Entanglement of two quantum memories via fibres over dozens of kilometres
- PMID: 32051600
- DOI: 10.1038/s41586-020-1976-7
Entanglement of two quantum memories via fibres over dozens of kilometres
Abstract
A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.
Similar articles
-
Entanglement of single-atom quantum bits at a distance.Nature. 2007 Sep 6;449(7158):68-71. doi: 10.1038/nature06118. Nature. 2007. PMID: 17805290
-
Postselected Entanglement between Two Atomic Ensembles Separated by 12.5 km.Phys Rev Lett. 2022 Jul 29;129(5):050503. doi: 10.1103/PhysRevLett.129.050503. Phys Rev Lett. 2022. PMID: 35960556
-
Telecom-heralded entanglement between multimode solid-state quantum memories.Nature. 2021 Jun;594(7861):37-40. doi: 10.1038/s41586-021-03481-8. Epub 2021 Jun 2. Nature. 2021. PMID: 34079135
-
Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.Nat Commun. 2015 Nov 24;6:8955. doi: 10.1038/ncomms9955. Nat Commun. 2015. PMID: 26597223 Free PMC article.
-
Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces?J Am Chem Soc. 2022 Dec 7;144(48):21810-21825. doi: 10.1021/jacs.2c07775. Epub 2022 Nov 21. J Am Chem Soc. 2022. PMID: 36410044 Review.
Cited by
-
Heralded entanglement distribution between two absorptive quantum memories.Nature. 2021 Jun;594(7861):41-45. doi: 10.1038/s41586-021-03505-3. Epub 2021 Jun 2. Nature. 2021. PMID: 34079139
-
The deep space quantum link: prospective fundamental physics experiments using long-baseline quantum optics.EPJ Quantum Technol. 2022;9(1):25. doi: 10.1140/epjqt/s40507-022-00143-0. Epub 2022 Oct 8. EPJ Quantum Technol. 2022. PMID: 36227029 Free PMC article. Review.
-
Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics.Nat Commun. 2023 Apr 14;14(1):2153. doi: 10.1038/s41467-023-37842-w. Nat Commun. 2023. PMID: 37059704 Free PMC article.
-
Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects.Nat Commun. 2024 Jul 10;15(1):5792. doi: 10.1038/s41467-024-50062-0. Nat Commun. 2024. PMID: 38987247 Free PMC article.
-
Field programmable spin arrays for scalable quantum repeaters.Nat Commun. 2023 Feb 9;14(1):704. doi: 10.1038/s41467-023-36098-8. Nat Commun. 2023. PMID: 36759601 Free PMC article.
References
-
- Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008). - PubMed
-
- Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018). - PubMed
-
- Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001). - PubMed
-
- Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005). - PubMed
-
- Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007). - PubMed
LinkOut - more resources
Full Text Sources