Impact of ionizing radiation on superconducting qubit coherence
- PMID: 32848227
- DOI: 10.1038/s41586-020-2619-8
Impact of ionizing radiation on superconducting qubit coherence
Erratum in
-
Author Correction: Impact of ionizing radiation on superconducting qubit coherence.Nature. 2020 Oct;586(7827):E8. doi: 10.1038/s41586-020-2754-2. Nature. 2020. PMID: 32918069
Abstract
Technologies that rely on quantum bits (qubits) require long coherence times and high-fidelity operations1. Superconducting qubits are one of the leading platforms for achieving these objectives2,3. However, the coherence of superconducting qubits is affected by the breaking of Cooper pairs of electrons4-6. The experimentally observed density of the broken Cooper pairs, referred to as quasiparticles, is orders of magnitude higher than the value predicted at equilibrium by the Bardeen-Cooper-Schrieffer theory of superconductivity7-9. Previous work10-12 has shown that infrared photons considerably increase the quasiparticle density, yet even in the best-isolated systems, it remains much higher10 than expected, suggesting that another generation mechanism exists13. Here we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference. The effect of ionizing radiation leads to an elevated quasiparticle density, which we predict would ultimately limit the coherence times of superconducting qubits of the type measured here to milliseconds. We further demonstrate that radiation shielding reduces the flux of ionizing radiation and thereby increases the energy-relaxation time. Albeit a small effect for today's qubits, reducing or mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.
Similar articles
-
Quasiparticle Poisoning of Superconducting Qubits from Resonant Absorption of Pair-Breaking Photons.Phys Rev Lett. 2024 Jan 5;132(1):017001. doi: 10.1103/PhysRevLett.132.017001. Phys Rev Lett. 2024. PMID: 38242669
-
Engineering superconducting qubits to reduce quasiparticles and charge noise.Nat Commun. 2022 Nov 23;13(1):7196. doi: 10.1038/s41467-022-34727-2. Nat Commun. 2022. PMID: 36418286 Free PMC article.
-
Quasiparticle Dynamics in a Superconducting Qubit Irradiated by a Localized Infrared Source.Phys Rev Lett. 2024 Aug 9;133(6):060602. doi: 10.1103/PhysRevLett.133.060602. Phys Rev Lett. 2024. PMID: 39178459
-
Reducing the impact of radioactivity on quantum circuits in a deep-underground facility.Nat Commun. 2021 May 12;12(1):2733. doi: 10.1038/s41467-021-23032-z. Nat Commun. 2021. PMID: 33980835 Free PMC article.
-
Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines.Rep Prog Phys. 2023 Jan 31;86(3). doi: 10.1088/1361-6633/acb06b. Rep Prog Phys. 2023. PMID: 36603220 Review.
Cited by
-
Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor.Entropy (Basel). 2021 Nov 26;23(12):1577. doi: 10.3390/e23121577. Entropy (Basel). 2021. PMID: 34945882 Free PMC article. Review.
-
Experimental neutrino physics in a nuclear landscape.Philos Trans A Math Phys Eng Sci. 2024 Jul 23;382(2275):20230122. doi: 10.1098/rsta.2023.0122. Epub 2024 Jun 24. Philos Trans A Math Phys Eng Sci. 2024. PMID: 38910396 Free PMC article. Review.
-
Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields.Sci Rep. 2020 Dec 17;10(1):22256. doi: 10.1038/s41598-020-79309-8. Sci Rep. 2020. PMID: 33335278 Free PMC article.
-
Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields.Materials (Basel). 2025 Jan 27;18(3):569. doi: 10.3390/ma18030569. Materials (Basel). 2025. PMID: 39942235 Free PMC article.
-
A stress-induced source of phonon bursts and quasiparticle poisoning.Nat Commun. 2024 Jul 31;15(1):6444. doi: 10.1038/s41467-024-50173-8. Nat Commun. 2024. PMID: 39085200 Free PMC article.
References
-
- DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).
-
- Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). - PubMed
-
- Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019). - PubMed
-
- Lutchyn, R., Glazman, L. & Larkin, A. Kinetics of the superconducting charge qubit in the presence of a quasiparticle. Phys. Rev. B 74, 064515 (2006).
-
- Martinis, J. M., Ansmann, M. & Aumentado, J. Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys. Rev. Lett. 103, 097002 (2009). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources