 |
PDBsum entry 1feh
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Oxidoreductase
|
PDB id
|
|
|
|
1feh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.1.12.7.2
- ferredoxin hydrogenase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
H2 + 2 oxidized [2Fe-2S]-[ferredoxin] = 2 reduced [2Fe-2S]-[ferredoxin] + 2 H+
|
 |
 |
 |
 |
 |
Cofactor:
|
 |
Iron-sulfur; Ni(2+)
|
 |
 |
 |
 |
 |
Iron-sulfur
|
Ni(2+)
|
|
 |
 |
 |
 |
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
DOI no:
|
Science
282:1853-1858
(1998)
|
PubMed id:
|
|
|
|
|
|
X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution.
|
J.W.Peters,
W.N.Lanzilotta,
B.J.Lemon,
L.C.Seefeldt.
|
|
|
|
|
ABSTRACT
|
|
|
|
|
A three-dimensional structure for the monomeric iron-containing hydrogenase
(CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by
x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing.
CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield
dihydrogen, was found to contain 20 gram atoms of iron per mole of protein,
clusters. The probable active-site cluster,
previously termed the H-cluster, was found to be an unexpected arrangement of
cubane subcluster covalently bridged by a
subcluster
both exist with an octahedral coordination geometry and are bridged to each
other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl
or cyanide molecule. This structure provides insights into the mechanism of
cluster
structure and function in biological systems.
|
|
|
|
|
|
Selected figure(s)
|
|
|
|
 |
 |
|
 |
|
 |
Figure 3.
Fig. 3. (A) Topology diagram of the [2Fe-2S]-containing FS2
domain in a side-by-side comparison with the [2Fe-2S] ferredoxin
from Chorella fusca. The proteins are shown from the same
relative perspective, with the FS2 domain shown in purple and
the C. fusca ferredoxin shown in orange. The [2Fe-2S] cluster is
shown as a space-filling model (colors as in Fig. 1A). (B)
Topology diagram of the 2-[4Fe-4S]-containing FS4A-FS4B domain
in a side-by-side comparison with the 2-[4Fe-4S] ferredoxin from
Chromatium vinosum. The proteins are shown from the same
relative perspective, with the FS4A-FS4B domain shown in green
and the C. vinosum ferredoxin shown in orange. The [4Fe-4S]
clusters are shown as space-filling models. (C) Topology diagram
of the [4Fe-4S]-containing FS4C domain, showing the location and
composition of the four coordinating ligands His94, Cys98,
Cys101, and Cys107.
|
 |
Figure 5.
Fig. 5. Stereo view of selected amino acid residues in the
polypeptide environment of the [2Fe] subcluster of HC (colors as
in Fig. 2). The [4Fe-4S] subcluster and associated ligand are
included to provide the proper perspective and are indicated in
light gray. C, Cys; F, Phe; K, Lys; S, Ser; M, Met.
|
 |
|
|
|
|
The above figures are
reprinted
by permission from the AAAs:
Science
(1998,
282,
1853-1858)
copyright 1998.
|
|
|
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
Literature references that cite this PDB file's key reference
|
|
 |
|
PubMed id
|
 |
Reference
|
 |
|
|
 |
S.Gao,
D.Y.Jiang,
Q.C.Liang,
and
Q.Duan
(2012).
Bis{μ-[4-(1,3-benzothia-zol-2-yl)phen-yl]methane-thiol-ato-κS,S':S,S'}bis-[tricarbonyl-iron(I)](Fe-Fe).
|
|
Acta Crystallogr Sect E Struct Rep Online,
68,
m330.
|
 |
|
|
|
 |
S.Gao,
Q.Duan,
and
D.Y.Jiang
(2012).
{μ-2-[4-(1,3-Benzothia-zol-2-yl)phen-yl]-2-aza-propane-1,3-dithiol-ato-κS,S':S,S'}bis-[tricarbonyl-iron(I)].
|
|
Acta Crystallogr Sect E Struct Rep Online,
68,
m248.
|
 |
|
|
|
 |
S.Gao,
Q.Duan,
and
D.Y.Jiang
(2012).
{μ-2-[4-(Benzothia-zol-2-yl)benz-yl]-2-aza-propane-1,3-dithiol-ato-1:2κS,S':S,S'}bis-[tricarbonyl-iron(I)].
|
|
Acta Crystallogr Sect E Struct Rep Online,
68,
m315.
|
 |
|
|
|
 |
A.R.Grossman,
C.Catalanotti,
W.Yang,
A.Dubini,
L.Magneschi,
V.Subramanian,
M.C.Posewitz,
and
M.Seibert
(2011).
Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.
|
|
New Phytol,
190,
279-288.
|
 |
|
|
|
 |
B.Friedrich,
J.Fritsch,
and
O.Lenz
(2011).
Oxygen-tolerant hydrogenases in hydrogen-based technologies.
|
|
Curr Opin Biotechnol,
22,
358-364.
|
 |
|
|
|
 |
C.Greco,
M.Bruschi,
P.Fantucci,
U.Ryde,
and
L.De Gioia
(2011).
Isocyanide in Biochemistry? A Theoretical Investigation of the Electronic Effects and Energetics of Cyanide Ligand Protonation in [FeFe]-Hydrogenases.
|
|
Chemistry,
17,
1954-1965.
|
 |
|
|
|
 |
D.Benito-Garagorri,
I.Lagoja,
L.F.Veiros,
and
K.A.Kirchner
(2011).
Reactivity of coordinatively unsaturated iron complexes towards carbon monoxide: to bind or not to bind?
|
|
Dalton Trans,
40,
4778-4792.
|
 |
|
|
|
 |
G.Hong,
A.J.Cornish,
E.L.Hegg,
and
R.Pachter
(2011).
On understanding proton transfer to the biocatalytic [Fe-Fe](H) sub-cluster in [Fe-Fe]H(2)ases: QM/MM MD simulations.
|
|
Biochim Biophys Acta,
1807,
510-517.
|
 |
|
|
|
 |
J.Saxena,
and
R.S.Tanner
(2011).
Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei.
|
|
J Ind Microbiol Biotechnol,
38,
513-521.
|
 |
|
|
|
 |
J.Zhu,
Y.Tang,
G.M.Jiang,
M.Wang,
and
P.Hua
(2011).
Penta-carbonyl-1κC,2κC-(4-iodo-phenyl isocyanide-1κC)(μ-propane-1,3-dithiol-ato-1:2κS,S':S,S')iron(I)(Fe-Fe).
|
|
Acta Crystallogr Sect E Struct Rep Online,
67,
m1753-m1754.
|
 |
|
|
|
 |
L.C.Song,
Z.J.Xie,
X.F.Liu,
J.B.Ming,
J.H.Ge,
X.G.Zhang,
T.Y.Yan,
and
P.Gao
(2011).
Synthetic and structural studies on new diiron azadithiolate (ADT)-type model compounds for active site of [FeFe]hydrogenases.
|
|
Dalton Trans,
40,
837-846.
|
 |
|
|
|
 |
P.L.Roach
(2011).
Radicals from S-adenosylmethionine and their application to biosynthesis.
|
|
Curr Opin Chem Biol,
15,
267-275.
|
 |
|
|
|
 |
S.Lounissi,
J.F.Capon,
F.Gloaguen,
F.Matoussi,
F.Y.Pétillon,
P.Schollhammer,
and
J.Talarmin
(2011).
Diiron species containing a cyclic P(Ph)2N(Ph)2 diphosphine related to the [FeFe]H2ases active site.
|
|
Chem Commun (Camb),
47,
878-880.
|
 |
|
|
|
 |
Y.C.Liu,
L.K.Tu,
T.H.Yen,
G.H.Lee,
and
M.H.Chiang
(2011).
Influences on the rotated structure of diiron dithiolate complexes: electronic asymmetry vs. secondary coordination sphere interaction.
|
|
Dalton Trans,
40,
2528-2541.
|
 |
|
|
|
 |
Z.Xiao,
Z.Wei,
L.Long,
Y.Wang,
D.J.Evans,
and
X.Liu
(2011).
Diiron carbonyl complexes possessing a {Fe(II)Fe(II)} core: synthesis, characterisation, and electrochemical investigation.
|
|
Dalton Trans,
40,
4291-4299.
|
 |
|
|
|
 |
A.Begum,
G.Moula,
and
S.Sarkar
(2010).
A nickel(II)-sulfur-based radical-ligand complex as a functional model of hydrogenase.
|
|
Chemistry,
16,
12324-12327.
|
 |
|
|
|
 |
A.Grigoropoulos,
and
R.K.Szilagyi
(2010).
Evaluation of biosynthetic pathways for the unique dithiolate ligand of the FeFe hydrogenase H-cluster.
|
|
J Biol Inorg Chem,
15,
1177-1182.
|
 |
|
|
|
 |
A.Jablonskyte,
J.A.Wright,
and
C.J.Pickett
(2010).
Mechanistic aspects of the protonation of [FeFe]-hydrogenase subsite analogues.
|
|
Dalton Trans,
39,
3026-3034.
|
 |
|
|
|
 |
C.M.Agapakis,
D.C.Ducat,
P.M.Boyle,
E.H.Wintermute,
J.C.Way,
and
P.A.Silver
(2010).
Insulation of a synthetic hydrogen metabolism circuit in bacteria.
|
|
J Biol Eng,
4,
3.
|
 |
|
|
|
 |
C.Zhan,
X.Wang,
Z.Wei,
D.J.Evans,
X.Ru,
X.Zeng,
and
X.Liu
(2010).
Synthesis and characterisation of polymeric materials consisting of {Fe2(CO)5}-unit and their relevance to the diiron sub-unit of [FeFe]-hydrogenase.
|
|
Dalton Trans,
39,
11255-11262.
|
 |
|
|
|
 |
C.Zheng,
K.Kim,
T.Matsumoto,
and
S.Ogo
(2010).
The useful properties of H2O as a ligand of a hydrogenase mimic.
|
|
Dalton Trans,
39,
2218-2225.
|
 |
|
|
|
 |
D.W.Mulder,
E.S.Boyd,
R.Sarma,
R.K.Lange,
J.A.Endrizzi,
J.B.Broderick,
and
J.W.Peters
(2010).
Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG).
|
|
Nature,
465,
248-251.
|
 |
PDB code:
|
 |
|
|
|
|
 |
E.M.Shepard,
S.E.McGlynn,
A.L.Bueling,
C.S.Grady-Smith,
S.J.George,
M.A.Winslow,
S.P.Cramer,
J.W.Peters,
and
J.B.Broderick
(2010).
Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold.
|
|
Proc Natl Acad Sci U S A,
107,
10448-10453.
|
 |
|
|
|
 |
H.Zhang,
D.Chen,
Y.Zhang,
G.Zhang,
and
J.Liu
(2010).
On the mechanism of carbonyl hydrogenation catalyzed by iron catalyst.
|
|
Dalton Trans,
39,
1972-1978.
|
 |
|
|
|
 |
J.A.Stapleton,
and
J.R.Swartz
(2010).
A cell-free microtiter plate screen for improved [FeFe] hydrogenases.
|
|
PLoS One,
5,
e10554.
|
 |
|
|
|
 |
J.A.Stapleton,
and
J.R.Swartz
(2010).
Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases.
|
|
PLoS One,
5,
e15275.
|
 |
|
|
|
 |
J.M.Kuchenreuther,
C.S.Grady-Smith,
A.S.Bingham,
S.J.George,
S.P.Cramer,
and
J.R.Swartz
(2010).
High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli.
|
|
PLoS One,
5,
e15491.
|
 |
|
|
|
 |
J.P.Bigi,
T.E.Hanna,
W.H.Harman,
A.Chang,
and
C.J.Chang
(2010).
Electrocatalytic reduction of protons to hydrogen by a water-compatible cobalt polypyridyl platform.
|
|
Chem Commun (Camb),
46,
958-960.
|
 |
|
|
|
 |
M.Calusinska,
T.Happe,
B.Joris,
and
A.Wilmotte
(2010).
The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.
|
|
Microbiology,
156,
1575-1588.
|
 |
|
|
|
 |
M.G.Galinato,
C.M.Whaley,
and
N.Lehnert
(2010).
Vibrational analysis of the model complex (mu-edt)[Fe(CO)(3)](2) and comparison to iron-only hydrogenase: the activation scale of hydrogenase model systems.
|
|
Inorg Chem,
49,
3201-3215.
|
 |
|
|
|
 |
M.Q.Hu,
H.M.Wen,
C.B.Ma,
N.Li,
Q.Y.Yan,
H.Chen,
and
C.N.Chen
(2010).
Synthesis, structures and electrochemistry studies of 2Fe2S-Fe(ii)(S-2N)(2) models for H-cluster of [FeFe]-hydrogenase.
|
|
Dalton Trans,
39,
9484-9486.
|
 |
|
|
|
 |
M.Saggu,
C.Teutloff,
M.Ludwig,
M.Brecht,
M.E.Pandelia,
O.Lenz,
B.Friedrich,
W.Lubitz,
P.Hildebrandt,
F.Lendzian,
and
R.Bittl
(2010).
Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR.
|
|
Phys Chem Chem Phys,
12,
2139-2148.
|
 |
|
|
|
 |
M.Saggu,
M.Ludwig,
B.Friedrich,
P.Hildebrandt,
R.Bittl,
F.Lendzian,
O.Lenz,
and
I.Zebger
(2010).
Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase.
|
|
Chemphyschem,
11,
1215-1224.
|
 |
|
|
|
 |
P.Surawatanawong,
J.W.Tye,
M.Y.Darensbourg,
and
M.B.Hall
(2010).
Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.
|
|
Dalton Trans,
39,
3093-3104.
|
 |
|
|
|
 |
R.K.Thauer,
A.K.Kaster,
M.Goenrich,
M.Schick,
T.Hiromoto,
and
S.Shima
(2010).
Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
|
|
Annu Rev Biochem,
79,
507-536.
|
 |
|
|
|
 |
S.E.McGlynn,
E.S.Boyd,
E.M.Shepard,
R.K.Lange,
R.Gerlach,
J.B.Broderick,
and
J.W.Peters
(2010).
Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the Hmd hydrogenase active site cofactor.
|
|
J Bacteriol,
192,
595-598.
|
 |
|
|
|
 |
S.Ezzaher,
A.Gogoll,
C.Bruhn,
and
S.Ott
(2010).
Directing protonation in [FeFe] hydrogenase active site models by modifications in their second coordination sphere.
|
|
Chem Commun (Camb),
46,
5775-5777.
|
 |
|
|
|
 |
T.Kanazuru,
E.F.Sato,
K.Nagata,
H.Matsui,
K.Watanabe,
E.Kasahara,
M.Jikumaru,
J.Inoue,
and
M.Inoue
(2010).
Role of hydrogen generation by Klebsiella pneumoniae in the oral cavity.
|
|
J Microbiol,
48,
778-783.
|
 |
|
|
|
 |
U.P.Apfel,
M.Rudolph,
C.Apfel,
C.Robl,
D.Langenegger,
D.Hoyer,
B.Jaun,
M.O.Ebert,
T.Alpermann,
D.Seebach,
and
W.Weigand
(2010).
Reaction of Fe3(CO)12 with octreotide--chemical, electrochemical and biological investigations.
|
|
Dalton Trans,
39,
3065-3071.
|
 |
|
|
|
 |
W.G.Wang,
F.Wang,
H.Y.Wang,
G.Si,
C.H.Tung,
and
L.Z.Wu
(2010).
Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution.
|
|
Chem Asian J,
5,
1796-1803.
|
 |
|
|
|
 |
W.Gao,
J.Sun,
T.Akermark,
M.Li,
L.Eriksson,
L.Sun,
and
B.Akermark
(2010).
Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: influence on the catalytic mechanism.
|
|
Chemistry,
16,
2537-2546.
|
 |
|
|
|
 |
A.J.Shaw,
D.A.Hogsett,
and
L.R.Lynd
(2009).
Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout.
|
|
J Bacteriol,
191,
6457-6464.
|
 |
|
|
|
 |
A.Le Goff,
V.Artero,
B.Jousselme,
P.D.Tran,
N.Guillet,
R.Métayé,
A.Fihri,
S.Palacin,
and
M.Fontecave
(2009).
From hydrogenases to noble metal-free catalytic nanomaterials for h2 production and uptake.
|
|
Science,
326,
1384-1387.
|
 |
|
|
|
 |
A.M.Kluwer,
R.Kapre,
F.Hartl,
M.Lutz,
A.L.Spek,
A.M.Brouwer,
P.W.van Leeuwen,
and
J.N.Reek
(2009).
Molecular recognition and self-assembly special feature: Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution.
|
|
Proc Natl Acad Sci U S A,
106,
10460-10465.
|
 |
|
|
|
 |
A.Silakov,
B.Wenk,
E.Reijerse,
S.P.Albracht,
and
W.Lubitz
(2009).
Spin distribution of the H-cluster in the H(ox)-CO state of the [FeFe] hydrogenase from Desulfovibrio desulfuricans: HYSCORE and ENDOR study of (14)N and (13)C nuclear interactions.
|
|
J Biol Inorg Chem,
14,
301-313.
|
 |
|
|
|
 |
A.Silakov,
B.Wenk,
E.Reijerse,
and
W.Lubitz
(2009).
(14)N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge.
|
|
Phys Chem Chem Phys,
11,
6592-6599.
|
 |
|
|
|
 |
D.Dogaru,
S.Motiu,
and
V.Gogonea
(2009).
Inactivation of [Fe-Fe]-Hydrogenase by O(2). Thermodynamics and Frontier Molecular Orbitals Analyses.
|
|
Int J Quantum Chem,
109,
876-889.
|
 |
|
|
|
 |
D.Dogaru,
S.Motiu,
and
V.Gogonea
(2009).
Residue Mutations in [Fe-Fe]-hydrogenase Impedes O(2) Binding: A QM/MM Investigation.
|
|
Int J Quantum Chem,
110,
1784-1792.
|
 |
|
|
|
 |
E.S.Boyd,
J.R.Spear,
and
J.W.Peters
(2009).
[FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community.
|
|
Appl Environ Microbiol,
75,
4620-4623.
|
 |
|
|
|
 |
J.M.Kuchenreuther,
J.A.Stapleton,
and
J.R.Swartz
(2009).
Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [FeFe] hydrogenase activation.
|
|
PLoS One,
4,
e7565.
|
 |
|
|
|
 |
M.L.Ghirardi,
A.Dubini,
J.Yu,
and
P.C.Maness
(2009).
Photobiological hydrogen-producing systems.
|
|
Chem Soc Rev,
38,
52-61.
|
 |
|
|
|
 |
M.Rakowski Dubois,
and
D.L.Dubois
(2009).
The roles of the first and second coordination spheres in the design of molecular catalysts for H(2) production and oxidation.
|
|
Chem Soc Rev,
38,
62-72.
|
 |
|
|
|
 |
M.Saggu,
I.Zebger,
M.Ludwig,
O.Lenz,
B.Friedrich,
P.Hildebrandt,
and
F.Lendzian
(2009).
Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16.
|
|
J Biol Chem,
284,
16264-16276.
|
 |
|
|
|
 |
M.T.Mock,
M.T.Kieber-Emmons,
C.V.Popescu,
P.Gasda,
G.P.Yap,
and
C.G.Riordan
(2009).
A Series of Cyanide-Bridged Binuclear Complexes.
|
|
Inorganica Chim Acta,
362,
4553-4562.
|
 |
|
|
|
 |
M.Timmins,
S.R.Thomas-Hall,
A.Darling,
E.Zhang,
B.Hankamer,
U.C.Marx,
and
P.M.Schenk
(2009).
Phylogenetic and molecular analysis of hydrogen-producing green algae.
|
|
J Exp Bot,
60,
1691-1702.
|
 |
|
|
|
 |
M.Wang,
Y.Na,
M.Gorlov,
and
L.Sun
(2009).
Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems.
|
|
Dalton Trans,
(),
6458-6467.
|
 |
|
|
|
 |
M.Winkler,
S.Kuhlgert,
M.Hippler,
and
T.Happe
(2009).
Characterization of the key step for light-driven hydrogen evolution in green algae.
|
|
J Biol Chem,
284,
36620-36627.
|
 |
|
|
|
 |
P.Li,
M.Wang,
L.Chen,
J.Liu,
Z.Zhao,
and
L.Sun
(2009).
Structures, protonation, and electrochemical properties of diiron dithiolate complexes containing pyridyl-phosphine ligands.
|
|
Dalton Trans,
(),
1919-1926.
|
 |
|
|
|
 |
R.J.Wright,
C.Lim,
and
T.D.Tilley
(2009).
Diiron proton reduction catalysts possessing electron-rich and electron-poor naphthalene-1,8-dithiolate ligands.
|
|
Chemistry,
15,
8518-8525.
|
 |
|
|
|
 |
S.Ogo
(2009).
Electrons from hydrogen.
|
|
Chem Commun (Camb),
(),
3317-3325.
|
 |
|
|
|
 |
S.Pal,
Y.Ohki,
T.Yoshikawa,
K.Kuge,
and
K.Tatsumi
(2009).
Dithiolate-bridged Fe-Ni-Fe trinuclear complexes consisting of Fe(CO)(3-n)(CN)(n) (n = 0, 1) components relevant to the active site of [NiFe] hydrogenase.
|
|
Chem Asian J,
4,
961-968.
|
 |
|
|
|
 |
S.T.Stripp,
G.Goldet,
C.Brandmayr,
O.Sanganas,
K.A.Vincent,
M.Haumann,
F.A.Armstrong,
and
T.Happe
(2009).
How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.
|
|
Proc Natl Acad Sci U S A,
106,
17331-17336.
|
 |
|
|
|
 |
V.Lavallo,
and
R.H.Grubbs
(2009).
Carbenes as catalysts for transformations of organometallic iron complexes.
|
|
Science,
326,
559-562.
|
 |
|
|
|
 |
W.G.Wang,
H.Y.Wang,
G.Si,
C.H.Tung,
and
L.Z.Wu
(2009).
Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O.
|
|
Dalton Trans,
(),
2712-2720.
|
 |
|
|
|
 |
A.Torreggiani,
J.Domènech,
S.Atrian,
M.Capdevila,
and
A.Tinti
(2008).
Raman study of in vivo synthesized Zn(II)-metallothionein complexes: structural insight into metal clusters and protein folding.
|
|
Biopolymers,
89,
1114-1124.
|
 |
|
|
|
 |
C.J.Chou,
F.E.Jenney,
M.W.Adams,
and
R.M.Kelly
(2008).
Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels.
|
|
Metab Eng,
10,
394-404.
|
 |
|
|
|
 |
C.M.Thomas,
T.Liu,
M.B.Hall,
and
M.Y.Darensbourg
(2008).
Regioselective (12)CO/(13)CO exchange activity of a mixed-valent Fe(ii)Fe(i) model of the H(ox) state of [FeFe]-hydrogenase.
|
|
Chem Commun (Camb),
(),
1563-1565.
|
 |
|
|
|
 |
D.Xing,
N.Ren,
and
B.E.Rittmann
(2008).
Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene.
|
|
Appl Environ Microbiol,
74,
1232-1239.
|
 |
|
|
|
 |
E.Nakamaru-Ogiso,
A.Matsuno-Yagi,
S.Yoshikawa,
T.Yagi,
and
T.Ohnishi
(2008).
Iron-sulfur cluster N5 is coordinated by an HXXXCXXCXXXXXC motif in the NuoG subunit of Escherichia coli NADH:quinone oxidoreductase (complex I).
|
|
J Biol Chem,
283,
25979-25987.
|
 |
|
|
|
 |
F.E.Jenney,
and
M.W.Adams
(2008).
Hydrogenases of the model hyperthermophiles.
|
|
Ann N Y Acad Sci,
1125,
252-266.
|
 |
|
|
|
 |
H.Seedorf,
W.F.Fricke,
B.Veith,
H.Brüggemann,
H.Liesegang,
A.Strittmatter,
M.Miethke,
W.Buckel,
J.Hinderberger,
F.Li,
C.Hagemeier,
R.K.Thauer,
and
G.Gottschalk
(2008).
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.
|
|
Proc Natl Acad Sci U S A,
105,
2128-2133.
|
 |
|
|
|
 |
J.Godman,
and
J.Balk
(2008).
Genome analysis of Chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins.
|
|
Genetics,
179,
59-68.
|
 |
|
|
|
 |
J.Meyer
(2008).
Iron-sulfur protein folds, iron-sulfur chemistry, and evolution.
|
|
J Biol Inorg Chem,
13,
157-170.
|
 |
|
|
|
 |
L.Schwartz,
L.Eriksson,
R.Lomoth,
F.Teixidor,
C.Viñas,
and
S.Ott
(2008).
Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model.
|
|
Dalton Trans,
(),
2379-2381.
|
 |
|
|
|
 |
M.E.Boyer,
J.A.Stapleton,
J.M.Kuchenreuther,
C.W.Wang,
and
J.R.Swartz
(2008).
Cell-free synthesis and maturation of [FeFe] hydrogenases.
|
|
Biotechnol Bioeng,
99,
59-67.
|
 |
|
|
|
 |
M.K.Akhtar,
and
P.R.Jones
(2008).
Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3).
|
|
Appl Microbiol Biotechnol,
78,
853-862.
|
 |
|
|
|
 |
M.S.Koay,
M.L.Antonkine,
W.Gärtner,
and
W.Lubitz
(2008).
Modelling low-potential [Fe4S4] clusters in proteins.
|
|
Chem Biodivers,
5,
1571-1587.
|
 |
|
|
|
 |
M.T.Olsen,
M.Bruschi,
L.De Gioia,
T.B.Rauchfuss,
and
S.R.Wilson
(2008).
Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site.
|
|
J Am Chem Soc,
130,
12021-12030.
|
 |
|
|
|
 |
P.Baran,
R.Boca,
I.Chakraborty,
J.Giapintzakis,
R.Herchel,
Q.Huang,
J.E.McGrady,
R.G.Raptis,
Y.O.Sanakis,
and
A.Simopouloso
(2008).
Synthesis, characterization, and study of octanuclear iron-oxo clusters containing a redox-active Fe4O4-cubane core.
|
|
Inorg Chem,
47,
645-655.
|
 |
|
|
|
 |
S.Ezzaher,
P.Y.Orain,
J.F.Capon,
F.Gloaguen,
F.Y.Pétillon,
T.Roisnel,
P.Schollhammer,
and
J.Talarmin
(2008).
First insights into the protonation of dissymetrically disubstituted di-iron azadithiolate models of the [FeFe]H2ases active site.
|
|
Chem Commun (Camb),
(),
2547-2549.
|
 |
|
|
|
 |
S.Gao,
J.Fan,
S.Sun,
X.Peng,
X.Zhao,
and
J.Hou
(2008).
Selenium-bridged diiron hexacarbonyl complexes as biomimetic models for the active site of Fe-Fe hydrogenases.
|
|
Dalton Trans,
(),
2128-2135.
|
 |
|
|
|
 |
S.Nakayama,
T.Kosaka,
H.Hirakawa,
K.Matsuura,
S.Yoshino,
and
K.Furukawa
(2008).
Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4.
|
|
Appl Microbiol Biotechnol,
78,
483-493.
|
 |
|
|
|
 |
S.Shima,
O.Pilak,
S.Vogt,
M.Schick,
M.S.Stagni,
W.Meyer-Klaucke,
E.Warkentin,
R.K.Thauer,
and
U.Ermler
(2008).
The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.
|
|
Science,
321,
572-575.
|
 |
PDB codes:
|
 |
|
|
|
|
 |
S.W.Ragsdale
(2008).
Enzymology of the wood-Ljungdahl pathway of acetogenesis.
|
|
Ann N Y Acad Sci,
1125,
129-136.
|
 |
|
|
|
 |
T.Ohnishi,
and
E.Nakamaru-Ogiso
(2008).
Were there any "misassignments" among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)?
|
|
Biochim Biophys Acta,
1777,
703-710.
|
 |
|
|
|
 |
T.Yamaguchi,
S.Masaoka,
and
K.Sakai
(2008).
Diaqua-(1,4,7,10,13-penta-oxacyclo-penta-deca-ne)iron(II) bis-(μ-cis-1,2-dicyano-1,2-ethyl-enedithiol-ato)bis-[(cis-1,2-dicyano-1,2-ethyl-enedithiol-ato)ferrate(III)] 1,4,7,10,13-penta-oxacyclo-penta-decane disolvate.
|
|
Acta Crystallogr Sect E Struct Rep Online,
64,
m1557-m1558.
|
 |
|
|
|
 |
T.Yamaguchi,
S.Masaoka,
and
K.Sakai
(2008).
Bis(triethyl-ammonium) bis-(μ-pyrazine-2,3-dithiol-ato)bis-(pyrazine-2,3-dithio-lato)diferrate(III) methanol disolvate.
|
|
Acta Crystallogr Sect E Struct Rep Online,
65,
m77-m78.
|
 |
|
|
|
 |
Y.F.Tang,
and
J.L.Zhu
(2008).
Penta-carbonyl-1κC,2κC-(ferrocenyl-diphenyl-phosphine-1κP)[μ-2-(4-methyl-phen-yl)-2-aza-propane-1,3-dithiol-ato-1:2κS,S':S,S']diiron(I)(Fe-Fe).
|
|
Acta Crystallogr Sect E Struct Rep Online,
64,
m1423.
|
 |
|
|
|
 |
Y.Ohki,
K.Yasumura,
K.Kuge,
S.Tanino,
M.Ando,
Z.Li,
and
K.Tatsumi
(2008).
Thiolate-bridged dinuclear iron(tris-carbonyl)-nickel complexes relevant to the active site of [NiFe] hydrogenase.
|
|
Proc Natl Acad Sci U S A,
105,
7652-7657.
|
 |
|
|
|
 |
Z.Yu,
M.Wang,
P.Li,
W.Dong,
F.Wang,
and
L.Sun
(2008).
Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential.
|
|
Dalton Trans,
(),
2400-2406.
|
 |
|
|
|
 |
A.Ahmed,
and
R.S.Lewis
(2007).
Fermentation of biomass-generated synthesis gas: effects of nitric oxide.
|
|
Biotechnol Bioeng,
97,
1080-1086.
|
 |
|
|
|
 |
A.D.Wilson,
R.K.Shoemaker,
A.Miedaner,
J.T.Muckerman,
D.L.DuBois,
and
M.R.DuBois
(2007).
Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases.
|
|
Proc Natl Acad Sci U S A,
104,
6951-6956.
|
 |
|
|
|
 |
A.K.Justice,
T.B.Rauchfuss,
and
S.R.Wilson
(2007).
Unsaturated, mixed-valence diiron dithiolate model for the H(ox) state of the [FeFe] hydrogenase.
|
|
Angew Chem Int Ed Engl,
46,
6152-6154.
|
 |
|
|
|
 |
A.Melis
(2007).
Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
|
|
Planta,
226,
1075-1086.
|
 |
|
|
|
 |
B.Nocek,
E.Evdokimova,
M.Proudfoot,
M.Kudritska,
L.L.Grochowski,
R.H.White,
A.Savchenko,
A.F.Yakunin,
A.Edwards,
and
A.Joachimiak
(2007).
Structure of an amide bond forming F(420):gamma-glutamyl ligase from Archaeoglobus fulgidus -- a member of a new family of non-ribosomal peptide synthases.
|
|
J Mol Biol,
372,
456-469.
|
 |
PDB codes:
|
 |
|
|
|
|
 |
F.I.Adam,
G.Hogarth,
I.Richards,
and
B.E.Sanchez
(2007).
Models of the iron-only hydrogenase: structural studies of chelating diphosphine complexes [Fe2(CO)4(micro-pdt)(kappa2P,P'-diphosphine)].
|
|
Dalton Trans,
(),
2495-2498.
|
 |
|
|
|
 |
F.Wang,
M.Wang,
X.Liu,
K.Jin,
W.Dong,
and
L.Sun
(2007).
Protonation, electrochemical properties and molecular structures of halogen-functionalized diiron azadithiolate complexes related to the active site of iron-only hydrogenases.
|
|
Dalton Trans,
(),
3812-3819.
|
 |
|
|
|
 |
F.Warnecke,
P.Luginbühl,
N.Ivanova,
M.Ghassemian,
T.H.Richardson,
J.T.Stege,
M.Cayouette,
A.C.McHardy,
G.Djordjevic,
N.Aboushadi,
R.Sorek,
S.G.Tringe,
M.Podar,
H.G.Martin,
V.Kunin,
D.Dalevi,
J.Madejska,
E.Kirton,
D.Platt,
E.Szeto,
A.Salamov,
K.Barry,
N.Mikhailova,
N.C.Kyrpides,
E.G.Matson,
E.A.Ottesen,
X.Zhang,
M.Hernández,
C.Murillo,
L.G.Acosta,
I.Rigoutsos,
G.Tamayo,
B.D.Green,
C.Chang,
E.M.Rubin,
E.J.Mathur,
D.E.Robertson,
P.Hugenholtz,
and
J.R.Leadbetter
(2007).
Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.
|
|
Nature,
450,
560-565.
|
 |
|
|
|
 |
G.J.Kubas
(2007).
Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules.
|
|
Proc Natl Acad Sci U S A,
104,
6901-6907.
|
 |
|
|
|
 |
G.Yakovlev,
T.Reda,
and
J.Hirst
(2007).
Reevaluating the relationship between EPR spectra and enzyme structure for the iron sulfur clusters in NADH:quinone oxidoreductase.
|
|
Proc Natl Acad Sci U S A,
104,
12720-12725.
|
 |
|
|
|
 |
J.Domènech,
A.Tinti,
M.Capdevila,
S.Atrian,
and
A.Torreggiani
(2007).
Structural study of the zinc and cadmium complexes of a type 2 plant (Quercus suber) metallothionein: insights by vibrational spectroscopy.
|
|
Biopolymers,
86,
240-248.
|
 |
|
|
|
 |
J.Inoue,
K.Saita,
T.Kudo,
S.Ui,
and
M.Ohkuma
(2007).
Hydrogen production by termite gut protists: characterization of iron hydrogenases of Parabasalian symbionts of the termite Coptotermes formosanus.
|
|
Eukaryot Cell,
6,
1925-1932.
|
 |
|
|
|
 |
L.Duan,
M.Wang,
P.Li,
Y.Na,
N.Wang,
and
L.Sun
(2007).
Carbene-pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc).
|
|
Dalton Trans,
(),
1277-1283.
|
 |
|
|
|
 |
L.E.Nagy,
J.E.Meuser,
S.Plummer,
M.Seibert,
M.L.Ghirardi,
P.W.King,
D.Ahmann,
and
M.C.Posewitz
(2007).
Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.
|
|
Biotechnol Lett,
29,
421-430.
|
 |
|
|
|
 |
L.Forzi,
and
R.G.Sawers
(2007).
Maturation of [NiFe]-hydrogenases in Escherichia coli.
|
|
Biometals,
20,
565-578.
|
 |
|
|
|
 |
M.L.Ghirardi,
M.C.Posewitz,
P.C.Maness,
A.Dubini,
J.Yu,
and
M.Seibert
(2007).
Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms.
|
|
Annu Rev Plant Biol,
58,
71-91.
|
 |
|
|
|
 |
M.Long,
J.Liu,
Z.Chen,
B.Bleijlevens,
W.Roseboom,
and
S.P.Albracht
(2007).
Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module.
|
|
J Biol Inorg Chem,
12,
62-78.
|
 |
|
|
|
 |
M.Razavet,
V.Artero,
C.Cavazza,
Y.Oudart,
C.Lebrun,
J.C.Fontecilla-Camps,
and
M.Fontecave
(2007).
Tricarbonylmanganese(I)-lysozyme complex: a structurally characterized organometallic protein.
|
|
Chem Commun (Camb),
(),
2805-2807.
|
 |
PDB code:
|
 |
|
|
|
|
 |
S.Jiang,
J.Liu,
Y.Shi,
Z.Wang,
B.Akermark,
and
L.Sun
(2007).
Fe-S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential.
|
|
Dalton Trans,
(),
896-902.
|
 |
|
|
|
 |
S.P.Best,
S.J.Borg,
J.M.White,
M.Razavet,
and
C.J.Pickett
(2007).
On the structure of a proposed mixed-valent analogue of the diiron subsite of [FeFe]-hydrogenase.
|
|
Chem Commun (Camb),
(),
4348-4350.
|
 |
|
|
|
 |
S.W.Ragsdale
(2007).
Nickel and the carbon cycle.
|
|
J Inorg Biochem,
101,
1657-1666.
|
 |
|
|
|
 |
T.Maeda,
V.Sanchez-Torres,
and
T.K.Wood
(2007).
Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities.
|
|
Appl Microbiol Biotechnol,
76,
1035-1042.
|
 |
|
|
|
 |
Y.Wu,
B.Ilan,
and
G.A.Voth
(2007).
Charge delocalization in proton channels, II: the synthetic LS2 channel and proton selectivity.
|
|
Biophys J,
92,
61-69.
|
 |
|
|
|
 |
Y.Zhang,
Y.T.Si,
M.Q.Hu,
C.N.Chen,
and
Q.T.Liu
(2007).
Bis(mu4-butane-1,4-dithiolato)bis[hexacarbonyldiiron(II)(Fe-Fe)].
|
|
Acta Crystallogr C,
63,
m499-m500.
|
 |
|
|
|
 |
A.Badura,
B.Esper,
K.Ataka,
C.Grunwald,
C.Wöll,
J.Kuhlmann,
J.Heberle,
and
M.Rögner
(2006).
Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device.
|
|
Photochem Photobiol,
82,
1385-1390.
|
 |
|
|
|
 |
A.D.Phillips,
A.Ienco,
J.Reinhold,
H.C.Böttcher,
and
C.Mealli
(2006).
A counterintuitive structural effect of metal-metal bond protonation and its electronic underpinnings.
|
|
Chemistry,
12,
4691-4701.
|
 |
|
|
|
 |
D.E.Schwab,
C.Tard,
E.Brecht,
J.W.Peters,
C.J.Pickett,
and
R.K.Szilagyi
(2006).
On the electronic structure of the hydrogenase H-cluster.
|
|
Chem Commun (Camb),
(),
3696-3698.
|
 |
|
|
|
 |
H.Sugimoto,
R.Tajima,
T.Sakurai,
H.Ohi,
H.Miyake,
S.Itoh,
and
H.Tsukube
(2006).
Reversible sulfurization-desulfurization of tungsten bis(dithiolene) complexes.
|
|
Angew Chem Int Ed Engl,
45,
3520-3522.
|
 |
|
|
|
 |
J.A.Imlay
(2006).
Iron-sulphur clusters and the problem with oxygen.
|
|
Mol Microbiol,
59,
1073-1082.
|
 |
|
|
|
 |
J.Ekström,
M.Abrahamsson,
C.Olson,
J.Bergquist,
F.B.Kaynak,
L.Eriksson,
L.Sun,
H.C.Becker,
B.Akermark,
L.Hammarström,
and
S.Ott
(2006).
Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model.
|
|
Dalton Trans,
(),
4599-4606.
|
 |
|
|
|
 |
J.W.Tye,
M.Y.Darensbourg,
and
M.B.Hall
(2006).
Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: models of the iron-iron hydrogenase enzyme active site.
|
|
J Comput Chem,
27,
1454-1462.
|
 |
|
|
|
 |
L.A.Kibler
(2006).
Hydrogen electrocatalysis.
|
|
Chemphyschem,
7,
985-991.
|
 |
|
|
|
 |
L.C.Song,
M.Y.Tang,
F.H.Su,
and
Q.M.Hu
(2006).
A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer.
|
|
Angew Chem Int Ed Engl,
45,
1130-1133.
|
 |
|
|
|
 |
L.Schwartz,
G.Eilers,
L.Eriksson,
A.Gogoll,
R.Lomoth,
and
S.Ott
(2006).
Iron hydrogenase active site mimic holding a proton and a hydride.
|
|
Chem Commun (Camb),
(),
520-522.
|
 |
|
|
|
 |
L.Schwartz,
J.Ekström,
R.Lomoth,
and
S.Ott
(2006).
Dynamic ligation at the first amine-coordinated iron hydrogenase active site mimic.
|
|
Chem Commun (Camb),
(),
4206-4208.
|
 |
|
|
|
 |
N.S.Lewis,
and
D.G.Nocera
(2006).
Powering the planet: chemical challenges in solar energy utilization.
|
|
Proc Natl Acad Sci U S A,
103,
15729-15735.
|
 |
|
|
|
 |
O.A.Zadvorny,
N.A.Zorin,
and
I.N.Gogotov
(2006).
Transformation of metals and metal ions by hydrogenases from phototrophic bacteria.
|
|
Arch Microbiol,
184,
279-285.
|
 |
|
|
|
 |
P.M.Rodrigues,
A.L.Macedo,
B.J.Goodfellow,
I.Moura,
and
J.J.Moura
(2006).
Desulfovibrio gigas ferredoxin II: redox structural modulation of the [3Fe-4S] cluster.
|
|
J Biol Inorg Chem,
11,
307-315.
|
 |
|
|
|
 |
P.W.King,
M.C.Posewitz,
M.L.Ghirardi,
and
M.Seibert
(2006).
Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.
|
|
J Bacteriol,
188,
2163-2172.
|
 |
|
|
|
 |
R.K.Szilagyi,
and
M.A.Winslow
(2006).
On the accuracy of density functional theory for iron-sulfur clusters.
|
|
J Comput Chem,
27,
1385-1397.
|
 |
|
|
|
 |
R.Kutty,
and
G.N.Bennett
(2006).
Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum.
|
|
J Ind Microbiol Biotechnol,
33,
368-376.
|
 |
|
|
|
 |
S.P.Albracht,
W.Roseboom,
and
E.C.Hatchikian
(2006).
The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance.
|
|
J Biol Inorg Chem,
11,
88.
|
 |
|
|
|
 |
S.S.Krishna,
R.I.Sadreyev,
and
N.V.Grishin
(2006).
A tale of two ferredoxins: sequence similarity and structural differences.
|
|
BMC Struct Biol,
6,
8.
|
 |
|
|
|
 |
S.Y.Reece,
J.M.Hodgkiss,
J.Stubbe,
and
D.G.Nocera
(2006).
Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology.
|
|
Philos Trans R Soc Lond B Biol Sci,
361,
1351-1364.
|
 |
|
|
|
 |
U.Brandt
(2006).
Energy converting NADH:quinone oxidoreductase (complex I).
|
|
Annu Rev Biochem,
75,
69-92.
|
 |
|
|
|
 |
W.Roseboom,
A.L.De Lacey,
V.M.Fernandez,
E.C.Hatchikian,
and
S.P.Albracht
(2006).
The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy.
|
|
J Biol Inorg Chem,
11,
102-118.
|
 |
|
|
|
 |
A.Yarunin,
V.G.Panse,
E.Petfalski,
C.Dez,
D.Tollervey,
and
E.C.Hurt
(2005).
Functional link between ribosome formation and biogenesis of iron-sulfur proteins.
|
|
EMBO J,
24,
580-588.
|
 |
|
|
|
 |
C.Tard,
X.Liu,
S.K.Ibrahim,
M.Bruschi,
L.De Gioia,
S.C.Davies,
X.Yang,
L.S.Wang,
G.Sawers,
and
C.J.Pickett
(2005).
Synthesis of the H-cluster framework of iron-only hydrogenase.
|
|
Nature,
433,
610-613.
|
 |
|
|
|
 |
D.C.Johnson,
D.R.Dean,
A.D.Smith,
and
M.K.Johnson
(2005).
Structure, function, and formation of biological iron-sulfur clusters.
|
|
Annu Rev Biochem,
74,
247-281.
|
 |
|
|
|
 |
F.Wang,
M.Wang,
X.Liu,
K.Jin,
W.Dong,
G.Li,
B.Akermark,
and
L.Sun
(2005).
Spectroscopic and crystallographic evidence for the N-protonated FeIFeI azadithiolate complex related to the active site of Fe-only hydrogenases.
|
|
Chem Commun (Camb),
(),
3221-3223.
|
 |
|
|
|
 |
G.Zampella,
M.Bruschi,
P.Fantucci,
M.Razavet,
C.J.Pickett,
and
L.De Gioia
(2005).
Dissecting the intimate mechanism of cyanation of {2Fe3S} complexes related to the active site of all-iron hydrogenases by DFT analysis of energetics, transition states, intermediates and products in the carbonyl substitution pathway.
|
|
Chemistry,
11,
509-520.
|
 |
|
|
|
 |
J.Cohen,
K.Kim,
M.Posewitz,
M.L.Ghirardi,
K.Schulten,
M.Seibert,
and
P.King
(2005).
Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase.
|
|
Biochem Soc Trans,
33,
80-82.
|
 |
|
|
|
 |
J.Cohen,
K.Kim,
P.King,
M.Seibert,
and
K.Schulten
(2005).
Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects.
|
|
Structure,
13,
1321-1329.
|
 |
|
|
|
 |
K.Morimoto,
T.Kimura,
K.Sakka,
and
K.Ohmiya
(2005).
Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production.
|
|
FEMS Microbiol Lett,
246,
229-234.
|
 |
|
|
|
 |
L.Girbal,
G.von Abendroth,
M.Winkler,
P.M.Benton,
I.Meynial-Salles,
C.Croux,
J.W.Peters,
T.Happe,
and
P.Soucaille
(2005).
Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities.
|
|
Appl Environ Microbiol,
71,
2777-2781.
|
 |
|
|
|
 |
M.Y.Darensbourg
(2005).
Synthetic chemistry: making a natural fuel cell.
|
|
Nature,
433,
589-591.
|
 |
|
|
|
 |
T.Burgdorf,
E.van der Linden,
M.Bernhard,
Q.Y.Yin,
J.W.Back,
A.F.Hartog,
A.O.Muijsers,
C.G.de Koster,
S.P.Albracht,
and
B.Friedrich
(2005).
The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH.
|
|
J Bacteriol,
187,
3122-3132.
|
 |
|
|
|
 |
X.Hu,
B.M.Cossairt,
B.S.Brunschwig,
N.S.Lewis,
and
J.C.Peters
(2005).
Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes.
|
|
Chem Commun (Camb),
(),
4723-4725.
|
 |
|
|
|
 |
A.Melis,
M.Seibert,
and
T.Happe
(2004).
Genomics of green algal hydrogen research.
|
|
Photosynth Res,
82,
277-288.
|
 |
|
|
|
 |
B.M.Martins,
H.Dobbek,
I.Cinkaya,
W.Buckel,
and
A.Messerschmidt
(2004).
Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin.
|
|
Proc Natl Acad Sci U S A,
101,
15645-15649.
|
 |
PDB code:
|
 |
|
|
|
|
 |
E.G.Petrov,
and
V.May
(2004).
Bridge mediated two-electron transfer reactions: analysis of stepwise and concerted pathways.
|
|
J Chem Phys,
120,
4441-4456.
|
 |
|
|
|
 |
E.J.Lyon,
S.Shima,
G.Buurman,
S.Chowdhuri,
A.Batschauer,
K.Steinbach,
and
R.K.Thauer
(2004).
UV-A/blue-light inactivation of the 'metal-free' hydrogenase (Hmd) from methanogenic archaea.
|
|
Eur J Biochem,
271,
195-204.
|
 |
|
|
|
 |
J.Balk,
A.J.Pierik,
D.J.Netz,
U.Mühlenhoff,
and
R.Lill
(2004).
The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins.
|
|
EMBO J,
23,
2105-2115.
|
 |
|
|
|
 |
T.Liu,
M.Wang,
Z.Shi,
H.Cui,
W.Dong,
J.Chen,
B.Akermark,
and
L.Sun
(2004).
Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases.
|
|
Chemistry,
10,
4474-4479.
|
 |
|
|
|
 |
F.Stejskal,
J.Slapeta,
V.Ctrnáctá,
and
J.S.Keithly
(2003).
A Narf-like gene from Cryptosporidium parvum resembles homologues observed in aerobic protists and higher eukaryotes.
|
|
FEMS Microbiol Lett,
229,
91-96.
|
 |
|
|
|
 |
M.Forestier,
P.King,
L.Zhang,
M.Posewitz,
S.Schwarzer,
T.Happe,
M.L.Ghirardi,
and
M.Seibert
(2003).
Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.
|
|
Eur J Biochem,
270,
2750-2758.
|
 |
|
|
|
 |
M.G.Bertero,
R.A.Rothery,
M.Palak,
C.Hou,
D.Lim,
F.Blasco,
J.H.Weiner,
and
N.C.Strynadka
(2003).
Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A.
|
|
Nat Struct Biol,
10,
681-687.
|
 |
PDB code:
|
 |
|
|
|
|
 |
M.Y.Darensbourg,
E.J.Lyon,
X.Zhao,
and
I.P.Georgakaki
(2003).
The organometallic active site of [Fe]hydrogenase: models and entatic states.
|
|
Proc Natl Acad Sci U S A,
100,
3683-3688.
|
 |
|
|
|
 |
T.Kanai,
S.Ito,
and
T.Imanaka
(2003).
Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
|
|
J Bacteriol,
185,
1705-1711.
|
 |
|
|
|
 |
D.C.Rees
(2002).
Great metalloclusters in enzymology.
|
|
Annu Rev Biochem,
71,
221-246.
|
 |
|
|
|
 |
D.S.Horner,
B.Heil,
T.Happe,
and
T.M.Embley
(2002).
Iron hydrogenases--ancient enzymes in modern eukaryotes.
|
|
Trends Biochem Sci,
27,
148-153.
|
 |
|
|
|
 |
D.Sellmann,
F.Geipel,
and
F.W.Heinemann
(2002).
(NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')]: an iron thiolate complex modeling the [Fe(CN)(2)(CO)(S-Cys)(2)] site of [NiFe] hydrogenase centers.
|
|
Chemistry,
8,
958-966.
|
 |
|
|
|
 |
L.Zhang,
and
A.Melis
(2002).
Probing green algal hydrogen production.
|
|
Philos Trans R Soc Lond B Biol Sci,
357,
1499.
|
 |
|
|
|
 |
P.C.Maness,
S.Smolinski,
A.C.Dillon,
M.J.Heben,
and
P.F.Weaver
(2002).
Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus.
|
|
Appl Environ Microbiol,
68,
2633-2636.
|
 |
|
|
|
 |
T.Burgdorf,
A.L.De Lacey,
and
B.Friedrich
(2002).
Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha.
|
|
J Bacteriol,
184,
6280-6288.
|
 |
|
|
|
 |
T.E.Messick,
N.H.Chmiel,
M.P.Golinelli,
M.R.Langer,
L.Joshua-Tor,
and
S.S.David
(2002).
Noncysteinyl coordination to the [4Fe-4S]2+ cluster of the DNA repair adenine glycosylase MutY introduced via site-directed mutagenesis. Structural characterization of an unusual histidinyl-coordinated cluster.
|
|
Biochemistry,
41,
3931-3942.
|
 |
PDB code:
|
 |
|
|
|
|
 |
T.Happe,
A.Hemschemeier,
M.Winkler,
and
A.Kaminski
(2002).
Hydrogenases in green algae: do they save the algae's life and solve our energy problems?
|
|
Trends Plant Sci,
7,
246-250.
|
 |
|
|
|
 |
T.Happe,
and
A.Kaminski
(2002).
Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii.
|
|
Eur J Biochem,
269,
1022-1032.
|
 |
|
|
|
 |
X.Yang,
X.B.Wang,
S.Niu,
C.J.Pickett,
T.Ichiye,
and
L.S.Wang
(2002).
Coulomb- and antiferromagnetic-induced fission in doubly charged cubelike fe-s clusters.
|
|
Phys Rev Lett,
89,
163401.
|
 |
|
|
|
 |
J.D.Lawrence,
H.Li,
T.B.Rauchfuss,
M.Bénard,
and
M.M.Rohmer
(2001).
Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics This research was supported by the NIH and the Centre Universitaire et Régional de Ressources Informatiques of ULP and CNRS.
|
|
Angew Chem Int Ed Engl,
40,
1768-1771.
|
 |
|
|
|
 |
J.Jiang,
and
S.A.Koch
(2001).
trans-
|
|
Angew Chem Int Ed Engl,
40,
2629-2631.
|
 |
|
|
|
 |
M.F.Verhagen,
T.W.O'Rourke,
A.L.Menon,
and
M.W.Adams
(2001).
Heterologous expression and properties of the gamma-subunit of the Fe-only hydrogenase from Thermotoga maritima.
|
|
Biochim Biophys Acta,
1505,
209-219.
|
 |
|
|
|
 |
P.M.Vignais,
B.Billoud,
and
J.Meyer
(2001).
Classification and phylogeny of hydrogenases.
|
|
FEMS Microbiol Rev,
25,
455-501.
|
 |
|
|
|
 |
A.L.De Lacey,
E.Santamaria,
E.C.Hatchikian,
and
V.M.Fernandez
(2000).
Kinetic characterization of Desulfovibrio gigas hydrogenase upon selective chemical modification of amino acid groups as a tool for structure-function relationships.
|
|
Biochim Biophys Acta,
1481,
371-380.
|
 |
|
|
|
 |
B.Bennett,
B.J.Lemon,
and
J.W.Peters
(2000).
Reversible carbon monoxide binding and inhibition at the active site of the Fe-only hydrogenase.
|
|
Biochemistry,
39,
7455-7460.
|
 |
|
|
|
 |
B.C.Berks,
F.Sargent,
and
T.Palmer
(2000).
The Tat protein export pathway.
|
|
Mol Microbiol,
35,
260-274.
|
 |
|
|
|
 |
G.Voordouw
(2000).
A universal system for the transport of redox proteins: early roots and latest developments.
|
|
Biophys Chem,
86,
131-140.
|
 |
|
|
|
 |
H.Ponstingl,
K.Henrick,
and
J.M.Thornton
(2000).
Discriminating between homodimeric and monomeric proteins in the crystalline state.
|
|
Proteins,
41,
47-57.
|
 |
|
|
|
 |
M.H.Huynh,
P.S.White,
and
T.J.Meyer
(2000).
Proton-Coupled Electron Transfer from Sulfur: A S-H/S-D Kinetic Isotope Effect of >/=31.1 We are grateful to the U.S. Department of Energy for financial support.
|
|
Angew Chem Int Ed Engl,
39,
4101-4104.
|
 |
|
|
|
 |
P.J.Silva,
E.C.van den Ban,
H.Wassink,
H.Haaker,
B.de Castro,
F.T.Robb,
and
W.R.Hagen
(2000).
Enzymes of hydrogen metabolism in Pyrococcus furiosus.
|
|
Eur J Biochem,
267,
6541-6551.
|
 |
|
|
|
 |
R.Bingemann,
and
A.Klein
(2000).
Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae.
|
|
Eur J Biochem,
267,
6612-6618.
|
 |
|
|
|
 |
R.Camba,
and
F.A.Armstrong
(2000).
Investigations of the oxidative disassembly of Fe-S clusters in Clostridium pasteurianum 8Fe ferredoxin using pulsed-protein-film voltammetry.
|
|
Biochemistry,
39,
10587-10598.
|
 |
|
|
|
 |
R.Sapra,
M.F.Verhagen,
and
M.W.Adams
(2000).
Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.
|
|
J Bacteriol,
182,
3423-3428.
|
 |
|
|
|
 |
J.W.Peters
(1999).
Structure and mechanism of iron-only hydrogenases.
|
|
Curr Opin Struct Biol,
9,
670-676.
|
 |
|
|
|
 |
M.F.Verhagen,
T.O'Rourke,
and
M.W.Adams
(1999).
The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization.
|
|
Biochim Biophys Acta,
1412,
212-229.
|
 |
|
|
|
 |
M.H.Charon,
A.Volbeda,
E.Chabriere,
L.Pieulle,
and
J.C.Fontecilla-Camps
(1999).
Structure and electron transfer mechanism of pyruvate:ferredoxin oxidoreductase.
|
|
Curr Opin Struct Biol,
9,
663-669.
|
 |
|
|
|
 |
M.Kaji,
Y.Taniguchi,
O.Matsushita,
S.Katayama,
S.Miyata,
S.Morita,
and
A.Okabe
(1999).
The hydA gene encoding the H(2)-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene.
|
|
FEMS Microbiol Lett,
181,
329-336.
|
 |
|
|
|
 |
M.P.Golinelli,
N.H.Chmiel,
and
S.S.David
(1999).
Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY.
|
|
Biochemistry,
38,
6997-7007.
|
 |
|
|
|
 |
R.Morales,
M.H.Charon,
G.Hudry-Clergeon,
Y.Pétillot,
S.Norager,
M.Medina,
and
M.Frey
(1999).
Refined X-ray structures of the oxidized, at 1.3 A, and reduced, at 1.17 A, [2Fe-2S] ferredoxin from the cyanobacterium Anabaena PCC7119 show redox-linked conformational changes.
|
|
Biochemistry,
38,
15764-15773.
|
 |
PDB codes:
|
 |
|
|
 |
 |
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |