research (NIHR) Biomedical Research Centre funding scheme, and the European Commission Seventh Framework Programme [FP7/2007-2013] for the DENFREE project under the grant agreement n°282 378. G.S. is a Wellcome Trust senior investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Screaton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Aedes mosquito vector

The genus of mosquito by which dengue virus is transmitted; the primary vector being Aedes aegypti followed by Aedes albopictus.

Cytokine storm

An excessive production of pro-inflammatory cytokines that occurs during acute dengue infection and that has been proposed to drive the vascular leak.

Tetramer staining

A technique used to track antigen-specific T cells by flow cytometry. Biotinylated monomeric MHC molecules are folded in vitro together with a specific peptide in the binding groove. These peptide–MHC complexes are tetramerized using a fluorescently labelled streptavidin molecule. The tetramers bind T cells that express T cell receptors specific for the cognate peptide–MHC complex.

Original antigenic sin

An immune response to serial exposure to two pathogens of similar yet distinct sequences. Upon a second infection, rather than making an entirely new immune response to antigens of the secondary infecting pathogen, cross-reactive and potentially suboptimal memory cells that were generated during the first infection are expanded. Original antigenic sin was first described for antibody responses but has also been demonstrated in T cell responses.

Antibody-dependent enhancement

Antibodies that may not be of sufficient avidity or concentration to neutralize a virus instead opsonize it and promote viral uptake into Fc receptor (FcR)-bearing cells, leading to enhanced viral replication.

Heterologous prime–boost strategies

Vaccination strategies in which different immunogens are given sequentially to boost and focus an immune response to a given antigen. This is achieved by utilizing a variety of platforms — viral, DNA or protein — with the same antigen being delivered sequentially.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Screaton, G., Mongkolsapaya, J., Yacoub, S. et al. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15, 745–759 (2015). https://doi.org/10.1038/nri3916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3916

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology