Abstract

1. Rats were injected with [U-14C]glucose and the content of 14C in proteins and lipids of the cerebral P1 (`nuclear'), P2 (`mitochondrial'), P3 (`microsomal') and high-speed supernatant fractions was measured 7, 22 and 93hr. after injection of labelled glucose. 2. The crude brain mitochondrial fractions (P2) were subfractionated on continuous sucrose gradients (0·32–1·8m-sucrose) and the 14C content of the proteins and lipids of about 20 subfractions was measured. 3. About 40–50% of the 14C assimilated by brain proteins was found in the P2 (`mitochondrial') fraction. About 68–70% of the 14C assimilated by brain lipids was also recovered from the lipids of the P2 fraction. 4. Between 22 and 93hr. after injection of [U-14C]glucose both the amount of 14C in the protein of the P2 (`mitochondrial') fraction and the specific activity of this protein increased. The specific activity of the protein of all other particulate fractions (P1, P2 and P3) and subfractions (obtained from sucrose-density-gradient subfractionation of fraction P2) when related to the specific activity of the high-speed supernatant protein also increased during 93hr. after injection of [U-14C]glucose. The amount of 14C in the protein of the high-speed supernatant and the specific activity of this protein decreased during the same period. 5. The distribution of 14C in the lipids of all subcellular particulate fractions remained unchanged during the period 22–93hr. after injection of [U-14C]glucose. 6. It was concluded that a diffusion occurs of some supernatant proteins into subcellular particulate matter of the cerebrum and no significant preference for any subcellular particulate matter was observed. The lipids occur in the cerebrum mainly in a non-diffusible state, which is consistent with the view that they form almost entirely a part of the structure of the cerebrum. 7. The data obtained do not lend further support to the concept of axoplasmic flow within the cerebrum or the concept of a one-directional flow of mitochondria or other subcellular particles within the cerebrum.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDRIDGE W. N., EMERY R. C., STREET B. W. A tissue homogenizer. Biochem J. 1960 Nov;77:326–327. doi: 10.1042/bj0770326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARONDES S. H. DELAYED APPEARANCE OF LABELED PROTEIN IN ISOLATED NERVE ENDINGS AND AXOPLASMIC FLOW. Science. 1964 Nov 6;146(3645):779–781. doi: 10.1126/science.146.3645.779. [DOI] [PubMed] [Google Scholar]
- BORKOWSKI T., HARTH S., MARDELL R., MANDEL P. Distribution of ribonucleic acid in subcellular fractions of various regions of the central nervous system of the rat. Nature. 1961 Nov 4;192:456–457. doi: 10.1038/192456a0. [DOI] [PubMed] [Google Scholar]
- Bachelard H. S. Amino acid incorporation into the protein of mitochondrial preparations from cerebral cortex and spinal cord. Biochem J. 1966 Jul;100(1):131–137. doi: 10.1042/bj1000131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barondes S. H. On the site of synthesis of the mitochondrial protein of nerve endings. J Neurochem. 1966 Aug;13(8):721–727. doi: 10.1111/j.1471-4159.1966.tb09879.x. [DOI] [PubMed] [Google Scholar]
- DOBBING J. The blood-brain barrier. Physiol Rev. 1961 Jan;41:130–188. doi: 10.1152/physrev.1961.41.1.130. [DOI] [PubMed] [Google Scholar]
- Haldar D., Freeman K., Work T. S. Biogenesis ommitochondria. Nature. 1966 Jul 2;211(5044):9–12. doi: 10.1038/211009a0. [DOI] [PubMed] [Google Scholar]
- Hall T. C., Cocking E. C. High-efficiency liquid-scintillation counting of 14C-labelled material in aqueous solution and determination of specific activity of labelled proteins. Biochem J. 1965 Sep;96(3):626–633. doi: 10.1042/bj0960626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MIANI N. ANALYSIS OF THE SOMATO-AXONAL MOVEMENT OF PHOSPHOLIPIDS IN THE VAGUS AND HYPOGLOSSAL NERVES. J Neurochem. 1963 Dec;10:859–874. doi: 10.1111/j.1471-4159.1963.tb11913.x. [DOI] [PubMed] [Google Scholar]
- STEELE R. The excretion and retention of the carbon of ingested sucrose by the mouse. J Biol Chem. 1954 Jul;209(1):91–103. [PubMed] [Google Scholar]
- VRBA R., GAITONDE M. K., RICHTER D. The conversion of glucose carbon into protein in the brain and other organs of the rat. J Neurochem. 1962 Sep-Oct;9:465–475. doi: 10.1111/j.1471-4159.1962.tb04199.x. [DOI] [PubMed] [Google Scholar]
- VRBA R. Glucose metabolism in rat brain in vivo. Nature. 1962 Aug 18;195:663–665. doi: 10.1038/195663a0. [DOI] [PubMed] [Google Scholar]
- Vrba R. Effects of insulin-induced hypoglycaemia on the fate of glucose carbon atoms in the mouse. Biochem J. 1966 May;99(2):367–380. doi: 10.1042/bj0990367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Kempen G. M., van den Berg C. J., van der Helm H. J., Veldstra H. Intracellular localization of glutamate decarboxylase, gamma-aminobutyrate transaminase and some other enzymes in brain tissue. J Neurochem. 1965 Jul;12(7):581–588. doi: 10.1111/j.1471-4159.1965.tb04250.x. [DOI] [PubMed] [Google Scholar]