Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity
- PMID: 32496967
- PMCID: PMC7473326
- DOI: 10.1080/22221751.2020.1777906
Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, may be transmitted via airborne droplets or contact with surfaces onto which droplets have deposited. In this study, the ability of SARS-CoV-2 to survive in the dark, at two different relative humidity values and within artificial saliva, a clinically relevant matrix, was investigated. SARS-CoV-2 was found to be stable, in the dark, in a dynamic small particle aerosol under the four experimental conditions we tested and viable virus could still be detected after 90 minutes. The decay rate and half-life was determined and decay rates ranged from 0.4 to 2.27 % per minute and the half lives ranged from 30 to 177 minutes for the different conditions. This information can be used for advice and modelling and potential mitigation strategies.
Keywords: SARS-CoV-2; aerosol; coronavirus; humidity; saliva; survival.
Conflict of interest statement
No potential conflict of interest was reported by the author(s).
Figures

Similar articles
-
Airborne SARS-CoV-2 Is Rapidly Inactivated by Simulated Sunlight.J Infect Dis. 2020 Jul 23;222(4):564-571. doi: 10.1093/infdis/jiaa334. J Infect Dis. 2020. PMID: 32525979 Free PMC article.
-
Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces.mSphere. 2020 Jul 1;5(4):e00441-20. doi: 10.1128/mSphere.00441-20. mSphere. 2020. PMID: 32611701 Free PMC article.
-
COVID-19: Effects of Environmental Conditions on the Propagation of Respiratory Droplets.Nano Lett. 2020 Oct 14;20(10):7744-7750. doi: 10.1021/acs.nanolett.0c03331. Epub 2020 Sep 15. Nano Lett. 2020. PMID: 32909761
-
Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation.Int J Environ Res Public Health. 2020 Sep 23;17(19):6960. doi: 10.3390/ijerph17196960. Int J Environ Res Public Health. 2020. PMID: 32977575 Free PMC article. Review.
-
Saliva is a non-negligible factor in the spread of COVID-19.Mol Oral Microbiol. 2020 Aug;35(4):141-145. doi: 10.1111/omi.12289. Epub 2020 May 31. Mol Oral Microbiol. 2020. PMID: 32367576 Free PMC article. Review.
Cited by
-
Database of SARS-CoV-2 and coronaviruses kinetics relevant for assessing persistence in food processing plants.Sci Data. 2022 Oct 26;9(1):654. doi: 10.1038/s41597-022-01763-y. Sci Data. 2022. PMID: 36289246 Free PMC article.
-
Development of a high-speed bioaerosol elimination system for treatment of indoor air.Build Environ. 2023 Jan;227:109800. doi: 10.1016/j.buildenv.2022.109800. Epub 2022 Nov 12. Build Environ. 2023. PMID: 36407015 Free PMC article.
-
Classification of aerosol-generating procedures: a rapid systematic review.BMJ Open Respir Res. 2020 Oct;7(1):e000730. doi: 10.1136/bmjresp-2020-000730. BMJ Open Respir Res. 2020. PMID: 33040021 Free PMC article.
-
Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review.Environ Chem Lett. 2023;21(3):1701-1727. doi: 10.1007/s10311-023-01579-1. Epub 2023 Feb 22. Environ Chem Lett. 2023. PMID: 36846189 Free PMC article. Review.
-
Challenges in simulating and modeling the airborne virus transmission: A state-of-the-art review.Phys Fluids (1994). 2021 Oct;33(10):101302. doi: 10.1063/5.0061469. Epub 2021 Oct 27. Phys Fluids (1994). 2021. PMID: 34803360 Free PMC article. Review.
References
-
- Coronavirus COVID-19 Global Cases . Available at: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594.... Accessed 29 May 2020.
-
- Reed LJ, Muench H.. A simple method of estimating fifty percent endpoints. Am J Hygiene. 1938;27:493–497.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous