An Unexpected Seasonal Cycle in U.S. Oil and Gas Methane Emissions
- PMID: 40366056
- PMCID: PMC12120981
- DOI: 10.1021/acs.est.4c14090
An Unexpected Seasonal Cycle in U.S. Oil and Gas Methane Emissions
Abstract
Accurate quantification of methane (CH4) emissions is essential for understanding changes in its atmospheric abundance. Atmospheric observations can supply independent emission information that complements and strengthens inventory-based estimates. In this study, we quantified annual and monthly U.S. CH4 emissions in 2008-2021 using inverse modeling of ground and airborne measurements at sites across the U.S. with 10-12 km atmospheric transport simulations. While the magnitude, spatial distribution, and trend of the estimated CH4 emissions align with some previous studies, our results reveal an unexpected seasonal cycle in CH4 emissions from the oil and gas sector, where wintertime emissions are about 40 (20-50, 2σ) % higher than summertime. This seasonality is supported by methane and propane measurements at these same sites, as well as methane isotope measurements made from an independent aircraft campaign over the U.S. Although the exact cause of this emission seasonality is unclear, its spatial distribution indicates that the enhanced CH4 emissions are primarily from natural gas production regions, and to a lesser extent, from natural gas consumption in winter.
Keywords: anthropogenic emissions; atmospheric observations; greenhouse gas; inverse modeling; seasonal variation; top-down estimates.
Figures




Similar articles
-
Airborne Quantification of Methane Emissions over the Four Corners Region.Environ Sci Technol. 2017 May 16;51(10):5832-5837. doi: 10.1021/acs.est.6b06107. Epub 2017 Apr 28. Environ Sci Technol. 2017. PMID: 28418663
-
Short-term methane emissions from 2 dairy farms in California estimated by different measurement techniques and US Environmental Protection Agency inventory methodology: A case study.J Dairy Sci. 2018 Dec;101(12):11461-11479. doi: 10.3168/jds.2017-13881. Epub 2018 Oct 11. J Dairy Sci. 2018. PMID: 30316601
-
Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region.Environ Sci Technol. 2015 Jul 7;49(13):8124-31. doi: 10.1021/acs.est.5b00217. Environ Sci Technol. 2015. PMID: 26148550
-
Methodologies for measuring fugitive methane emissions from landfills - A review.Waste Manag. 2019 Mar 15;87:835-859. doi: 10.1016/j.wasman.2018.12.047. Epub 2019 Jan 16. Waste Manag. 2019. PMID: 30660403 Review.
-
Why are methane emissions from China's oil & natural gas systems still unclear? A review of current bottom-up inventories.Sci Total Environ. 2022 Feb 10;807(Pt 3):151076. doi: 10.1016/j.scitotenv.2021.151076. Epub 2021 Oct 19. Sci Total Environ. 2022. PMID: 34678371 Review.
References
-
- Gulev, S. K. ; Thorne, P. W. ; Ahn, J. ; Dentener, F. J. ; Domingues, C. M. ; Gerland, S. ; Gong, D. ; Kaufman, D. S. ; Nnamchi, H. C. ; Quaas, J. ; Rivera, J. A. ; Sathyendranath, S. ; Smith, S. L. ; Trewin, B. ; von Schuckmann, K. ; Vose, R. S. . Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2021.
-
- Smith, C. ; Nicholls, Z. R. J. ; Armour, K. ; Collins, W. ; Forster, P. ; Meinshausen, M. ; Palmer, M. D. ; Watanabe, M. . The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC, 2021. https://www.ipcc.ch/(accessed May 20, 2024).
-
- Meinshausen M., Vogel E., Nauels A., Lorbacher K., Meinshausen N., Etheridge D. M., Fraser P. J., Montzka S. A., Rayner P. J., Trudinger C. M., Krummel P. B., Beyerle U., Canadell J. G., Daniel J. S., Enting I. G., Law R. M., Lunder C. R., O’Doherty S., Prinn R. G., Reimann S., Rubino M., Velders G. J. M., Vollmer M. K., Wang R. H. J., Weiss R.. Historical greenhouse gas concentrations for climate modelling (CMIP6) Geosci. Model Dev. 2017;10(5):2057–2116. doi: 10.5194/gmd-10-2057-2017. - DOI
-
- Lan, X. ; Thoning, K. W. ; Dlugokencky, E. J. . Trends in globally-averaged CH4, N2O, and SF6 Determined from NOAA Global Monitoring Laboratory Measurements. Version 2023-05; Global Monitoring Laboratory, 2022.
-
- Saunois M., Stavert A. R., Poulter B., Bousquet P., Canadell J. G., Jackson R. B., Raymond P. A., Dlugokencky E. J., Houweling S., Patra P. K., Ciais P., Arora V. K., Bastviken D., Bergamaschi P., Blake D. R., Brailsford G., Bruhwiler L., Carlson K. M., Carrol M., Castaldi S., Chandra N., Crevoisier C., Crill P. M., Covey K., Curry C. L., Etiope G., Frankenberg C., Gedney N., Hegglin M. I., Höglund-Isaksson L., Hugelius G., Ishizawa M., Ito A., Janssens-Maenhout G., Jensen K. M., Joos F., Kleinen T., Krummel P. B., Langenfelds R. L., Laruelle G. G., Liu L., Machida T., Maksyutov S., McDonald K. C., McNorton J., Miller P. A., Melton J. R., Morino I., Müller J., Murguia-Flores F., Naik V., Niwa Y., Noce S., O’Doherty S., Parker R. J., Peng C., Peng S., Peters G. P., Prigent C., Prinn R., Ramonet M., Regnier P., Riley W. J., Rosentreter J. A., Segers A., Simpson I. J., Shi H., Smith S. J., Steele L. P., Thornton B. F., Tian H., Tohjima Y., Tubiello F. N., Tsuruta A., Viovy N., Voulgarakis A., Weber T. S., van Weele M., van der Werf G. R., Weiss R. F., Worthy D., Wunch D., Yin Y., Yoshida Y., Zhang W., Zhang Z., Zhao Y., Zheng B., Zhu Q., Zhu Q., Zhuang Q.. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data. 2020;12(3):1561–1623. doi: 10.5194/essd-12-1561-2020. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources